
Domain Drivers in the Modularization of FLOSS
Systems

Andrea Capiluppi

Centre of Research on Open Source Software,
University of Lincoln, Brayford Campus, Lincoln,

LN5 7TS, United Kingdom
acapiluppi@hemswell.lincoln.ac.uk

Abstract. The classification of software systems into types has been achieved
in the past by observing both their specifications and behavioral patterns: the
SPE classification, for instance, and its further supplements and refinements, has
identified the S-type (i.e., fully specified), the P-type (i.e., specified but dependent
on the context) and the E-type (i.e., addressing evolving problems) among the
software systems.

In order to detect types, and establish similarities, among Free/Libre/Open
Source Software (FLOSS) systems, this paper considers three modular charac-
teristics (functions, files and folders) and their evolution: how they are evolving
with size, if they are constant across systems, and whether recurring evolutionary
patterns are observed. Using these various-grained characteristics, a set of models
for the evolution of modularization are extracted from evolving systems, and then
used to extract similarities and types from a wide sample of FLOSS projects.

This paper provides three contributions: first, it shows that several models are
needed to encompass the variety of modularization patterns; second, it provides
three types of models (uni-variate, bi-variate and tri-variate) for the evolution of
modularization, with significant goodness-of-fit’s. Finally, it shows that two of
these patterns alone can interpolate the modular characteristics of the vast major-
ity of a random choice of FLOSS projects.

1 Introduction and Related Work

The classification of software systems into types, if properly conducted, can serve di-
verse purposes: by classifying and indexing objects or components, for example, devel-
opers can ease the search and location of reusable software [8,21]. As a matter of fact,
any reuse effort always involves two major steps to achieve its results: first, it must be
able to clearly identify reusable components; second, it must put in place a library of
reusable entities for their selection in future projects [15,16]. As a necessary condition
for these two steps, a reusable component should be uniquely classified and described,
its functionalities and application domain clearly identified, and its inward and outwards
connections described.

Classification of software systems has also been achieved in the past with the purpose
of assigning common features of frequently observed patterns to categories, like the
SPE program classification [13]. Based on this, a software system can be classified

C. Boldyreff et al. (Eds.): OSS 2009, IFIP AICT 299, pp. 3–19, 2009.
c© IFIP International Federation for Information Processing 2009

4 A. Capiluppi

as S-type, when “the specification is the complete, sole and definitive determinant of
program properties” [12]; a software system is instead classified as P-type when “the
result from the execution of the program is correct in a sense provided by the problem
statement” [12]. Given the definition, a P-type system can be considered as S-type as
long as its underlying problem was stated completely and precisely. Finally, an E-type
system has been described as implementing an application in a “real world domain”, and
its overall value is only in part dependent on the correctness of the expected outcome,
other aspects being the interaction with users and other components. More recently, the
same SPE classification was adapted to comprise patterns of behavior and evolution [5].

Finally, from an evolutionary perspective, the classification of software systems has
proven useful to identify the presence of patterns of evolution. In recent works, either
similarity or volatility, (i.e., variety of behaviors, or absence of similarity) has been used
to characterize the evolution of both commercial [1] and FLOSS products [2,10,23] and
processes [17].

This study builds upon two core concepts of the software engineering knowledge,
namely the classification of software systems, as briefly introduced above, and their
modularity [19]. The decomposition of software systems into smaller modules, each
with large internal cohesion and low coupling with others, is an established framework
for software designers and architects. Modules form basic building blocks, and their di-
mension are typically accomplished avoiding both too large (i.e. under-modularization)
or too small (i.e. over-modularization) components [20].

This paper studies the evolution of three modular characteristics (source functions
or methods, source files and source folders) with respect to the size of the system in
order both to detect patterns of modular evolution, and to identify clusters or types in
the modularization of 26 FLOSS systems evolution. Since types and patterns are here
expressed in terms of multivariate models, the paper will initially assess whether a single
model could instead be fitted for all the systems. Later, these empirical models will be
used to interpolate the modular characteristics of two random samples of FLOSS projects.

This paper is articulated as follows: Section 2 will introduce the definitions and the
empirical hypothesis that this study is based upon, since it proposes multiple, multivari-
ate models. Section 3 will test the hypothesis by introducing a cross-sectional analysis:
all of the observed systems will be put in the same evolutionary pool, and a single
model will be sought. Section 4 will at first discuss the problem of multi-collinearity
when dealing with multi-variate models. Then it will investigate and display the models
which were extracted from the evolutionary history of the 26 FLOSS systems. Section
5 will use these models to evaluate the modular characteristics of a the second sample
of FLOSS systems, and to assess which of these models better formalizes what system.
Finally, Section 6 will present the conclusions and illustrate potential future works.

2 Definitions

From the theoretical standpoint, modularity of FLOSS projects has been extensively an-
alyzed [7,14,18], and advocated as a necessary condition for appropriately leveraging
the distributed approach of FLOSS developers. Less frequently it has been evaluated
empirically, and mostly on fine-granular elements: for example, the modularization (in

Domain Drivers in the Modularization of FLOSS Systems 5

terms of functions) in FLOSS procedural languages has been compared to the modular-
ization (in terms of methods) in FLOSS object-oriented languages [6]; also, the com-
mon coupling among modules of the Linux kernel has been extensively analyzed [25].

