A Relational Wrapper for RDF Reification

Sunitha Ramanuj aml, Anubha Guptal, Latifur Khanl, Steven Seidaz,
and Bhavani Thuraisingham'

! The University of Texas at Dallas, Richardson TX 75080, U.S.A.
{sxr063200,axg089100, 1khan,bxt043000}@utdallas.edu
% Raytheon Company, Garland TX 75042, U.S.A.
steven_b_seida@raytheon.com

Abstract. The importance of provenance information as a means to trust and
validate the authenticity of available data cannot be stressed enough in today’s
web-enabled world. The abundance of data now accessible due to the Internet
explosion brings with it the related issue of determining how much of it is
trustworthy. Provenance information, such as who is responsible for the data or
how the data came to be, assists in the process of verifying the authenticity of
the data. Semantic web technologies such as Resource Description Framework
(RDF) include the ability to record such provenance information through the
process of reification. RDF’s popularity has resulted in a demand for modeling
and visualization tools. The work presented in this paper, called R2D, attempts
to address this demand by innovatively integrating existing, stable technologies
such as relational systems with the newer web technologies such as RDF. The
work in this paper extends our earlier work by adding support for the RDF con-
cept of reification. Reification enables the association of a level of trust and
confidence with RDF triples, thereby enabling the ranking/validation of the au-
thenticity of the triples. Details of the algorithmic enhancements to the various
components of R2D that were made to support RDF reification are presented
along with performance graphs for queries executed on a database containing
crime records data from a police department.

Keywords: Resource Description Framework, Data Provenance, Reification,
Data Interoperability.

1 Introduction

The extensive growth of the Internet and associated web technologies has catalyzed
research into the notion of a “Semantic Web”. This notion is envisioned to augment
human reasoning and data management abilities with automated access, extraction,
and interpretation of web information. Amongst the many methodologies and stan-
dards that are being released periodically as part of the Semantic Web initiative is the
Resource Description Framework (RDF) [1], a domain-independent data model that
enables interoperability between applications that exchange machine-comprehendible
information on the Internet. RDF records information in the form of triples, each

E. Ferrari et al. (Eds.): TM 2009, IFIP AICT 300, pp. 196-214, 2009.
© IFIP International Federation for Information Processing 2009

A Relational Wrapper for RDF Reification 197

consisting of a subject, a predicate, and an object. The predicate is typically a verb
and denotes the relationship that exists between the subject and the object. RDF’s
rapidly increasing popularity as a web content data storage paradigm has necessitated
research in the field of visualization tools to inspect and manage data stored using this
model. While efforts are ongoing to develop new tools for this purpose, alternate
research efforts are underway that focus on integrating benefits and features available
in existing methodologies with the advantages offered by the newer web technologies.

R2D, the work presented in this paper, is one such alternative research effort the
objective of which is to salvage the time, effort, and resources expended in the devel-
opment of existing, stable, relational tools by reusing them for RDF data visualization
purposes. The advantages of relationalizing RDF stores using applications such as
R2D are manifold and include continued leveraging of the knowledge gained by rela-
tional database domain experts, reduction of learning curves associated with mastery
of new tools, and availability of new technology to resource-constrained small and
medium-sized organizations unwilling to invest in expensive tools for fledgling tech-
nologies such as RDF [2].

R2D enables the visualization, inspection, and examination of RDF stores using
traditional and mature relational tools. The gap between the two paradigms is bridged,
through R2D, using a JDBC wrapper that presents, at run-time, a virtual relational
version of the RDF store, thereby eliminating the necessity to duplicate and synchro-
nize data. This paper extends the work in [3] by incorporating support for the concept
of RDF reification at every stage of R2D’s deployment.

Reification is an important RDF concept that provides the ability to make asser-
tions about statements represented by RDF triples. With the increasing number of
online resources and sources of information that become available each day, the need
to authenticate the available sources becomes essential in order to be able to judge the
validity, reliability, and trustworthiness of the information [4]. This authentication is
facilitated by augmenting the sources with provenance information, i.e., information
describing the origin, derivation, history, custody, or context of a physical or elec-
tronic object [5]. RDF Reification, a means of validating a statement/triple based on
the trust level of another statement [6], is the solution offered by the WWW consor-
tium for users of RDF stores to record provenance information. Thus, RDF reifica-
tion is a key component of any application requiring stringent records of the
basis/foundation behind every piece of information in the data store. In particular,
reification plays a critical role in security-intensive applications where it is imperative
to maintain the privacy and ownership of sensitive data. The provenance information
captured using reification can be used, in such applications, to monitor and control
data access. The contributions of this paper are as follows.

e We propose a mapping scheme for relationalization of RDF Stores. The mapping
algorithm extends the algorithm in [3] by including new constructs to handle and
process reification information.

e Based on the created map file, we propose a transformation process that generates
a normalized, domain-specific virtual relational schema corresponding to the RDF
store. The transformation algorithm in [3] is extended to include tables and rela-
tionships for reification data.

e We extend the SQL-to-SPARQL translation algorithm in [3] by including the
ability to optionally retrieve reification data, when present, through joins.

198 S. Ramanujam et al.

The organization of the paper is as follows. A brief overview of related research ef-
forts in the relational-to-rdf arena, in either direction, is provided in the following
section. R2D mapping preliminaries in terms of the high-level system architecture and
mapping constructs are given in section 3 while Section 4 presents detailed descrip-
tions of the various algorithms involved in the mapping process. Section 5 highlights
the implementation specifics of the proposed system with sample visualization
screenshots and performance graphs for a diverse range of queries on databases of
various sizes. Lastly, Section 6 concludes the paper.

2 Related Work

With RDF being the current buzzword in the “Semantic Web” community, research
efforts are underway in various aspects of RDF such as RDF-ising relational and
legacy database systems, transforming traditional SQL queries into RDF query lan-
guages such as RDQL and SPARQL, and optimizing performance of queries issued
against RDF data sources. However, the overall concept and objectives of R2D are
unique since all research efforts attempt to integrate relational database concepts and
Semantic Web concepts from a perspective that is opposite to that considered in our
work. The only research with objectives very closely aligned with R2D that we have
been able to identify till date is RDF2RDB [7] and differences between the two
frameworks are tabulated in Table 1.

