
G. Allen et al. (Eds.): ICCS 2009, Part II, LNCS 5545, pp. 63–73 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Tool for Automatic Code Generation from Schemas

Antonio Gavilanes, Pedro J. Martín, and Roberto Torres

Departamento de Sistemas Informáticos y Computación, Facultad de Informática,
Universidad Complutense de Madrid, 28040 Madrid, Spain

{agav,pjmartin}@sip.ucm.es, r.torres@fdi.ucm.es

Abstract. Algorithm design is one of the more neglected aspects in program-
ming introduction courses. On the contrary, schemas focus on solution con-
struction, since they gather common characteristics of algorithms, so they can
be considered as algorithm cognitive units. In this paper, we go beyond the
benefits of teaching schemas and we present a tool that incorporates their use. It
automatically generates code from the application of schemas, allowing its inte-
gration into the class as a useful educational tool.

Keywords: Automatic code generation, schemas, recurrence relations.

1 Introduction

A first year programming course usually is devoted to instructing students on two differ-
ent aspects: the programming language and the algorithm design. Most of the textbooks
focus on the language itself, thus algorithms are scattered along the course to show the
language features. As a consequence, the algorithmic knowledge is poorly organized and
students find that each problem requires an innovative technique to be solved.

On the contrary, not so frequent trends structure students’ instruction around prob-
lem analysis and solution construction, by means of teaching schemas [6] [8] [9].
Schemas join the common characteristics of the algorithms that solve a family of
problems, thus they can be considered as algorithmic cognitive units that can be ap-
plied to build programs. Students must carefully analyze the problem to find the
schemas that can be applied to solve it, instead of programming from scratch. This
analysis is based on drawing analogies to identify the tasks whose solutions are well
known [5]. For instance, when analyzing the query “is x prime?” or the calculation of
“trunc(log2(x))”, for a given natural number x≥2, students should notice that both
problems can be similarly solved by using a search schema. Indeed, we can look for
the first natural number y≥2 such that y divides x, for the first one, and pow(2,y)>x,
for the second one, where pow(x,y) computes xy. In fact, students should be able to
instance a skeleton like the following one, using Java syntax:

 y= 2;
 found= CONDITION;
 while (!found) {
 y= y+1;
 found= CONDITION;
 }

64 A. Gavilanes, P.J. Martín, and R. Torres

where CONDITION respectively corresponds to the expressions x % y == 0, and
pow(2, y)>x. After execution, we use “x is prime iff y=x” to solve the
first problem, and return y-1 for the second one.

Teaching schemas has great benefits. Regarding students, it improves their ability
for abstraction, it avoids a compulsive impulse to write code before knowing what to
do; and it standardizes the code that different students could produce. From a teaching
point of view, instructors can exploit a broad analysis of the schemas in order to au-
tomatically extend their properties to any solution based on them. Hence properties
such as correctness, termination or complexity, can be stated once in a theoretical
framework, instead of independently analyzing each program. Also, schemas provide
students with important insights into the use of other algorithmic units, such as design
patterns in later courses.

In this paper we go beyond teaching schemas, since we also take care of how they
can be automatically applied to a given problem. Apart from teaching how to instanti-
ate the variable parts of the schema (e.g. CONDITION in the examples above), we use
a tool to generate the involved code. Thus, when students are asked to solve a prob-
lem, firstly they should represent the problem in order to supply it to the tool, and
then, choose the proper schema. So the tool allows the student to focus on the schema,
not on the syntax of the language, and autonomously to obtain running solutions to
the problem, from the code that is automatically generated. Visual and iconic lan-
guages, and their programming environments, are also related to code synthesis for
programming instruction [2] [3] [13]. But they are based on graphical description of
the algorithms, thus our approach has a greater abstraction power, since it requires the
specification of the problem instead.

2 Theoretical Framework

In an introductory programming course, schemas can be mainly used to solve two
different tasks: traversing and searching. As we have seen, the primality test is an
example of a searching process. The computation of pow(x,y) itself can be seen as an
example of a traversal from 1 to the natural number y. Nevertheless, schemas must
also be classified according to the way data are generated. We have been teaching
them in three contexts: data built by recurrence relations, data obtained from an array,
and data read from a file. Since the schemas involved in the exploration of recurrence
equations are the simplest ones, we began developing a tool to solve them.