The terminology and definitions used in this paper are therefore extracted from sim-
ilar studies in the past FLOSS literature [3,9,10,22], especially those related to entities
with different levels of granularity. The empirical hypothesis that this paper is built
upon is presented in Section 2.1.

1. Source function: basic unit of source code; this term is used to refer to procedures,
subroutines, but also OO-methods.

2. Source file: any file with at least one source function.
3. Source folder: any folder containing at least one source file [4]. The term module

is used here to refer to source code functions, files and folders.
4. Size: the length of the whole system, of a folder, a file or a function, which can be

evaluated at different levels of granularity, for example: number of folders, of files,
lines of code (LOC) and lines of source code (SLOC) which excludes blank lines
and embedded comments.

5. Application domain: The application domains of the sample has also been studied.
These domains are those used within a well known FLOSS repository (the Source-
Forge site) to effectively cluster the projects. Table 1 summarizes the domains and
the relative keys used throughout the paper.

Table 1. Application domains as used in the SourceForge repository

Application Domain Key

Communications A
Database B

Desktop Environment C
Education D

Formats and Protocols E
Games/Entertainment F

Internet G
Multimedia H

Office/Business I
Other/Nonlisted Topic J

Printing K
Scientific/Engineering L

Security M
Software Development N

System O
Terminals P

Text Editor Q

6. Programming language: this paper will differentiate, for each project, between a
procedural (P) and object-oriented (OO) paradigm. This distinction will be made
based on a prevalence (i.e. more than 80%) of one specific programming language

6 A. Capiluppi

(and paradigm) over others (4th column of Table 2). In cases where multiple pro-
gramming languages (and paradigms) are present with similar shares, an appropri-
ate notation is used. As an example, the project with Id 5 is composed of C source
files (40%) and the rest of the Dylan (also procedural) programming language.

Table 2. Summary of Programming paradigms and Application Domains

Id Project Releases Language Domain

1 abiword 82 OO/P Q
2 arla 68 P G
3 gaim 98 P A
4 ganymede 42 OO G
5 gdylan 17 PP M
6 ghemical 21 OO L
7 gimp_print 117 OO K
8 gimp_stable 34 OO H
9 gimp_dev 96 OO H
10 gist 19 OO G
11 grace 36 P L
12 htdig 17 P G
13 ksi 14 P M
14 lcrzo 56 P G
15 motion 81 P H
16 mplayer 77 P H
17 mrtg 77 P G
18 mutt 91 P A
19 netwib 35 P G
20 rrdtool 35 PP O
21 siagoffice 46 P I
22 vovida 14 OO/P A
23 wine_stable 20 P O
24 wine_unstable 90 P O
25 xfce 67 P C
26 xmms 29 P H

2.1 Working Hypothesis

Previous studies have been conducted to inform about the presence of correlation be-
tween

a the size of FLOSS systems and
b time of development (in days, weeks or months)

showing very high goodness-of-fit [2,10]. It is argued here that these models present
severe pitfalls: the set of resulting models not only lacks information on how modular-
ization is achieved, but also establishes a relation between an internal attribute (i.e. size,
in SLOCs) and an external measurement (i.e. time, in days, weeks or months). This pa-
per will explore evolutionary models comprising an internal dependent variable (size),

Domain Drivers in the Modularization of FLOSS Systems 7

and internal independent variables (number of source folders, files and functions). This
will in turn remove any modeling distortions resulting from long periods of inactivity
or peaks of activity (as seen in FLOSS systems in proximity of major releases [9]).

The working hypothesis underlying this study states that a single modularization
model cannot encompass the variety of FLOSS observed evolutionary patterns. In terms
of null hypothesis (H0), the model [m0]

size = a ∗ f olders+ b ∗ f iles+ c∗ f unctions+d [m0]

will produce an adequate goodness-of-fit for all the selected FLOSS projects. The
empirical evaluation of this will be achieved analyzing the level of significance of the
four parameters (a, b, c and d), i.e. evaluating their t-value’s and p-value’s.

The alternative hypothesis, H1, requires that several models are necessary to fit the
modularization patterns of FLOSS projects. As a summary, Table 3 displays the null
and the alternative hypotheses, their description, and how they will be tested.

Table 3. Summary of the research hypotheses

Type Description Measures

H0 Single model [m0] for all FLOSS sys-
tems

t-value’s of a,b,c,d large; p-value’s of
a,b,c,d ≤ 0.2

H1 Multiple models needed t-value’s of a,b,c,d small; p- value’s of
a,b,c,d > 0.2

3 Cross-Sectional Analysis

A cross-sectional study design [11] is used in this section for validating and testing the
research hypothesis. This type of statistical test is ideal for the proposed hypothesis,
since it builds a very basic form of understanding of the data. In this case, it helps in
detecting whether a generic, overall model can be established between the dependent
variable (size, in LOCs) and the modular characteristics (source folders, files and func-
tions). In a cross-sectional analysis, either the entire population or a subset is selected,
in a single snapshot (i.e. no longitudinal analysis is performed): in the case depicted
by this paper, the overall population of the 26 FLOSS projects was put in the same
statistical pool to detect a unique relationship.