Table 1. Comparison between RDF2RDB and R2D

RDF2RDB R2D

Involves data replication resulting in resource
wastage and synchronization issues

No data replication/ synchronization issues since
relational schema is virtual

Requires presence of ontological information
(rdfs:class, rdf:property) for successful mapping

No ontological information required. Mapping
discovered through extensive examination of triple
patterns

Schema may have unnecessary tables and may not
be truly normalized

No unnecessary tables created for to 1:N or N:1
relationships

No details on blank nodes or reification data
handling

Meaningful transformations included for blank
nodes and reification nodes

No SQL-to-SPARQL transformation

Since relational schema is only virtual, comprehen-

sive SQL-to-SPARQL transformation algorithm is
included

The D2RQ project [8], an extensively adopted open source project is another sig-
nificant player in the RDBMS-RDF mapping arena. The goals of D2RQ are the exact
reverse of our goals. They attempt to create a mapping from relational databases to
RDF Graphs, and transform RDF queries into corresponding SQL queries, thereby
making relational data accessible through RDF applications. Our goal, on the other
hand, is to enable RDF triples to be accessed through relational applications. RDF123
[9], an open source translation tool, also uses a mapping concept in the spreadsheet
domain where the users define mappings between the spreadsheet semantics and RDF
graphs for richer translation.

A Relational Wrapper for RDF Reification 199

Other efforts in the reverse direction include [10] where Perez and Conrad use rela-
tional. OWL to extract the semantics of a relational database and automatically trans-
form them into a machine-readable and understandable RDF/OWL ontology. A few
contributions that actually consider the mapping process from the same perspective as
our research (i.e., from RDF to relational model) are the ones listed in [11]. However,
all models are very generic, involving non-application-specific tables such as re-
sources, literals, statements etc. that would make the determination of the problem
domain addressed by the model difficult without examining the actual data. Further,
none of the models discuss the concept of RDF reification and the relational transfor-
mation of the same. In contrast, R2D details a mapping scheme for representing prov-
enance information in a relational format and enables the users to actually arrive at a
complete Entity-Relationship Diagram.

The query processing component of R2D which comprises the SQL-to-SPARQL
transformation process, once again, has no comparable counterpart while many ef-
forts, [12, 13, 14], are underway in the other direction, namely, SPARQL-to-SQL
conversion. Chebotko, et. al. [12] propose an algorithm to translate SPARQL queries
with arbitrary complex optional patterns to an equivalent SQL statement. Chen, et. al.
[13] discuss a methodology that supports integration of heterogeneous relational data-
bases using the RDF model. An SQL-based RDF Querying Scheme is presented in
[14] where the RDF querying capability is made a part of the SQL. The current re-
search efforts presented above indicate that no current solutions address the issue of
enabling relational applications to access RDF data without data replication. Hence, to
the best of our knowledge, R2D is unprecedented.

3 R2D Architecture and Preliminaries

Figure 1 illustrates the architecture of the proposed system along with the specific
R2D modules that are responsible for each function provided by R2D. R2D’s primary
objective is to present, through a JDBC interface, a relational equivalent of RDF

WVisualization Tool %

Inspect Chery
r'd Ny
| Wirtual Felational Schema |
o g

R2D"s DBSchernaenerator R207s SOL-to-SPARCL Translation

» Y
R2D Man File | SPARQL Query Engine |

R2Dvs MapF]leGenerator SPARCQL Qu.ery Processing

RDF Store %

Fig. 1. R2D System Architecture and Modules

200 S. Ramanujam et al.

triples stores to visualization tools that are based on a relational model. It also pro-
vides an SQL Interface that generates SPARQL versions of SQL queries and passes
the same to the SPARQL Query Engine layer for processing and RDF data retrieval.

At the heart of the RDF-to-Relational transformation process is the R2D mapping
language — a declarative language that expresses the mappings between RDF Graph
constructs and relational database constructs. In order to better understand the con-
structs comprising the R2D mapping language, let us consider the sample scenario in
Figure 2.

‘h"'-;--—-—""’ ’\': <Offic eame> :;
i eammmmmeme—- SR T ERCE R CEREED cmam
i i ;" Rdf:Statement i) memmmmmme —_—
Pirection t R LN df:Statement 3
C el i_,-,-'
= . Officer H
T Name !
f s . t
' Reporting i
o P . Address pva A i
i Street -)
L4

Date

Apt]
Description s %]
. |
PR Rl T Le-omoTITTETes v

R ~"\’:”-Rdf:Statement--“:}
Gender pace AUe T

[<Racer

Fig. 2. Sample Scenario involving Crime Data

Every solid node with outgoing edges, such as OffenceURI, represent a sub-
ject/resource. Edges, such as Address, Description, and Victim, represent predicates
and the solid nodes at the end of the edges, such as <Street>, <Description>, and
<Victim>, represent objects. Empty solid nodes, such as the nodes at which the Ad-
dress and ReportingOfficer predicates terminate, represent blank nodes.The nodes in
dashed lines represent reified nodes with the “s”, “p”, “0”, and “t” representing the
“rdf:subject”, rdf:predicate, “rdf:object”, and the “rdf:type” predicates of the reifica-
tion quad. Other predicates of the reification nodes (other than “s”, “p”, “0”, and “t”
predicates) represent non-quad predicates. The non-quad reification properties chosen
in this example may not represent actual provenance information. They were primar-
ily chosen to illustrate proof of concept. Elements of Figure 2 are used, wherever
applicable, to facilitate better comprehension of the mapping constructs which are
discussed in the remainder of the section. Table 2 lists the mappings between some
key OWL/RDFS ontology terminologies and RDF concepts to appropriate R2D con-
structs and their relational equivalents.