2.1 Recurrence Relations

In mathematics, a recurrence relation is an equation which defines a sequence recur-
sively: each term of the sequence is defined as a function of the preceding terms [4].
To obtain a unique sequence from a recurrence relation, there must be some initial
values that do not depend on other numbers in the sequence. A well-known example of
recurrence relation is the Fibonacci sequence given by the equation fi= fi-1+fi-2
and the initial values f0=1, f1=1. The order of a recurrence relation is the number of
preceding terms occurring in the equation; so the order of the Fibonacci sequence is 2.
The index of a term is its position in the sequence, beginning from 0.

We do not intend to solve such relations, as usual in a discrete mathematics course.
Actually, we are concerned about generating iterative algorithms to explore the

 A Tool for Automatic Code Generation from Schemas 65

recurrence sequence. Thus, we do not care about the type of its terms –float, int
or boolean-, nor the operators involved in the equation. We will only suppose that
the related expressions are valid. As operands of the equation defining fi, we allow
not only the preceding terms of f, but also the index i itself, and the preceding terms
of other recurrence relations. In the latter case, it is said that the relations have been
simultaneously defined by a recurrence relation system. For instance, the system
f0=1, g0=0, fi=gi-1, gi=fi-1, defines the characteristic functions of the predicates
“i is even” (f) and “i is odd” (g). The order of a system is the maximum of the orders
of its relations. Nevertheless, we will only consider systems whose relations have the
same order. Systems not satisfying this condition can be completed by progressing on
the relations fallen behind the rest. Finally, we also allow systems where fi depends
on the i-th term of a simultaneous relation. In order to avoid partiality in this case, a
topological ordering between the relations of the system is required. For example,
equations f0=0, g0=0, fi=gi+fi-1, gi=fi-1+gi-1 compose a proper system since
gi can be computed before than fi.

Apart from the types and operators involved in the recurrence relations above pre-
sented, the computability they define can be compared to the class of primitive recur-
sive functions [7].

2.2 The Schemas

We use schemas to solve three classic problems involved in the exploration of recur-
rence relation systems: (1) the traversal problem, that calculates the term occurring at
a given index, (2) the unbounded search problem, which looks for the first term satis-
fying certain condition, and (3) the bounded search problem, which seeks the first
term satisfying a condition up to a given index. Among the different schemas that can
be designed to solve such problems, we present the following ones using Java syntax.

//TRAVERSAL
int i;
DECLARATION
INITIALIZATION
i= CURRENT_INDEX;
while (i<n) {
 i= i+1;
 STEP
}

//UNBOUNDED SEARCH
int i;
boolean found;
DECLARATION
INITIALIZATION
i= CURRENT_INDEX;
found= CONDITION;
while (!found) {
 i= i+1;
 STEP
 found= CONDITION;
}

//BOUNDED SEARCH
int i;
boolean found;
DECLARATION
INITIALIZATION
i= CURRENT_INDEX;
found= CONDITION;
while (!found &&(i<bound)){
 i= i+1;
 STEP
 found= CONDITION;
}

The three schemas use a while sentence to progress on the recurrence system,
step by step. The variables i and found are related to the last computed terms of the
system and denote their index and whether they satisfy CONDITION, respectively.
Capitalized words are “holes” that must be properly replaced depending on the given
recurrence system. DECLARATION and INITIALIZATION must be replaced with
the corresponding variables, CURRENT_INDEX must be replaced with the order of
the system minus one, and STEP must be replaced with the code required to progress
on the system.

66 A. Gavilanes, P.J. Martín, and R. Torres

3 The CGR Tool

The CGR tool, which stands for Code Generation for recurrence Relations, produces
Pascal, C and Java code (the target languages) from a specification of the involved
recurrence relations. We present how it works by means of examples, and we show
how its GUI looks by displaying different snapshots.

3.1 Example 1. Computing the Vertices of a Regular N-gon

As a first example, consider the problem of calculating the vertices of a regular N-gon
(N>2) for a given side length>0. In order to apply the tool, the student must begin
defining the recurrence relations required to solve the problem, which basically corre-
spond to express how vertices coordinates develop. The solution we propose is based
on the well-known turtle graphics [1]: assuming that the first vertex is placed at an
initial arbitrary point, the coordinates of the next vertex yield after properly rotating
the direction and moving forward the distance length. Let ai be the recurrence defin-
ing the angle that must be rotated. It can be defined by:

a0=0
ai=ai-1+2π/N, i>0

The recurrences xi and yi define the coordinates of the successive vertices. If we
start at the point (0, 0), they can be defined as follows:

x0=0, y0=0
xi=xi-1+length*cos(ai-1), i>0
yi=yi-1+length*sin(ai-1), i>0

Each recurrence relation is provided to the tool by using a dialog box which re-
quests the following inputs from the students: the name of the recurrence, the primi-
tive type (real, integer, boolean) it holds, the expressions for the initial values,
and the equation for the recurrence relation (Fig. 1).