3.1 Design of the Experiment

The purpose of the investigation is to assess the significance of the modularization
model [m0]: each of the parameters (a,b,c and d) will be extracted from the data of
all the systems, together with its level of confidence, in terms of t-value and p-value.
This was repeated several times, in a stratified approach: the steps below summarize the
design and implementation of the statistical analysis.

1. At first, the systems in Table 2 were ordered by number of available releases, and a
lower limit was set as a minimum to conduct the study: a minimum threshold of 29
releases was selected as the first cross-section (first row of Table 4), as it appeared
to be large enough to collect statistical data.

8 A. Capiluppi

2. All the systems with exactly or more than 29 releases (therefore excluding projects
with ID’s 5, 6, 10, 12, 13, 22, 23 from Table 2) were listed, and their latest 29
releases, with their data on source folders, files and functions, comprising 551
data points, formed the first population, for which the first multi-variate regression
model was calculated. The coefficients of the model, as well as the determination
coefficient (R2) were evaluated (4th, 5th, 6th and 3rd columns of Table 4).

3. As a second step, the number of releases closest and larger than 29 was selected
as the next threshold (i.e., 34). As done previously, all the systems with exactly or
more than this threshold of releases were considered (hence excluding project with
ID 8 from Table 2), forming a pool of 612 data points. As before the coefficients of
the multi-variate regression were evaluated, together with the R2 factor.

4. The same approach was applied, recursively, for the ordered number of releases as
cross-sections. A decreasing number of projects participated to the various studies,
and different pools of data points (2nd column of Table 4) were considered, as per
definition of cross-sectional design.

5. At the end of all the iterations, the mean and the variance of the coefficients were
evaluated, and later used to evaluate the t-value and the p-value of each attribute.

3.2 Results of the Cross-Sectional Study

The results of the set of steps as briefly summarized above analysis are displayed in
the last four rows of Table 4: the t-value’s and p-value’s are reported for each of the
independent variables (folders, files and functions) and the intercept (“Const”). The
only confidence achievable is on the two regressed parameters “Funct” and “Const”,
while the parameters of “Folder” and “File” have a low t-value and a high p-value.

As per the definitions given in Table 3, it is possible to reject the null hypothesis
H0: from the sample of 26 FLOSS projects, it’s not possible to extract one single mod-
ularization model. The variety of observed behaviors (in terms of modularization) of
the selected systems requires a larger set of models: in the next sections, each FLOSS
project will be analyzed to discover one or more patterns of evolution of modularization,
and the problem of multi-collinearity will be discussed.

4 Evolutionary Models

The previous Section 3 showed that a single multi-variate correlation, comprising the
characteristics of source folders, files and functions, can not represent, on its own, the
modularization patterns of the considered FLOSS projects.

One solution to address this issue would be to refine the model to make it inclusive of
all the variations of the ob- served behaviors. Another solution is instead to investigate
each project in order to detect the presence of one or more modularization models. This
second option is more reasonable, also from previous empirical evidence on FLOSS
projects [2,10,24], which already shows diverse patterns of evolution.

In the next subsection, the problem of multi-collinearity [11,24] is investigated in
order to detect (if any) the principal modular characteristics of each project’s evolution,
and to discard the non-relevant ones.

Domain Drivers in the Modularization of FLOSS Systems 9

Table 4. Cross-sectional design study – results

Cross-Sections Data points R2 Dir File Funct Const

29 551 0.957 422.08 77.76 32.39 26519.83
34 612 0.957 330.94 70.5 33.48 28873.35
35 595 0.958 627.72 65.36 31.31 25449.24
35 560 0.957 625.78 66.11 31.33 24121.65
36 540 0.958 568.18 60.75 32.28 23600.43
42 588 0.959 477.4 55.43 33.51 21133.54
46 598 0.960 364.32 48.24 35.23 18447.44
56 672 0.965 13.9 32.86 39.18 27244.26
67 737 0.965 -47.38 26.79 40.12 27348.65
68 680 0.988 -1239.44 15.42 50.22 28085.51
77 693 0.986 -930.71 9.45 48.53 24898.57
77 616 0.985 -871.73 9.23 48.01 26336.04
81 567 0.989 -804.14 -4.67 48.89 20642.72
82 492 0.987 -749.78 -5.58 48.16 27414.36
90 450 0.990 107.53 91.9 35.36 18794.66
91 364 0.985 -17.44 24.75 46.41 13399.28
96 288 0.983 32.28 21.87 47.01 7075.48
98 196 0.893 1992.91 -308.17 50.08 30839.27
117 117 0.267 -667.08 -24.08 32.24 56036.34

Mean 12.39 17.57 40.2 25066.35
Variance 765.83 85.06 7.59 9476.44
T-value 0.016 0.207 5.297 2.645

P-value (18 d.f.) 0.987 0.838 0.000 0.017

4.1 Addressing Multi-collinearity

In its definition, multi-collinearity is the presence of a significant linear relationship
(reflected, for instance, by a large value of R2) between two or more independent (or
explanatory) variables. The presence of multi-collinearity poses serious problems when
defining the relevance of a variable into the regressed model: for instance, one could
overestimate the weight of a variable even if it was perfectly correlated (i.e. superfluous)
to another one [24].