A Relational Wrapper for RDF Reification 201

Table 2. Notional Mapping between OWL/RDFS concepts, R2D constructs, and Relational
concepts

OWL/RDFS/RDF concepts R2D Mapping Constructs Relational Equivalent

rdfs:class r2d:TableMap Table

rdf:property r2d:ColumnBridge Column

rdfs:domain Table that the rdf:Property is a
column of

rdfs:range r2d:Datatype Datatype of the column

rdf:type predicate r2d:KeyField Values of the primary key column
of the table

Blank Node r2d:SimpleLiteralBlankNode Columns in parent table

r2d:ComplexLiteralBlankNode Columns in a new join table (sym-

bolizing N:M relationship)

r2d:{Simple/Complex} resource- | Depending on cardinality, either
BlankNode columns in the parent table (1:N
relationship) or columns in a new
join table (N:M relationship)

Reification r2d:ReificationNode Columns in either the parent table
or in a new join table

The constructs listed in Table 2 above are described in more detail below along
with some of the R2D mapping constructs pertaining to regular resources and blank
nodes that are essential in order to effortlessly comprehend the work in this paper. A
complete list of mapping constructs can be found in [3].

r2d:TableMap: The r2d:TableMap construct refers to a table in a relational database.
In most cases, each rdfs:class object will map to a distinct r2d:TableMap, and, in the
absence of rdfs:class objects, the r2d:TableMaps are inferred from the instance data in
the RDF Store. Typically, every solid node with multiple predicates in an RDF graph
maps into an r2d:TableMap if a similar TableMap does not already exist.

Example: The RDF graph in Figure 2 results in the creation of a TableMap called
“Offence”.

r2d:ColumnBridge: 12d:ColumnBridges relate single-valued RDF Graph predicates to
relational database columns. Each rdf:Property object maps to a distinct column attached
to the table specified in the rdfs:domain predicate. In the absence of rdf:property/domain
information, they are discovered by exploration of the RDF Store data.

Example: The Description, Victim, and Date predicates in Figure 2 become
r2d:ColumnBridges belonging to the Offence r2d:TableMap.

r2d:SimpleLiteralBlankNode: r2d:SimpleLiteralBlankNodes help relate RDF Graph
blank nodes that consist purely of distinct simple literal objects to relational database
columns. Predicates off of an r2d:SimpleLiteralBlankNode become columns in the
table corresponding to the subject of the blank node.

Example: The object of the Address predicate in Figure 2 is an example of an
r2d:SimpleLiteralBlankNode which has distinct literal predicates of Street, Block, and

202 S. Ramanujam et al.

Apt, which are, in turn, translated into columns of the same names in the Offence
r2d:TableMap.

r2d:ComplexLiteralBlankNode: This construct refers to blank nodes in an RDF
Graph that have multiple object values for the same subject and predicate concept
associated with the blank node. An r2d:ComplexLiteralBlankNode results in the gen-
eration of a separate r2d:TableMap with a foreign key relationship to the table repre-
senting the subject resource of the blank node.

Example: The object of the ReportingOfficers predicate in Figure 2 is an example of
an r2d:ComplexLiteralBlankNode that has multiple object (Badge) values for the
subject (OffenceURI) and predicate (ReportingOlfficers) concept associated with the
blank node. The relational transformation for ReportingOfficers involves the genera-
tion of an r2d:TableMap of the same name. This ReportingOfficers r2d:TableMap
includes as columns a Type field that holds the values of the predicates off of the
CLBN (in our sample scenario, the Type field will hold a value of “Badge”), and a
Value field that holds the object values of the predicates off of the CLBM. Addition-
ally, the r2d:TableMap also includes, as foreign key, the Offence_PK column which
references the primary key of the Offence r2d:TableMap.

The concept of reification is supported using many of these previously defined
constructs along with a few new constructs that are described below.

r2d:ReificationNode: The r2d:ReificationNode construct is used to map blank nodes
associated with “reification quads”. Under certain scenarios an r2d:ReificationNode
results in the generated of a new “reification” r2d:TableMap. These scenarios are dis-
cussed in detail in Section 4.2. The mapping constructs specific to r2d:ReificationNodes
are discussed next.

Example: The non-solid nodes corresponding to the Address-Street predicate, the
Victim predicate, and the ReportingOfficers-Badge predicate in Figure 2 are examples
of r2d:ReificationNodes named Address_Street_Reif, Victim_Reif, and ReportingOffi-
cers_Badge_Reif respectively.

r2d:BelongsToTableMap: This constructs connects an r2d:ReificationNode to the
r2d:TableMap corresponding to the resource associated with “rdf:subject” of the
r2d:ReificationNode. This information is recorded in the R2D Map File for use during
the SQL-to-SPARQL translation.

Example: OffenceURI is the value of the rdf:subject predicate of the Victim_Reif
r2d:ReificationNode. The r2d:TableMap corresponding to OffenceURI is Offence.
Hence, the r2d:BelongsToTableMap construct corresponding to Victim_Reif is set to a
value of Offence, thereby connecting the reification node to a relational table.

r2d:BelongsToBlankNode: This construct connects an r2d:ReificationNode to the
r2d:[Simple/Complex][Literal/Resource]BlankNode corresponding to the blank node
associated with the “rdf:subject” of the r2d:ReificationNode.

Example: The rdf:subject of the Address_Street_Reif reification node in Figure 2 con-
sists of a blank node resource called Address, which is an r2d:SimpleLiteralBlankNode.
Hence, for this reification node the r2d:BelongsToBlankNode construct is used to asso-
ciate Address_Street_Reif to the Address blank node.

A Relational Wrapper for RDF Reification 203

NOTE: Since the rdf:subject of a reification node can either refer to a proper resource
or a blank node, the r2d:BelongsToTableMap and r2d:BelongsToBlankNode con-
structs are mutually exclusive. These are primarily required to enable the generation
of appropriate SPARQL WHERE clauses during SQL-to-SPARQL translation.

r2d:ReifiedPredicate: This construct is used to record the predicate corresponding to the
“rdf-predicate” property of the reification quad mapped by the r2d:ReificationNode
construct. This information is, again, required for appropriate SPARQL query generation.

Example: The complete URI of the Victim predicate of OffenceURI is recorded under
the Victim_Reif reification node using the r2d:ReifiedPredicate construct.

Predicates of r2d:ReificationNodes are mapped using the r2d:ColumnBridge construct
described earlier in this section. Some of the important mapping constructs specific to
r2d:ColumnBridges include:

r2d:BelongsToReificationNode: This construct connects an r2d:ColumnBridge to an
r2d:ReificationNode entity and is a mandatory component of r2d:ColumnBridges
belonging to reification nodes.