Fig. 1. Defining the recurrence relation x

 A Tool for Automatic Code Generation from Schemas 67

In the generated code, identifiers f0,…,fm-1 will hold the last generated terms of
a given recurrence relation f of order m; so they must be used to state its recurrence
equation. In the example, the identifier x0 denotes the last term of x, and x0 must be
used to state the involved recurrence equation: x0+length*a0 (Fig. 1). We tell
students that they must instance the equation to compute the first new term
(x1=x0+length*cos(a0) in the example), when they provide CGR with the re-
currence equations. Once students have defined the recurrences that compose the
system, they have to determine which schema must be applied to solve the problem,
and which target language (Pascal, C, Java) will be used in the code generation. This
information is supplied to the tool by using a new dialog box which requires the
names of the recurrences and the chosen schema(s). In our example, we must apply
the traversal schema since we ask for all of the N-gon vertices (Fig. 2).

Fig. 2. Asking for an implementation

Finally, we show the generated code for the Java syntax.

int i;
float x0, x1, y0, y1, a0, a1;
x0=0; y0=0; a0=0;
i=0;
while (i<N) {
 i=i+1;
 x1 =x0 + d0*Math.cos(a0);
 y1 =y0 + d0*Math.sin(a0);
 a1 =a0 + 2*Math.PI/N;
 x0=x1; y0=y1; a0=a1;
}

3.2 Example 2. Carrying Different Weights

A worker is carrying different objects with different weights between two points. The
first time he covers the distance, he carries A>0 units of weight. The second time, he
carries B>0 (A>B) units of weight. As time goes by, his tiredness increases and he is
forced to reduce the weight he can carry, which becomes the minimum between
95% of the last covered distance and 90% of the last distance but one. We pose the
problem of determining the number of complete ways the worker can carry out before

68 A. Gavilanes, P.J. Martín, and R. Torres

he is exhausted, which occurs when the total carried weight exceeds C. We define a
recurrence relation wi to express the current weight, by the following equations:

w0=A, w1=B

wi=minimum(0.95*wi-1, 0.90*wi-2), i>1

Notice that students must use a definition by cases in order to properly provide the
tool with this equation. Thus, condition 0.90*w0>0.95*w1 has to be supplied in the
corresponding dialog box (Fig. 3).

Fig. 3. Defining the recurrence relation w

Since we look for the first time the total carried weight exceeds C, we introduce a
recurrence relation aci to hold the total carried weight:

ac0=A, ac1=A+B,
 aci=aci-1+wi, i>1

Observe that aci depends on wi, thus the generated code must progress on the re-
currence w before progressing on ac. The tool warns the student about such situation,
and supplies a right ordering when required (Fig. 4 on the left).

Students must apply the unbounded search schema, thus the search condition has to
be provided before generating the code (Fig. 4 on the right). Since we use the expres-
sion ac1>C, the value i-1 will finally return the number of complete ways before
the worker becomes exhausted.

Fig. 4. Left: Advising that a proper ordering is required. Right: Asking for the search condition.

 A Tool for Automatic Code Generation from Schemas 69

Then the generated Java code is the following:

int i; boolean found;
float w0, w1, w2, ac0, ac1, ac2;
w0=A; w1=B; ac0=A; ac1=A+B;
i=1;
found=ac1>C;
while (!found) {
 i=i+1;
 if (0.90*w0 > 0.95*w1) w2= 0.95*w1;
 else w2= 0.90*w0;
 ac2=ac1 + w2;
 w0= w1; w1= w2; ac0= ac1; ac1= ac2;
 found= ac1>C;
}

3.3 Integrating the Tool into the Course

We present the tool in the classroom after teaching the schemas for recurrence
relations, which usually takes place at the end of the first out of two trimesters. Thus,
the students have already been taught about their properties and about how schemas
must be applied to specific problems. We have also presented some variations of the
schemas (e.g. loops controlled by a counter or by a boolean expression), which are
compared each other in order to gain the insights on them.

The tool is introduced to solve some of the problems they have manually coded
previously. Students get really surprised when they notice that the tool solves the
problems instantaneously. For the instructor, the tool can be used to prove that sche-
ma application is a real systematic process.