In order to refine the single model as expressed above, each system was therefore
studied on its own, and the characteristics of source folders, files and functions were
taken as independent variables and the size in LOCs as dependent variable. This was
repeated in all the releases: finally, the correlation among the independent variables
was studied. An acceptable multi-variate regression must have low correlations among
the independent variables, and should have high correlation between each independent
variable (folder, file, function) and the dependent one (size).

Generating Models from Evolutionary Data. For only 4 projects (ganymede, gimp-
print, gist, lcrzo) the three modular characteristics are relevant in the evolutionary be-
havior (i.e., the R2 between each pair of attributes are all < 0.9), thus generating a

10 A. Capiluppi

Fig. 1. Evolution trends in the pattern size = { f olders, f iles, f unctions} (Gaim system)

Table 5. Summary – Evolutionary patterns

Pattern Type of pattern R2 ≥ 0.9

p1 size = f ({ f older, f ile, f unct}) 17
p2 size = f (f older, f ile) 12
p3 size = f (f older, f unct) 7
p4 size = f (f ile, f unct) 2
p5 size = f (f older, f ile, f unct) 2

size = f (f olders, f iles, f unctions) pattern. In all the remaining projects, one (or more)
multi-collinearity problems were detected, since at least two of the attributes were found
to be highly correlated. Therefore, in these systems other patterns were sought: when-
ever a high correlation was found between two variables, their relevance was questioned
compared to the other variables. In cases of evident multicollinearity, one of these vari-
ables was dropped.

As an example, the system abiword (Id 1) shows a high correlation between number
of folders and number of functions; and between number of functions and number of
files: therefore, the variable number of functions was excluded from the model. The
model explaining the modularization of the abiword system was chosen to be:

size = a ∗ (f olders)+ b ∗ (f iles)+ d [m1]

and coded as the size = f (f olders, f iles) pattern in the 5th column of Table 7 (with
key m1).

For other projects (gaim, Id 3), no correlation was found to be significant. It was
chosen to have a richer set of models in this case: the underlying pattern comprises
three models (represented as m3, m4 and m5 in Table 7) which jointly represent the
pattern:

Domain Drivers in the Modularization of FLOSS Systems 11

size = a ∗ (nr f olders)+ d [m3]
size = b ∗ (nr f iles)+ d [m4]

size = c∗ (nr f unctions)+ d [m5]

This complex behavior was coded instead as the

size = f ({ f olders, f iles, f unctions})

pattern in Table 7, meaning that the “size”variable can be explained by any of the “num-
ber of files”, “number of folders”or “number of functions” alone. We claim that this
pattern achieves the best modularization for FLOSS system: all the dependent variables
have the same evolutionary trend, and each can explain alone the growth of size. This
behavior is visually depicted (when normalized) in Figure 1 for the Gaim system.

Considering the variations of the 26 patterns, a maximum of 45 different models
were found, whose attributes (a, b, c and d) have been evaluated and fully expanded
in Table 7. Each of these models was interpolated with evolutionary data in terms of
goodness-of-fit. In 6 cases it was found that the corresponding model had a significance
lower than 0.9 in terms of R2: this reduced the overall number of models to 39.

In terms of affected patterns, the summary in Table 5 shows the relevance of each
pattern as observed in the whole pool, and considering only those cases where the re-
gression fit was larger than 0.9 and 0.7. As observed above, the proposed pattern con-
taining the three explaining variables (p5, in the form of

size = f (f olders, f iles, f unctions)),

was empirically observed only in 2 out of 40 statistically relevant patterns (i.e., with
R2 ≤ 0.9). Most of the other patterns represent an interaction of at most two variables
(21 out of 39) or a single variable (17 cases out of 39). Also, the union of the patterns
p1 and p2 alone is responsible for some 3/4 of the extracted models.

5 Testing the Models

The relations obtained in the previous Section 4 formed a pool of models, each charac-
terizing the evolution of the size (in LOCs) as a function of the modular characteristics
(source folders, files and functions) of a specific project. The goodness of fit of most of
these models was demonstrated to be statistically significant via the indicator R2.

5.1 Design of the Experiment

In this subsection, the models defined above (from m0 to m40) are used to test whether
a generic FLOSS project shows a modularization which can be interpolated by any of
the models above.

In order to do so, a random sample of 50 FLOSS projects was extracted from both
the Debian and the SourceForge repositories, resulting in 100 projects. Debian contains
a popular FLOSS forge which is the basis of the successful Debian distribution; Source-
Forge hosts more than 200,000 FLOSS projects and is recognized as the most common

12 A. Capiluppi

FLOSS portal. The two samples were extracted from similar-sized pools, i.e. the “sta-
ble” subset of hosted projects, as per the development status that each FLOSS project
can select as its own. For each project in the samples, the number of folders, files and
functions were evaluated together with the value of size in SLOCs.