Example: The r2d:BelongsToReificationNode associated with the Victim_Gender
r2d:ColumnBridge is assigned a value of Victim_Reif, thereby linking the Vic-
tim_Gender column with its reification node.

r2d:DataType: This construct specifies the datatype of the r2d:ColumnBridge to
which it is associated and comes into play when the structure of the virtual relational
database schema objects is examined.

Example: The Address_Block column bridge may have an r2d:DataType of Integer
while the Victim_Gender column bridge has an r2d:DataType of String.

r2d:Predicate: This construct is used to store the fully qualified property name of the
predicate which is associated with the reification r2d:ColumnBridge. This information
is used during the SQL-to-SPARQL translation to generate the SPARQL WHERE
clauses required to obtain the value of the r2d:ColumnBridge

Example: The complete URI of the Victim_Gender predicate of the Victim_Reif reifi-
cation node is recorded using the r2d:Predicate construct.

Figure 3 illustrates the relational schema that is inferred using the above mapping
constructs.

Offence
| Offence PK | Offence Date | Offence Description | Offence Victim | Address_Block | Address_Apt | Address_Street |

Offence_Reification
’Tﬁence PK (references Uffence Offence_PE) | Address_Street Type | Victim_Age | Victim_Gender | Victm Race |

Offence_ReportingOfficers
Offence PK (references Offence Offence P | ReportingOfficer_Tvpe | ReportingOfficer_Value | EeportmgOfficer Name

Fig. 3. Equivalent Relational Schema for Sample Scenario involving Crime Data

204 S. Ramanujam et al.

The following sections describe how each of the above mentioned R2D constructs
is utilized to transform provenance information available in RDF stores through the
reification concept into their relational equivalents.

4 Reification within the R2D Framework

In order to bring to fruition R2D’s vision and objectives, various algorithms were
designed and developed to implement each component, highlighted in Figure 1,
within the R2D framework. The algorithmic details of each R2D module for transla-
tion of regular resources and blank nodes are described in depth in [3] and are omitted
from this paper due to space constraints. The following sections discuss the algo-
rithmic aspects specifically associated with the presentation of a relational view of
RDF reification data.

4.1 Mapping Reification Nodes — RDFMapFileGenerator

The RDFMapFileGenerator is the first component in the R2D transformation frame-
work. It is responsible for the generation of a map file containing the correlations
between meta-data gleaned from the input RDF store and their relational schema
equivalent.

The reification data processing component of the RDFMapFileGenerator is
quite straightforward. Every blank node corresponding to a ‘“reification quad” is
mapped using the r2d:ReificationNode construct. If the “rdf:subject” property of the
“reification quad” mapped by the r2d:Reification construct is a resource, the
r2d:BelongsToTableMap construct is used to associate the “reification quad” with the
r2d:TableMap corresponding to the resource. If the “rdf:subject” property is a blank
node, the r2d:BelongsToBlankNode construct is used to associate the “reification
quad” to the r2d:[Simple/Complex][Literal/Resource]BlankNode associated with the
“rdf:subject” blank node. Further, if the rdf:object property of the “reification quad”
refers to another resource, then r2d:RefersToTableMap construct is used to store this
relationship. This information is used in the case of 1:N relationships between two
TableMap entities during the SQL-to-SPARQL transformation. Column 1 of Table 3
is the mapping file excerpt for the Victim_Reif and the Address_Street_Reif reification
nodes from Figure 2.

Every non-quad predicate of the reification blank node is mapped using the
r2d:ColumnBridge construct and is associated with its reification node using the
r2d:BelongsToReificationNode construct. Furthermore, the datatype of the object
corresponding to the non-quad predicate is mapped using the r2d:Datatype construct
and the URI of the non-quad predicate itself is recorded using the r2d:Predicate
construct, for use during the SQL-to-SPARQL transformation. An excerpt from the
mapping file that includes information for the Victim_Gender and the Ad-
dress_Street_Direction properties of the corresponding reification nodes from Figure 2
is listed in Column 2 of Table 3.

A Relational Wrapper for RDF Reification 205

Table 3. Mapping of Reification Nodes and their Predicates in the R2D Map File

Map File Excerpt for Reification Nodes Map File Excerpt for Predicates of Reification Nodes
map:Victim_Reif a r2d:ReificationNode; map: Victim_Gender a r2d:ColumnBridge;
r2d:belongsToTableMap map:Offence; r2d:belongsToReificationNode map: Victim_Reif;
r2d:datatype xsd:String; r2d:datatype xsd:String;
r2d:reifiedPredicate <http://Victim>; r2d:predicate <http:// Reification/Gender>;
map: Address_Street_Reif a map: Address_Street_Direction a r2d: ColumnBridge;

r2d:ReificationNode; r2d:belongsToReificationNode
r2d:belongsToBlankNode map: Address; map:Address_Street_Relif;
r2d:datatype xsd:String; r2d:datatype xsd:String;
r2d:reifiedPredicate <http://Address/Street>; |r2d:predicate <http://Reification/StreetDirection>;

Complex reification nodes, such as ones that contain one or more blank node predi-
cates, are processed using the Depth-First-Search tree algorithm (similar to mixed blank
nodes processing [3]). Every blank node encountered during DFS is mapped using the
r2d:SimpleLiteralBlankNode construct. Every predicate of the blank node is mapped
using the r2d:ColumnBridge construct and is linked to it’s parent blank node using the
r2d:BelongsToBlankNode construct. Every complex reification node is mapped using
the r2d:ComplexReificationNode construct. Blank node objects belonging to an
r2d:ComplexReificationNode are connected to the r2d:ComplexReificationNode using
the r2d:BelongsToReificationNode construct.

4.2 Relationalizing Reification Data — DBSchemaGenerator

The second stage of the R2D transformation framework, the DBSchemaGenerator,
involves the actual virtual, normalized, relational schema generation for the input RDF
store based on information in the map file created in stage one. Details of the algorithm
pertaining to the relational transformation of reification data are discussed below.