One hour is basically enough to explain the tool features. Next, the tool is uploaded
to the web to make it public. Then students are encouraged to autonomously apply the
tool to a selection of problems, as an optional lab assignment.

4 Evaluation of Schemas and the Tool

4.1 Study Framework

For the last two years, we have been analyzing the influence of using schemas on the
development of students’ programming skills, when teaching an introductory
programming course during the first year of a Software Engineering degree, which
applies the usual CS-first approach [12]. The study population was integrated in 7
groups each year, of around 70 students each; some of the groups (3 the first year, and
1 the second) studied schemas, while the others studied in a traditional language-
oriented approach. Since students are randomly assigned to the groups, the groups are
comparable with respect to the students’ programming capabilities. We begin compar-
ing the two approaches according to the academic success of the students, not consid-
ering other factors as the diversity of teachers and exams.

Only a few students decided to try CGR, despite of the extra mark that had been
added to their final grade in case they would have solved some of the problems posed

70 A. Gavilanes, P.J. Martín, and R. Torres

in the lab assignment. Although they were not forced to solve all of them, they were
asked to apply each of the three schemas at least once; hence, they should classify the
chosen problems before trying to solve them, exploiting one of the schemas benefits.
The assignment also included a satisfaction survey that students should fill in order to
evaluate the tool.

4.2 Discussion about Academic Success

Table 1 reports the pass rates of the seven groups. The schemas-groups rates are dis-
played in boldface. The table points out that the schemas rates occupied the highest
places, especially in 2007-2008.

Table 1. Pass rates

Group 1 2 3 4 5 6 7

2006-2007 31.7 51.2 51.4 49.1 47.8 27.7 39.7

2007-2008 29.7 43.3 25.9 25.9 23.5 40.2 51.5

4.3 Discussion about How Students Used the Tool

The programming assignment consisted of a list of 10 problems: six of them required
the unbounded search schema (US), two the bounded search one (BS), and two the
traversal one (T). Each student had to solve from 3 to 5 problems. The number of
students that participated was 24 in 2007-2008. Table 2 shows the results we ob-
tained. For each problem, we have studied four variables, which have been displayed
in rows: the schema solving the problem (A), the number of students that chose the
schema rightly|wrongly (B), the number of students that defined the recurrences
rightly|wrongly (C), and the number of students that defined the condition of the (un-
bounded search or bounded search) schema rightly|wrongly (D).

Table 2. Report on the students’ solutions

 1 2 3 4 5 6 7 8 9 10
A US US BS US US T BS T US US
B 1|0 2|0 11|9 6|2 12|3 19|0 11|0 12|0 4|0 14|0
C 1|0 2|0 16|3 8|0 13|2 12|6 10|0 9|3 2|1 13|1
D 1|0 2|0 5|5 5|2 10|3 10|0 2|1 14|0

Table 3 summarizes the previous results, showing the success rates related to vari-

ables B, C and D for each schema. The average of these rates for the three schemas is
87% for the variable B, 84% for C, and 83% for D.

Thus, a descriptive analysis of the results shows that students usually choose the
right schema, define the recurrence relations properly, and provide the tool with the
correct search condition.

In order to analyze Table 3 more deeply, we have compared the percentages of the
three schemas by pairs [11]. This study reports that the schemas US versus T, and BS

 A Tool for Automatic Code Generation from Schemas 71

versus T, are different at the 95.0% confidence level (P<0.05), regarding variable B.
Actually we conclude that problems based on traversals are more easily guessed,
since the success rate for this schema is much higher than for the search ones.

Table 3. Analysis of students’ solutions

0

20

40

60

80

100

US BS T

Right selection
of scheme

Right definition
of recurrences

Right definition
of search
condition

4.4 Discussion about Students’ Compliance

The satisfaction survey was composed of 14 assertions. Students’ answers ranged
from 1 [total disagreement] to 5 [total agreement]. We focus on the most relevant
questions:

3. “To define the relations involved in is an easier task than to code from scratch”.
4. “To find out the relations takes less time than to code from scratch”.
7. “The use of the CGR tool is suitable to solve problems in a first-year program-

ming course”.
10. “The CGR tool is useful to teach a first-year programming course”.
11. “The CGR tool is a helpful tool to autonomous learning”.
12. “Your programming background was broad before starting the course”

Table 4 shows the averaged answers to the previous questions in the two years.
Notice that almost all of them exceed the middle value (3), thus students seem to be
grateful for using the tool. We especially appreciate answers to question 3, 4 and 7,
since they indicate that students find the tool useful to build programs.