Table 8 shows the summaries of the attributes of these samples: information on the
“programming languages” and “application domains” was also collected: depending on
the programming language, OO projects was selectively interpolated with OO models,
and similarly for procedural projects. For some of the projects, information on source
functions could not retrieved, since their languages (like Python, PHP or the such) were
not supported by theavailable tools.Theseprojectswerediscardedfrom themodel testing.

The modular characteristics of each project were used within a model obtaining an
estimated size as the dependent variable: this value was later compared with the real
value of size (in SLOCs). The error made by the estimation was evaluated as follows

error = abs

[
Sizere −Sizeest

Sizere

]

where Sizere represents the real size value, and Sizeest the estimate given by the model.
The p25 (the probability that the estimate diverges for less than 25% from the real value)
is recorded in Table 6. The summary differentiates among the application domains of
Table 1 and the patterns (p1 to p5) of Table 5: within the projects with application
domain “A” (Communication), the first row summarizes that:

• 4 models from Table 7 and pattern p1, i.e. f(folder, file, function), estimate the
achieved size of a subset of projects (sharing the same programming paradigm of
these models – OO vs P) with an error < 25% ;

Table 6. Predictability of patters at p < 0.25

Pattern p1 p2 p3 p4 p5

A 4 1 2
B 2 1
C 5 1 1
D
E 1
F 4 3 2 1 1
G 11 3 2 1 2
H 10 5 3 1 1
I 9 5 2 1 1
J 2
K 14 4 2 1 2
L 16 2 2 1
M 2
N 1 1 1
O 3 1 1 1

Totals 77 30 20 7 9
% 53.85 20.98 13.99 4.90 6.29

Domain Drivers in the Modularization of FLOSS Systems 13

• only one model with the pattern p2 (f(folder, file)) can properly estimate the size in
SLOCs of one project with a similar error;

• 2 models with pattern p3 estimate the SLOCs of the two random samples with a
comparable error.

5.2 Results of the Experiment

The following insights can be drawn from this summary table:

1. As visible in the last two rows, two patterns perform better than others in terms
of error made in the estimation of size (in SLOCs). Alone, the patterns p1 and
p2 cover 34 of the successful estimates: this means that the models based on one
attribute alone (i.e., number of folders, or files, or functions) explain the modular-
ization patterns of the majority of the projects in these samples. The size in SLOCs
is therefore predictable using just one attribute, and the ratio SLOCs/attribute rep-
resents a constant.

2. A subset of application domains (B, D, E, J, M, N) is more difficult to estimate than
others. This has two explanations: first, apart from the domain “M”, the evolution-
ary sample of Table 2 does not contain projects belonging to this subset. Hence,
specific models for these domains were not produced. Second, the two random
samples of FLOSS projects also contain few projects (6 overall) belonging to these
domains, hence making it difficult to draw conclusions on them.

3. A subset of application domains (F, G, H, I, J, L) is instead attracting several es-
timates from diverse patterns (although the patterns p1 and p2 still prevail). Apart
from the “G” (Internet) domain, they all represent front-end user applications (as
opposed to back-end system administrators): this result is therefore stating that the
projects in these domains have diverse modularization types, ranging from highly
modular (as mirrored by the p1 pattern) to the least modular, when the three mod-
ular characteristics (folder, file and function) are needed to estimate the size in
SLOCs (as mirrored by the pattern p5).

6 Conclusions

This paper used publicly available FLOSS data and shared metrics in order to pro-
vide a mechanism to classify the evolution of software systems. In past literature, the
shapes of evolutionary curves have been qualitatively observed, or univariate models
(size-time) have been used to draw similarities among systems. In this study, the rela-
tionship between size (as dependent variable) and the modularization characteristics of
systems (number of source folders, files and functions – as independent variables) was
used to first extract models of evolution, select patterns out of these and then fit these
modularization models on a random sample of FLOSS projects.

The study was preceded by a research hypothesis: a unique modularization model can
not capture the variety of observed behaviors in FLOSS systems, but a set of modulariza-
tion models is needed. The model (m0) used as a benchmark was a multi-variate linear
correlation, in the form size = a∗ f olders+b∗ f iles+c∗ f unction+d. This hypothesis
was tested through a cross-sectional analysis, using the whole set of gathered FLOSS
data (summing up to more than 1,300 data points). It was found that the single model
could not be considered statistically accurate for each and all the considered systems.

14 A. Capiluppi

As a result of the hypothesis testing, the presence of a whole set of modularization
models was investigated. For every FLOSS project in the pool, the benchmark model m0
was analyzed, and the multi-collinearity issue was discussed: for some of the projects,
in fact, the multivariate model revealed the presence of collinearity among some of the
independent variables. In those cases, a simpler pattern was tested, either with only two
independent variables, or just with one. In some of the projects, the multi-collinearity
of the variables pointed to a complex pattern, where more than one patterns were used
to describe the evolution of modularization. As a result of this step, it was observed a
dominance of univariate and bi-variate patterns over the benchmark model, which could
be observed as statistically relevant (in terms of R2) only in 2 out of 39 models.