Case (a): For every r2d:TableMap in the virtual relational schema corresponding to
an RDF store an additional r2d:TableMap (i.e., a virtual relational table) of type “Rei-
ficationTable” is created in the schema if any of the following conditions hold:

a) An r2d:ColumnBridge corresponding to a predicate of a resource that maps to the
r2d:TableMap is reified

b) A r2d:MultiValuedColumnBridge (MVCB) that results in the addition of a col-
umn to this r2d:TableMap is reified

¢) A predicate corresponding to an r2d:SimpleLiteralBlankNode (SLBN) associated
with a resource that maps to the r2d:TableMap is reified

d) An r2d:ColumnBridge associated with a predicate of an r2d:SimpleLiteralBlankNode
(SLBN) object is reified.

This additional reification table houses the columns corresponding to every single-
valued property (other than the 4 properties comprising the quad) of the “reification
quads” arising from the 4 conditions described above. In order to better understand
the intricacies of the algorithm let us consider the scenario depicted in Figure 2.

206 S. Ramanujam et al.

The reification of the Victim predicate in Figure 2 is an example of condition (a)
above while reification of the Street predicate of the Address SLBN is an example of
condition (d). The relational transformation of these reification nodes results in the
creation of a new virtual relational table (called Offence_Reification) with the follow-
ing columns (corresponding to the predicates of the reification quads): Ad-
dress_Street_Direction, Victim_Gender, Victim_Race, and Victim_Age.

Case (b): In the case of reification of MultiValuedColumnBridges that result in the crea-
tion of a new join table and reification of other kinds of blank nodes other than SLBNs
(more details on the various blank node types and their relational representations can be
found in [3]), no new reification table is created. Non-quad properties corresponding to
such reifications are added as columns to the existing r2d:TableMaps resulting from
relationalization of the MVCBs and blank nodes. Reification of the Badge predicate of
the ComplexLiteralBlankNode (CLBN) ReportingOfficers in Figure 2 is one such exam-
ple where an OfficerName column (corresponding to the non-quad predicate of the reifi-
cation node for Badge) is added to the Offence_ReportingOfficers TableMap that results
from the relational transformation of the ReportingOfficers CLBN.

Complex reification nodes are nodes where non-quad predicates include one or
more (nested) blank nodes. Due to the numerous types of such mixed combinations
that are possible, it would be nearly impossible to arrive at an accurate normalized
representation of the same. Hence, r2d:ComplexReificationNodes are processed by
flattening their relational equivalents. Depending on whether Case (a) or Case (b) is
applicable to the r2d:ComplexReificationNode, either a new or an existing table
houses the reification columns. Predicates of literal and resource objects that are at the
leaf nodes of the tree rooted at the r2d:ComplexReficationNode are translated into
columns in that table.

4.3 Querying Reification Data — SQL-to-SPARQL Translation

The final stage of the R2D transformation framework involves the translation of SQL
statements issued against the virtual relational schema generated by stage 2 into
equivalent SPARQL queries that are executed against the actual RDF store. This is
achieved through the translation algorithm, which also ensures that triples retrieved
from the RDF store are returned to the relational visualization tool in the expected
tabular format. The translation algorithm presented here extends the earlier version
[3] by including the ability to translate queries issued against the virtual tables corre-
sponding to reification data.

The SQL-toSPARQL translation process transforms single or multiple table que-
ries with or without multiple where clauses (connected by AND, OR, or NOT opera-
tors) and Group By clauses. Due to space constraints, only a high level description of
the algorithm is discussed below along with examples to illustrate the translation
process.

In order to understand the intricacies of the translation algorithm, let us consider
the following SQL query based on the scenario depicted in Figure 2.

SELECT address_street, address_street_direction, address_block, victim_gender,
reportingOfficers_badge, reportingOfficers_name ~ FROM Offence, Offence_Reification,
Offence_ReportingOfficers where Offence.Offence_pk = Offence_Reification.Offence_pk AND
Offence.Offence_pk = Offence_ReportingOfficers.Offence_pk WHERE address_block = ‘1100’;

A Relational Wrapper for RDF Reification 207

The first step in the translation process involves the generation of the SPARQL
SELECT clause. For every field in the original SQL SELECT list, a variable is added
to the SPARQL SELECT list. The SPARQL SELECT list after fields processing is:

SPARQLSelect = SELECT ?address_street, ?address_street_direction, ?address_block,
2victim_gender, ?reportingOfficers_badge, ?reportingOfficers_badge_name

The processing of regular columns for generation of SPARQL WHERE and FIL-
TER clauses is described in [3]. The resulting SPARQL WHERE clause after proc-
essing of regular, non-reification columns as detailed in [3] is as follows:

SPARQLWhere = WHERE {

?O0ffence <http://Offence/Address> ?Offence_Address .

?O0ffence_Address <http://Offence/Address/Street> ? address_street .

?O0ffence_Address <http://Offence/Address/Block> ? address_block .

?Offence <http://Offence/ReportingOfficers> ?Offence_ReportingOfficers .

?0ffence_ReportingOfficers http://Offence/ReportingOfficers/Badge ?reportingOfficers_badge

FILTER (?address_block = ‘1100’) }

(a) For fields belonging to tables of type “ReificationTable” corresponding to
non-complex reification nodes, if the reification quad to which the field belongs rei-
fies a resource (and not a blank node), clauses of the form [OPTIONAL] { ’reifica-
tionQuad <rdf:subject> ?resourceTableMap . ?reificationQuad <rdf:predicate>
?reificationQuad.r2d:ReifiedPredicate . ?reificationQuad <non-quadPredicate>
?reificationColumn . ?reificationQuad <rdf:object> ?reifiedObjectField .} are added
to the SPARQL WHERE clause. The reification quad corresponding to the vic-
tim_gender column is one such reification. The OPTIONAL keyword is optional and
is only required for queries involving outer joins. Also, if the field corresponding to
the object being reified is not part of the SPARQL WHERE clause, an appropriate
selection clause is added to the same. The SPARQL WHERE clauses resulting from
the processing of the victim_gender column are:

REIFClausel = ?Offence <http://Offence/Victim> >offence_victim .