Table 4. Students’ answers to the selected assertions

72 A. Gavilanes, P.J. Martín, and R. Torres

In order to know whether the tool can be considered a useful tool we have analyzed
the answers of 2007-2008 in depth. Concretely, we have studied whether any previous
programming background affects the answers. Thus, we have applied the χ2 test be-
tween answers to questions 3, 4, 7, 10 and 11 versus answers to question 12. Since the
range of answers to these questions was too wide for 24 surveys, we have grouped the
answers in order to safely apply this test. Thus, answers 1 and 2 have been replaced
with 1, 4 and 5 with 5, and answer 3 has been ruled out. Then we have finally applied
the independence tests over five 2x2 matrices. The study only reveals that answers to
question 7 and 12 are not independent at the 95.0% confidence level (P<0.05) [10].
Concretely, on the one hand, 80.0% of the students with a broad background an-
swered 1 to question 7, while 20.0% of them answered 5; on the other hand, 21.4% of
the students with a narrow background answered 1 to question 7, while 78.6% of
them answered 5. In consequence, we can conclude that the more previous back-
ground, the less they think that the tool is helpful to solve problems. In our opinion,
students with previous programming skills do not like the tool because they feel un-
comfortable when they cannot appeal to their own programming schemas.

5 Conclusions

Methodologies based on schemas are becoming popular for teaching programming in
introductory courses. They focus on algorithm design instead of the language syntax,
and use schemas as algorithm cognitive units. In this paper, we have presented a tool
for programming using schemas. In order to solve a given programming problem, the
student defines a recurrence relation system, selects the proper schema and the tool
automatically generates the code that solves the problem in the target language. In this
way, our tool allows the integration of methodologies based on schemas into the sub-
ject of the course.

We have also experimentally studied the influence of using schemas on the devel-
opment of students’ programming skills, and we have analyzed the students’ compli-
ance with the tool. The results we have obtained reveal that students assimilate
schemas well. Regarding the tool, students find it suitable to solve problems and help-
ful to autonomous learning.

References

1. Abelson, H., di Sessa, A.A.: Turtle Geometry. MIT Press, Cambridge (1981)
2. Calloni, B., Bagert, D.: Iconic Programming Proves Effective for Teaching the First Year

Programming Sequence. In: SIGCSE 1997, pp. 262–266. ACM Press, New York (1997)
3. Carlisle, M., Wilson, T., Humphries, J., Hadfield, S.: RAPTOR: A Visual Programming

Environment for Teaching Algorithmic Problem Solving. In: SIGCSE 2005, pp. 176–180.
ACM Press, New York (2005)

4. Grimaldi, R.P.: Discrete and Combinatorial Mathematics. Addison Wesley, Reading
(2003)

5. Muller, O.: Pattern Oriented Instruction and the Enhancement of Analogical Reasoning. In:
ICER 2005, Seatle, Washington, USA (2005)

 A Tool for Automatic Code Generation from Schemas 73

6. Muller, O., Haberman, B., Ginat, D.: Pattern-Oriented Instruction and its Influence on
Problem Decomposition and Solution Construction. In: ITiCSE 2007, pp. 151–155. ACM
Press, New York (2007)

7. Odifreddi, P.G.: Classical Recursion Theory. North Holland, Amsterdam (1992)
8. Scholl, P.C., Peyrin, J.P.: Schémas Algorithmiques Fondamentaux. Séquences et iteration.

Masson (1991)
9. Soloway, E.: Learning to program = learning to construct mechanisms and explanations.

Comm. ACM 29(9), 850–858 (1986)
10. SPSS v.15, SPSS Inc. (1989-2006), http://www.spss.com
11. STATISTICA v. 7.1. SatSoft, Inc. (2005), http://www.statsoft.com
12. The Joint Task Force for Computing Curricula. Software Engineering 2004 (August 2004)
13. Watts, T.: The SFC Editor: A Graphical Tool for Algorithm Development. JCSC 20(1),

73–85 (2004)

	A Tool for Automatic Code Generation from Schemas
	Introduction
	Theoretical Framework
	Recurrence Relations
	The Schemas

	The CGR Tool
	Example 1. Computing the Vertices of a Regular N-gon
	Example 2. Carrying Different Weights
	Integrating the Tool into the Course

	Evaluation of Schemas and the Tool
	Study Framework
	Discussion about Academic Success
	Discussion about How Students Used the Tool
	Discussion about Students’ Compliance

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