In order to test these models, and their accuracy in predicting the modularization of
FLOSS systems, a random sample of FLOSS projects was extracted from the Debian
distribution and the SourceForge portal, and their modular characteristics recorded. The
models were used to interpolate the variables, and to predict the size, of the FLOSS
projects: models with a specific programming paradigm (OO or procedural) were used
to interpolate the FLOSS projects using the same paradigm. This prediction was then
compared to the actual size in SLOCs of the project, with an error of 25%.

The first finding of this analysis showed that two patterns stand out in terms of pre-
diction power: p1 and p2 could cover up to 3/4 of the successful predictions. The second
finding pointed at the uneven distribution of domains in a random sample, showing that
specialized topics (Databases, Education) are also more difficult to model. The third
finding showed that high-end applications suffer from a high variety of modularization
patterns, ranging from very modular models (where each attribute can be considered
as constantly growing with the size) to uneven growth of each attribute, resulting in a
model where each attribute is needed to interpolate the achieved size.

References

1. Barry, E.J., Kemerer, C.F., Slaughter, S.A.: On the uniformity of software evolution patterns.
In: ICSE 2003: Proceedings of the 25th International Conference on Software Engineering,
pp. 106–113. IEEE Computer Society, Washington (2003)

2. Capiluppi, A.: Models for the evolution of os projects. In: ICSM 2003: Proceedings of the
International Conference on Software Maintenance, p. 65. IEEE Computer Society, Wash-
ington (2003)

3. Capiluppi, A., Boldyreff, C.: Identifying and improving reusability based on coupling pat-
terns. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 282–293. Springer, Heidelberg
(2008)

4. Capiluppi, A., Morisio, M., Ramil, J.F.: The evolution of source folder structure in actively
evolved open source systems. In: METRICS 2004: Proceedings of the Software Metrics, 10th
International Symposium, pp. 2–13. IEEE Computer Society, Washington (2004)

5. Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Evolution in software systems: founda-
tions of the spe classification scheme: Research articles. J. Softw. Maint. Evol. 18(1), 1–35
(2006)

6. Ferrett, L.K., Offutt, J.: An empirical comparison of modularity of procedural and object-
oriented software. In: ICECCS 2002: Proceedings of the Eighth International Conference on
Engineering of Complex Computer Systems, p. 173. IEEE Computer Society, Washington
(2002)

Domain Drivers in the Modularization of FLOSS Systems 15

7. Fitzgerald, B.: A critical look at open source. Computer 37(7), 92–94 (2004)
8. Frakes, W.B., Pole, T.P.: An empirical study of representation methods for reusable software

components. IEEE Trans. Softw. Eng. 20(8), 617–630 (1994)
9. German, D.M.: Using software trails to reconstruct the evolution of software: Research arti-

cles. J. Softw. Maint. Evol. 16(6), 367–384 (2004)
10. Herraiz, I., Gonzalez-Barahona, J.M., Robles, G.: Towards a theoretical model for software

growth. In: MSR 2007: Proceedings of the Fourth International Workshop on Mining Soft-
ware Repositories, p. 21. IEEE Computer Society, Washington (2007)

11. Lauridsen, J., Mur, J.: Multicollinearity in cross-sectional regressions. Journal of Geograph-
ical Systems 8(4), 317–333 (2006), http://ideas.repec.org/a/kap/jgeosy/
v8y2006i4p317-333.html

12. Lehman, M.M.: Uncertainty in computer application and its control through the engineering
of software. Journal of Software Maintenance 1(1), 3–27 (1989)

13. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software change. Aca-
demic Press Professional, Inc., San Diego (1985)

14. Lerner, J., Tirole, J.: Some simple economics of open source. The Journal of Indus-
trial Economics L(2), 197–232 (2002), http://www3.interscience.wiley.com/
cgi-bin/fulltext/118942767/PDFSTART

15. McClure, C.: Software reuse techniques: adding reuse to the system development process.
Prentice-Hall, Inc., Upper Saddle River (1997)

16. Morisio, M., Ezran, M., Tully, C.: Success and failure factors in software reuse. IEEE Trans.
Softw. Eng. 28(4), 340–357 (2002)

17. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution patterns of open-
source software systems and communities. In: IWPSE 2002: Proceedings of the Interna-
tional Workshop on Principles of Software Evolution, pp. 76–85. ACM, New York (2002),
http://doi.acm.org/10.1145/512035.512055

18. Narduzzo, A., Rossi, A.: The role of modularity in free/open source software development.
In: Koch, S. (ed.) Free/Open Source Software Development, pp. 84–102. Idea Group Pub-
lishing, Hershey (2004)

19. Parnas, D.L.: On the criteria to be used in decomposing systems into modules, pp. 139–150
(1979)

20. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher Ed-
ucation, New York (2001)

21. Prieto-Díaz, R.: Implementing faceted classification for software reuse. Commun.
ACM 34(5), 88–97 (1991), http://doi.acm.org/10.1145/103167.103176

22. Robles, G., Amor, J.J., Gonzalez-Barahona, J.M., Herraiz, I.: Evolution and growth in large
libre software projects. In: IWPSE 2005: Proceedings of the Eighth International Workshop
on Principles of Software Evolution, pp. 165–174. IEEE Computer Society, Washington
(2005)