?Victim_Reif <rdf:subject> ?O0ffence . ?Victim_Reif <rdf:Predicate>
<http://Offence/Victim> . ?Victim_Reif <rdf:Object> ?offence_victim . ?Victim_Reif
<http://Offence/Victim/Gender> ?victim_gender.

Processing of reification columns belonging to {Literal/Resource} MultiValuedCol-
umnBridge ({L/R}MVCB) tables is similar to the above case with an additional step
to identify the parent table from which the {L/R}MVCB table is derived through
normalization.

In the case of RMVCB tables where the rdf:object of the reification quad is a re-
source that maps to another r2d:TableMap (through the r2d:refersToTableMap con-
struct), an additional clause of the form

?subjectResourceTableMap <reificationQuad.r2d:ReifiedPredicate> ?objectResour-
ceTableMap . is added to the SPARQL WHERE clause.

(b) For fields belonging to tables of type “ReificationTable”, if the reification
quad to which the field belongs reifies a blank node, clauses of the form given below
are added to the SPARQL WHERE clause. Further, if the rdf:object of the reification
quad is a resource mapping to another r2d:TableMap then the following additional

208 S. Ramanujam et al.

clause of the form ?BlankNode <reificationQuad.r2d:ReifiedPredicate> ?objectRe-
sourceTableMap . is appended to the SPARQL WHERE Clause.

?ParentTableofBlankNode <BlankNodePredicate> ?BlankNode . [OPTIONAL] {?reifica-
tionQuad <rdf:subject> ?BlankNode . ’reificationQuad <rdf:predicate> ?reification-
Quad.r2d:ReifiedPredicate . { ?reificationQuad <rdf:object> ?reifiedObjectField
. ?reificationQuad <non-quadPredicate> ?reificationColumn}

The address_street_direction reification column belonging to the “Address”
SLBN in Figure 2 is an example such a reification and the addition to the SPARQL
WHERE clause after processing of the same is as given below.

REIFClause2 = ?Address_Street_Reif <rdf:subject> ?Offence_Address . ?Address_Street_Reif
<rdf:Predicate> <http://Offence/Address/Street> . ?Offence_Address <rdf:Object> ?
address_street . ?Address_Street_Reif <http.://Offence/Address/Street/Direction> ?
address_street_direction .

Reification columns belonging to CLBNs are processed in a manner very similar to
the previous scenario (Scenario (b)). The reification column ReportingOffi-
cers_Badge_Name belonging to the “ReportingOfficers” CLBN in Figure 2 falls in
this category and the SPARQL WHERE clauses for this reification are as follows.

REIFClause3 = ?ReportingOfficers_Reif <rdf:subject> ?Offence_ReportingOlfficers . ?
ReportingOfficers_Reif <rdf:Predicate> <http://Offence/ReportingOfficers/Badge> . ?
ReportingOfficers_Reif <rdf:Object> ?reportingOlfficers_badge . ?ReportingOlfficers_Reif
<http://Offence/ReportingOfficers/Badge/Name> ?reportingOfficers_badge_name .

Reification columns belonging to r2d:TableMaps corresponding to all other kinds
of blank nodes are processed using either scenario (a) or (b) depending on the whether
the “rdf:subject” of the reification node is a resource or a blank node.

(c) For fields derived from complex reification nodes, the sequence of predicates
leading from the reification node to the (leaf) field are obtained by traversing the tree
structure stored during the map file generation process. A WHERE clause is added to
the SPARQL WHERE for each of the predicates in sequence.

After the translation procedures described above are applied to the given example
SQL statement, the final transformed SPARQL Query is:

SPARQL Statement = SPARQLSelect + SPARQLWhere + REIFClausel + REIFClause2 +
REIFClause3

The transformed SPARQL Query is executed and the retrieved data is returned in
relational format seamlessly.

5 Experimental Results

The hardware used for our simulation exercises was a Windows machine with 4GB
RAM and 2 GHz Intel Dual Core processor. The software platforms and tools used
include Jena 2.5.6 to manipulate the RDF triples data, MySQL 5.0 to house the RDF
data in a persistent manner, and DataVision v1.2.0, an open source relational tool,
[http://datavision.sourceforge.net/], to visualize, query, and generate reports based on
the RDF data. Lastly, BEA Workshop Studio 1.1 Development Environment along

A Relational Wrapper for RDF Reification 209

with Java 1.5 was used for the development of the algorithms and procedures detailed
in Section 4.

5.1 Experimental Datasets

The dataset used in the experiments below is a subset of crime data downloaded from
a police department website. The data has triples pertaining to cities and zip codes
where crimes were committed, and details of committed crimes as illustrated in Fig-
ure 2. While the DataVision screenshots include actual, valid crime data, the volumi-
nous datasets used in the query performance evaluations was artificially generated
through a data loading program. However, the structure of the simulated data was
kept identical to that of the actual crime dataset and, hence, the results obtained can be
directly applied to actual crime data of those volumes. For query performance ex-
periments, Jena’s in-memory model was used to load and query the data.

5.2 Simulation Results

The relational equivalent of the crime data was generated using the algorithms de-
tailed in Sections 4.1 and 4.2. The time taken by the map file generation process
without any data sampling incorporated for RDF stores of various sizes, with and
without reification information, was compared with time taken for the same process
when two sampling methods were applied and the results are illustrated in Figure 4.
Reified versions of the crime dataset were created by adding reification information to
the Address (Address_Type) and Victim (Gender, Race, Age) objects in Figure 2. This
reification information was created for 50% of the offence data in the data stores.

Map File Generation Time - Databases without Reification Map File Generation Time - Databases with Reification

5000
30 4500

250 4000

3500 ~+-No Sampling
3000

0 =-10% Convenience = i;gg =-10% Convenience

" ime
Sampling 1500 Sampling

200 ~+No Sampling

Time 100 -

(sec) (sec)

-+10% Systematic 1000 ~+10% Systematic

0 Sampling 500 Sampling
0

15K 30K 45K 60K

Number of Triples —— & Number of Triples

Fig. 4. Map File Generation Times with/without Sampling for reified/un-reified data

The process is especially time-intensive for large databases without structural in-
formation (which is the case with our experimental data set) but this is only to be
expected since the RDFMapFileGenerator has to explore every resource to ensure that
no property is left unprocessed. Furthermore, since even adding reification informa-
tion for only 50% of the triples in the RDF store resulted in a 25% increase in the size
of the data store, the increase in map file generation time for databases with reifica-
tion information is also predictable. However, the sampling techniques applied im-
proved the performance of the algorithm by a large factor.

210

S. Ramanujam et al.

Figure 5 is a screenshot of DataVision’s Report Designer along with an inset of the
database schema as seen by DataVision. The r2d:SimpleLiteralBlankNode associated
with Offence-Address is resolved into columns belonging to the Offence table, and
the r2d:ComplexLiteralBlankNode associated with Offence-ReportingOfficers is re-
solved into a 1:N table of the same name. Reification columns are segregated into
corresponding reification tables. This schema is populated through the GetDatabase-
MetaData Interface in the Connection class of the JDBC API within which the two
algorithms, RDFMapFileGenerator and DBSchemaGenerator, are triggered. At this

ataVi

Repurt Desi it

File Edit Insert Format Database Report Help
ort Header &
= "Crime Report For Texas State '
L d
Tags Hinder b A TG T 5 ol T
1z Dffence Description N Offence Date 1 City name £ @nude | Crimerate]
Detail e :
Offene Offence_OffenceDescription} [Offence Offence ! fCity City Na'! [ZipCode Zip' [ZipCade_Reificatd’
OffenceDate} me} Code_ZipCod on.City_ZipCode_
& A Jeh 1 CrmeRate} N
Repart Foater
Pag Footer

ﬂil Fields |-, Table Linker
ARk o
[File Edit Field
= ; 7] BpCote ZyCeds PX v = = Offance Oifercs OffenteTip =
M Uk b Tkl f T - I R . —
5. 3 Gy | BpCode 2pCeds PX vi= v Ipdod Reficstion TaCode P = ‘
i @ Chy Name i1
P e Gy X o .
: Add Delebe Se=cted
[e Crystate (A4 | [bekteSdeded |
B4 Offence
= @ OffenceAddiess_Block

5.) Offence_Pefication

1) TpCode_Refication

@ Offencefddress_Doorblum
-~ @ Offencefddress_Street

@ Offence_OffenceDate
- @& Offence_OffenceDescription

seslect OIIEI’]CE.OIIEBCE_OIIEDCEDESCEIDE101’11

ZipCode.ZipCode_ZipCode, City.City_Name,

|offence.0ffence_Offencebace,

P 3 dfem_oﬁem'”m 1 zlpcog?_ﬁclg;:cc J.Ql'.\-;}tg_;lpc:?ceczlm;R?;C. g

Fen com City, _—nce, ipCods, ipCode_FReificsation
Offerce Offencezip where (ZipCode.ZipCode_PE =

& Offence PK SEE LOE _ofs 2ip) and (City.City P -
& Offance_Victim ZipCode.ZipCode_Cicty) and (ZipCode.ZipCode_PK =

ZipCode Reirfication. ZipCode PK)

@ Offence_OffenceAddrass AddressType
~ @ Qffence_PK
- @ Offence_Victim_VictimAge
“ @ Offence_Victim_VictimGendar
- @ Offence_victim_VictimRace
| Offance_ReportingOfficers
=~ @ Offence_PK
- @ ReportingOfficers_Type
- @ ReportingOfficers_Value
) ZpCode
TpCode_City
— & ZpCode_PK
& ZpCode_ZipCode

m

- Cty_2pCode_CrimeRate |
#® ZipCode_PK

Fig. 5. DataVision Report Designer, Relational Schema, and Query Processing

A Relational Wrapper for RDF Reification 211

juncture, the Statement, the Prepared Statement, and the ResultSet JDBC Interfaces
are invoked, which in turn trigger the SQL-to-SPARQL translation algorithm and
return the obtained results to DataVision in the expected tabular format.

An excerpt from the output returned to DataVision by the SQL-to-SPARQL trans-
lation algorithm for the SQL statement in Figure 5 is shown in Figure 6. Selected
fields from this output were utilized by another independent application to plot the
crime details on Google maps as also illustrated in Figure 6.

In order to study the performance impact incurred by reification two versions of 4
queries were executed on simulated crime datasets of various sizes. The second

Flle Vlew Report
. | ik |ﬁ € > |Page10F2

Crime Report For Texas State

Offence Description Offenice Date City name Ziprode Crimerate
Agzravated Robbery. SUSP tock COMP's property at 12/27/2008 Dallas 75211 High
gunvoint

Theft M/B. SUSP took COMP's property "W/O paying 12/27/2008 Dallas 75224 Mednm
Criminal Mischief. 5UT5P smashed COMP rear carwind 12/27/2008 Dallas 75224 Medium

o

Assault M/A. STUSP hit COMP in back of the head 1202502008 Dallas 75210 Low

causing pain

Burglary of Habitation. UNE 5UU5P enterad residence 11/15/2008 Garland 75040 Low
and took property WO permission
AGG Fobbery. THE STSPS pointed knife at COMP 12/26/2008 Fichardson 75080 Low
and took provertv
i | | satetiite | Hyora | e -
e L - =
= : Sh=dy yufile Eim LOW CRIME AREA =%

el sighland =

e iiag The Catany |- iz ; uiaa Lawos
Double Cak:

= Lewisville || Hessan .
-hr" "g':;a Flowwer o p WWylie
Mound §
Roaawle = I

Grapavine

Lake

2, Sachse | |barey)

Fivestinke are
Southlake BiE’ My - Giowa
| Kelter. i I 1 gham W B
! @ By == Garland . Fowlett =
a - colieyvie =
| T o Centern Lake Ray -
=t North | £ L 4 : 2 ibbard
Sagmm_ﬂ e Rlchland HIHS Eledfom y V'-'hﬂ;:'h'on'ﬁ. . 1
Fn | Hurst Laks Park
me Haltum City. 3 Y =
z 11 - = Sunnyvale =
T e i e >
~Arlington | Prairie o il
|] 5l
Sawarthinaton ' P A% by @S-Dmm g
. = Gardens - L L e % 5 2 BT = Map deta-E2008.1
[Plot On Graph HIGH CRIME AR’EA——-———> BLACK MARKER
MEDIUM CRIME AREA-———- = GREY MARKER
LOwy CRIME AREA---—--—- = WHITE MARKER

Fig. 6. Excerpt from Datavision’s output in report form and Google Maps plot form

212 S. Ramanujam et al.

version was created by including one or more reification fields to the first version.
Figure 7 displays the response times of each of the queries as the sizes of the data-
bases vary. While DataVision has options to specify aggregation and grouping func-
tions, DataVision’s support group has, for reasons that are not applicable to our
academic test environment, disabled the GROUP BY facility. For the purposes of our
research, we have enabled the functionality.