23. Smith, N., Capiluppi, A., Ramil, J.F.: A study of open source software evolution data using
qualitative simulation. Software Process: Improvement and Practice 10(3), 287–300 (2005)

24. Trochim, W.: The Research Methods Knowledge Base, 2nd edn. Atomic Dog Pub-
lishing, Cincinnati, http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20&path=ASIN/1931442487

25. Yu, L., Chen, K.: Categorization of common coupling and its application to the maintainabil-
ity of the linux kernel. IEEE Trans. Softw. Eng. 30(10), 694–706 (2004)

http://ideas.repec.org/a/kap/jgeosy/v8y2006i4p317-333.html
http://ideas.repec.org/a/kap/jgeosy/v8y2006i4p317-333.html
http://www3.interscience.wiley.com/cgi-bin/fulltext/118942767/PDFSTART
http://www3.interscience.wiley.com/cgi-bin/fulltext/118942767/PDFSTART
http://doi.acm.org/10.1145/512035.512055
http://doi.acm.org/10.1145/103167.103176
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/1931442487
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/1931442487

16 A. Capiluppi

Appendix

Table 7. Summary – Evolutionary Models

Id Project R2 Model

m1 abiword 0.97 y = 1009.771*folder + 325.588*file - 210142.563
m2 arla 0.99 y = 538.466*folder + 216.124*file - 15779.445
m3 gaim 0.97 y = 6401.148*folder + 8056.888
m4 gaim 0.99 y = 423.250*file + 664.207
m5 gaim 1 y = 38.941*funct + 6219.853
m6 ganymede 0.99 y = 6013.705*folder - 16.579*file + 18.290*funct - 18579.671
m7 gdylan 0.99 y = 262.675*file + 12.387*funct + 26653.283
m8 ghemical 0.99 y = -6665.506*folder + 595.308*file + 2807.564
m9 gimp_stable 0.99 y = -2249.964*folder + 156.274*file + 534680.665
m10 gimp_stable 1 y = -380.309*folder + 48.323*funct + 66610.831
m11 gimp_unstable 1 y = 59.860*folder + 53.262*funct - 28040.954
m12 grace 0.97 y = -5093.335*folder + 622.458*file + 40515.292
m13 htdig 0.99 y = 136.588*folder + 54.784*funct + -14221.918
m14 ksi 0.93 y = 346.067*file - 980.292*folder + 36294.173
m15 htdig 0.99 y = 50.658*file + 48.669*funct - 14224.314
m16 lcrzo 0.97 y = 5173.712*folder + 161.054*file + 19.255*funct - 12490.114
m17 motion 0.95 y = 0.000*folder + 77.202*funct -1174.557
m18 mplayer 0.99 y = -5057.409*folder + 678.961*file - 3626.076
m19 mrtg 1 y = 81.736*folder + 25.549*funct + 2218.992
m20 mutt 0.91 y = -1478.851*folder + 488.015*file + 6342.068
m21 mutt 0.97 y = 559.707*folder + 71.766*funct + -602.318
m22 netwib 0.95 y = 3426.807*folder + 76321.231
m23 netwib 0.99 y = 199.451*file + 71239.165
m24 netwib 1 y = 61.597*funct + 16614.239
m25 rrdtool 0.95 y = 8463.757*folder + 3154.039
m26 rrdtool 1 y = 1173.715*file + -39939.284
m27 rrdtool 0.99 y = 230.029*funct - 47495.961
m28 siagoffice 0.99 y = 1241.303*folder + 311.820*file - 15036.930
m29 vovida 0.98 y = -1244.999*folder + 344.516*file - 13420.463
m30 wine_stable 0.95 y = 4470.605*folder + 384237.197
m31 wine_stable 0.99 y = 777.483*file - 254581.635
m32 wine_stable 0.99 y = 36.475*funct + 189872.728
m33 wine_unstable 0.99 y = 5262.688*folder + 22096.140
m34 wine_unstable 0.99 y = 721.482*file - 157662.177
m35 wine_unstable 1 y = 44.415*funct - 39778.746
m36 xfce 0.98 y = 4667.436*folder + 8039.892
m37 xfce 0.95 y = 131.795*funct - 73091.477
m38 xmms 0.94 y = -1525.592*folder + 665.040*file - 39494.842
m39 xmms 0.97 y = -560.728*folder + 83.277*funct - 27330.425

Domain Drivers in the Modularization of FLOSS Systems 17

Table 8. SourceForge sample – modular characteristics (part 1)

SLOCs Fold File Funct Domain Lang

perpojo 1,677 10 31 117 A OO
moses 105,955 0 1,042 4,053 A OO
fn-javabot 10,142 35 211 279 A OO
ozone 63,790 141 1,018 3,920 B OO
xqilla 107,320 58 824 2,534 B OO
fsdb 241,218 362 1,715 8,506 B OO
galeon 93,374 11 412 3,525 C P
whiteboard 4,910 2 13 202 D php
fourever 15,163 28 207 593 E OO
hge 45,654 19 110 800 F P
zmpp 15,502 24 184 1,063 F OO
sudapix 234 8 111 15,747 F P
symbolica 2,623 5 32 67 F OO
icsDrone 1,411 1 14 33 F P
kpictorial 21 3 27 18,214 F sh
critical_care 38,994 18 185 1,051 F OO
ogce 350,490 1,385 3,222 13,960 G OO
cpia 22,954 6 25 109 G P
mod_aspdotnet 2,445 4 13 45 G OO
xmlnuke 57,944 33 395 1,623 G php
wxactivex 3,264 1 11 37 G OO
tab-2 19,067 63 334 597 G php
source 8,786 128 109 162 G OO
oliver 1,429 2 21 9 G php
formproc 3,514 11 70 134 G OO
freemind 28,519 30 241 1,579 H OO
cdlite 1,116 1 6 29 H OO
audiobookcutter 4,229 8 37 34 H OO
edict 2,556 1 2 0 J perl
qlc 26,452 10 203 890 J OO
swtjasperviewer 3,214 4 43 129 K OO
QPolymer 86,971 7 199 652 L OO
expreval 3,588 2 18 66 L OO
eas3pkg 43,724 5 101 69 L f90
neocrypt 2,135 3 27 21 M OO

18 A. Capiluppi

Table 9. SourceForge sample – modular characteristics (part 2)

SLOCs Fold File Funct Domain Lang

juel 7,284 15 110 404 N OO
csUnit 16,241 41 234 96 N cs
j_trac 519 34 157 12,771 N OO
fitnesse 39,503 37 631 2,321 N OO
ustl 11,416 2 94 684 N OO
txt2xml 1,345 9 25 61 N OO
gvision 101,123 9 236 0 N pascal
seagull 54,155 102 362 878 N OO
clinkc 25,846 140 432 919 N P
simplexml 1,691 3 4 65 N P
pf 213 33 166 84,489 O perl
Beobachter 2,715 14 49 94 O OO
blob 22,056 15 276 496 O P
intermezzo 34,792 15 167 522 O P
cotvnc 37,455 2 225 789 O P

Table 10. Debian sample – modular characteristics (part 1)

SLOCs Fold File Funct Domain Lang

kphoneSI 41,829 10 263 735 A OO
sylpheed 106,087 6 249 2,859 A P
enigmail 10,790 13 53 86 A OO
synce-kde 21,684 6 95 141 C sh:
txt2html 3,623 2 3 0 E perl:
scid 89,402 6 151 1,179 F tcl:
netpanzer 74,368 42 598 2,935 F OO/P
boson 224,567 78 1,272 9,246 F OO
gosa 107,798 101 466 2,404 G php:
lirc 44,753 26 148 785 G P
openh323 234,285 30 451 6,392 G OO
openafs 618,553 195 2,452 10,807 G P
peercast 22,543 8 95 818 G OO
slrn 42,993 5 91 1,189 G P
cherokee 54,229 17 432 1,221 G P
vlc 401,256 129 1,378 6,250 H P
cdparanoia 9,182 3 37 211 H P/P
kmouth 5,240 3 41 99 H OO
rlplot 69,493 1 27 1,449 H OO
flac 56,293 42 206 1,380 H P

Domain Drivers in the Modularization of FLOSS Systems 19

Table 11. Debian sample – modular characteristics (part 2)

SLOCs Fold File Funct Domain Lang

gwenview 4,580 4 62 128 H OO
prcs1 37,360 8 130 663 H OO/P
yaml4r 10,728 8 31 0 I ruby:
xmakemol 18,724 1 39 315 I P
octave_forge 78,150 129 409 0 I OO/P
myphpmoney 19,434 11 64 153 I php:
dia 146,550 43 561 4,151 I P
grass6 107,648 115 558 1,650 I P
geomview 101,844 86 771 2,748 I P
ProofGeneral 48,692 22 134 0 I lisp:
fte 51,498 2 186 1,182 K OO
ruby 419,942 260 2,076 5,086 K ruby:
EtoileWildMenus 1,711 1 21 2 K OO
tcl 165,306 23 378 2,205 K P
wxWidgets 2,142,713 372 4,325 0 K OO
libax25 11,721 1 30 80 K sh:
liboil 52,996 39 304 730 K P
libsoup 15,012 3 86 494 K P
Pike 173,196 62 408 2,302 K P
shorewall 25,159 6 74 0 L sh:
acpidump 2,349 1 16 53 L P
tiobench 1,689 1 8 41 L P
radiusd 95,967 101 397 1,330 L P
preludemanager 10,854 15 70 304 L P
apmud 2,502 1 14 45 L P
clamav 116,731 24 339 1,056 L P
tdb 3,942 3 19 133 L P
grub 3,536 1 7 0 L sh:
noteedit 63,456 3 139 611 M OO
jToolkit 4,156 5 32 0 M python:

	Domain Drivers in the Modularization of FLOSS Systems
	Introduction and Related Work
	Definitions
	Working Hypothesis

	Cross-Sectional Analysis
	Design of the Experiment
	Results of the Cross-Sectional Study

	Evolutionary Models
	Addressing Multi-collinearity

	Testing the Models
	Design of the Experiment
	Results of the Experiment

	Conclusions
	References
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