Query with join between 2 tables (No Reification)/ 3 tables (Reification) Query with join between 3 tables (No Reification)/ 5 tables (Reification)
with projections including 1 Reified Column with projections including 2 Reified Columns
1600
1400 -
1200
1000 -

800
Reification Reification

600 P
L ®No Reification IST:) 400 uNo Reification

200 b L

7 75K
150K 150K
WK o 25K 300K

Number of Triples

Time
(sec)

oaMN®w R OO O

[
75K

Number of Triples

Query involving SLBN projections with join between 3 tables (No Reification)

Query involving aggregation function with join between 3 tables (No
| 4 tables (Reification) with projections including 1 Reified Column

Reification)/ 4 tables (Reification) with projections including 1 Reified Column

1200 1200
1000 1000
800 800 +
600
800 Reification X Reification
Time 400 No Reification Time 400 #No Reification
(sec) (sec)
200 200
o e o
75K 75K
150K 150K
225K 300K 225K 300K
Number of Triples Number of Triples

Fig. 7. Response times for the chosen Queries

As was anticipated, reification adds overheads to query processing times as adding
a reification quad for a triple results in the addition of a minimum of 4 to 5 extra tri-
ples to the data store. However, the time taken for SQL-to-SPARQL conversion is
negligible and nearly constant. Thus, R2D does not add overheads to the SPARQL
query performance.

SQL queries issued against relational databases created by physically duplicating
RDF data may exhibit even better performance since refined performance optimiza-
tion options have been at the disposal of relational databases for many decades. How-
ever, this improved performance comes at the expense of additional disk space due to
duplication of data, and additional system resources and human effort required to
synchronize the data. On the other hand, for possibly a small price in terms of re-
sponse time, R2D offers an avenue for users to continue to take advantage of readily
available visualization tools without having to “reinvent the wheel”.

A Relational Wrapper for RDF Reification 213

6 Conclusion

Provenance Information plays a pivotal role in evaluating quality of data and deter-
mining trust in the source of data. This paper extends the R2D framework in [3] by
including the ability to represent provenance information available in RDF stores,
through the process of reification, in a relational format accessible through traditional
relational tools. A JDBC interface aimed at accomplishing this goal through a map-
ping between RDF reification constructs and their equivalent relational counterparts
was presented. The modus operandi of the proposed system was described along with
in depth discussion on the algorithms comprising the R2D framework. Graphs high-
lighting response times for map file generation and query processing obtained using
databases of various sizes, both with and without reification data, were also included.
Future directions for R2D include providing support for the ability to relate an entity
key field to multiple r2d:TableMaps corresponding to resources belonging to different
classes, and improving the normalization process for mixed blank nodes and complex
reification nodes.

References

1. W3C Recommendation, RDF Primer (2004),
http://www.w3.0org/TR/rdf-primer/

2. Hendler, J.: RDF Due Diligence (2006),
http://civicactions.com/blog/rdf_due_diligence

3. Ramanujam, S., Gupta, A., Khan, L., Seida, S., Thuraisingham, B.: A Framework for the
Relational Transformation of RDF Data. UTD Technical Report UTDCS-40-08 (2008),
http://www.utdallas.edu/~sxr063200/Paper2.pdf

4. Da Silva Almendra, V., Schwabe, D.: Trust Policies for Semantic Web Repositories. In:
Second Semantic Web Policy Workshop, pp. 17-31 (2006)

5. Buneman, P., Chapman, A., Cheney, J.: Provenance Management in Curated Databases.
In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of
Data, pp. 539-550 (2006)

6. Powers, S.: Practical RDF. O’Reilly Media, Sebastopol (2003)

7. Teswanich, W., Chittayasothorn, S.: A Transformation of RDF Documents and Schemas
to Relational Databases. In: IEEE Pacific Rim Conference on Communications, Com-
puters, and Signal Processing, pp. 38—41 (2007)

8. Bizer, C., Cyganiak, R., Garbers, J., Maresch, O., Becker, C.: The D2RQ Platform,
http://www4d .wiwiss.fu-berlin.de/bizer/d2rq/

9. Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: From Spreadsheets to RDF. In:
Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451-466. Springer, Heidelberg
(2008)

10. de Laborda, C.P., Conrad, S.: Bringing Relational Data into the Semantic Web using
SPARQL and Relational OWL. In: 22nd International Conference on Data Engineering
Workshops, p. 55 (2006)

11. Melnik, S.: Storing RDF in a Relational Database,
http://infolab.stanford.edu/~melnik/rdf/db.html

214 S. Ramanujam et al.

12. Chebotko, A., Lu, S., Jamil, H.M., Fotouhi, F.: Semantics Preserving SPARQL-to-SQL
Query Translation for Optional Graph Patterns. Technical Report TR-DB-052006-CLJF.
Wayne State University (2006)

13. Chen, H., Wu, Z., Wang, H., Mao, Y.: RDF/RDFS-based Relational Database Integration.
In: 22nd International Conference on Data Engineering, pp. 94—104 (2006)

14. Chong, E.I, Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL —based RDF Querying
Scheme. In: 31st International Conference on Very Large Databases, pp. 1216-1227 (2005)

	A Relational Wrapper for RDF Reification
	Introduction
	Related Work
	R2D Architecture and Preliminaries
	Reification within the R2D Framework
	Mapping Reification Nodes – RDFMapFileGenerator
	Relationalizing Reification Data – DBSchemaGenerator
	Querying Reification Data – SQL-to-SPARQL Translation

	Experimental Results
	Experimental Datasets
	Simulation Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

