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Abstract. Two-photon absorption (2PA) and subsequent processes may be lo-
calized in space with a tightly focused laser beam. This property is used in a 
wide range of applications, including three dimensional data storage. We report 
theoretical studies of 5 conjugated chromophores experimentally shown to have 
large 2PA cross-sections. We use the Time Dependent Density Functional The-
ory (TD-DFT) to describe the electronic structure. The third order coupled elec-
tronic oscillator formalism is applied to calculate frequency-dependent second 
order hyperpolarizability. Alternatively, the sum over states formalism using 
state-to-state transition dipoles provided by the a posteriori Tamm-Dancoff ap-
proximation is employed. It provides new venues for qualitative interpretation 
and rational design of 2PA chromophores. 
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1   Introduction 

Two-photon absorption (2PA) is an electronic excitation process involving simultane-
ous absorption of two photons. There are a wide range of 2PA applications, such as 
three dimensional data storage, photonic devices, lithographic micro-fabrication [1], 
quantum information technology [2], optical limiting, two-photon pumped lasing in 
organic chromophores and quantum dots [2, 3], in-vivo bioimaging, and cell-selective 
photo-dynamic therapy [3]. Most applications require chromophores with large 2PA 
cross-sections to minimize laser intensity requirements and prevent overheating of tar-
gets [1]. To design more efficient 2PA chromophores, it is important to understand 
their structure/activity relationships (SARs). Computer modeling of 2PA spectra facili-
tates understanding of these relationships and is becoming an important part rational 
approach that may accelerate progress in chromophore design [4]. Accurate predictions 
of 2PA spectral profiles would greatly assist in the design of more effective 2PA 
chromophores while eliminating poor candidates form the synthetic pipeline. The goal 
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of this study is improvement in quantitative predictions of 2PA, as well as develop-
ment of qualitative tools to understand the relations between the electronic structure of 
the chromophores and 2PA profiles. 

In the past decades several research groups had made a strong effort aimed at the 
development of new compounds with large 2PA cross sections. The main guiding 
principle used in those studies involved electron transfer between electron-donor (D) 
and electron-acceptor (A) moieties attached symmetrically or asymmetrically to the  
π-conjugated bridge. Fluorene fragment in particular was found to be a good example 
of π-conjugated bridge due to highly delocalized π-system delocalized over the two 
benzene rings held together at nearly coplanar orientation by methylene bridge [5].  
D-π-A, D-π-D, or A-π-A molecular structures have been proposed and studied both 
theoretically and experimentally. In recent studies fluorene derivatives have been ex-
tended to D-π-π-A and A-π-π-A types with the aim of increasing 2PA absorption 
cross-sections [6-10]. However, the choice of functional groups and linkages the most 
appropriate for developing chromophores with the largest 2PA characteristics it is still 
under active investigation. 

In order to accelerate the experimental efforts based on traditional trial and error 
approach, a quantitative understanding of the trends in dependence of 2PA cross-
section on molecular structure would be clearly beneficial. Two major approaches had 
been used applied to accomplish that goal. First is based on essential state models 
(three-state, four-state, etc.). Parameters of these models (such as excitation energies 
and transition dipoles) are adjusted to fit experimental data. These parameters are then 
correlated with details of molecular structure (π-conjugated chain lengths, do-
nor/acceptor strengths, etc.). Another approach consists of quantitative prediction of 
2PA cross-sections at chosen level of theory, followed by analysis of the physical 
principles of the major contributions into this property. The levels of theory, used for 
2PA predictions cover the wide range.  

In recent quantum chemical calculations performed on conjugated chromophores 
have shown that a substantial symmetric charge redistribution that occurs upon excita-
tion may account for heightened sensitivity to 2PA events [6]. In their work Bredas et 
al. established a good agreement between the peak values of 2PA crossections meas-
ured with femto-second pulses and those calculated with semi-empirical intermediate 
neglect of differential overlap Hamiltonian with multi-reference double-configuration 
interaction (INDO-MRD-CI) scheme based methods. Aside from the donor-acceptor 
configuration of 2PA active chromophores, it was also established by Bredas et al. that 
increasing the length and charge transfer of the molecules results in an increase in 2PA 
crossections and may also result in a significant shift of 2PA to longer wavelengths [6]. 
Complementarily, Agren et al. theoretically studied four lowest excited states of π con-
jugated systems experimentally produced and characterized by Kim et al. [10] and 
Ventelon et al. [9] using ab initio response theory. They showed that their theoretical 
findings were consistent with the correlation between large 2PA crossections and a π 
center, but that though the one photon absorption (1PA) spectra was strongly correlated 
to the molecular length this was not always the case for 2PA in the visible domain [5]. 
At around this time it was also established by Fabian et al. that spectral absorption  
features are reasonably well reproduced by the approximate semi-empirical MO-CI 
methods based on the NDO (ZINDO/S), however time-dependent density functional 
response theory (TD-DFT) proved to be superior over semi-empirical methods [11]. 
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Since then Hales et al. showed that 2PA spectra for symmetric and asymmetric fluo-
rene derivative compounds exhibit intermediate resonant enhancement of nonlineari-
ties, with an order of magnitude enhancement for asymmetric cases, when compared to 
degenerate 2PA. INDO-MRD-CI semi-empirical methods that implemented a simpli-
fied three level model were also shown to provide additional insight into the mecha-
nisms governing 2PA events [12]. Several groups published works investigating the 
structure-activity relationships (SARs) responsible for the 2PA characteristics. 

The conjugated chromophores selected as the subjects of this study are presented in 
Scheme 1. Theoretical models of these were derived by truncation of the aliphatic 
chains and replacing them with to methyl groups in the original experimental  
structures. The abbreviations of the model molecules and the systematic names of the 
corresponding experimentally studied ones are: BzFBz: 2,7-Bisbenzothiazolyl-9,9-
didecylfluorene; BzFDp: (7-benzothiazol-2-yl-9,9-didecylfluoren-2-yl)diphenylamine; 
DpFDp: 9,9-didecyl-2,7-bis(N,N-phenylamino)-fluorene; BzPFPBz: 2,7-Bis[4-(9,9-
didecylfluoren-2-yl)vinyl]-phenylbenzothiazole; DpPFPBz: {7-[2-(4-Benzothiazol-
2ylphenyl)vinyl]-9,9 didecylfluorene-2yl}diphenylamine. These compounds were  
experimentally synthesized and characterized by Belfield et al. as a model compounds 
for possible applications in two photon microfabrication, two photon photochemical 
transformations, non-destructive 3-D multiphoton fluorescence imaging, and photody-
namic therapy [7, 12, 13]. They found large (600GM) cross-sections for BzFBz while 
studying the design of rigid-rod polymers while 2PA cross-sections of the polymers 
were reduced by aggregation [14]. Compound BzFBz additionally exhibited a large 
fluorescence quantum yield. The good chemical, thermal, and photochemical stability, 
combined with desirable one- and two-photon absorption and luminescence properties, 
stand out as characteristics of this chromophore as a promising material for two-photon 
based technologies [15]. Compound BzFDp has been previously implemented for in 
vivo 2PA biomedical imaging applications, as a fluorophore dye used for staining rat 
cardiomyoblast cells (H9c2), by Belfield et al.  due to its high photostability, fluores-
cence quantum yield, and two-photon absorption cross-section over the tunable range 
of commercially available Ti:sapphire lasers [16]. Additionally, BzFDp has been  
investigated as a potential 2PA free-radical photo-initiator for three-dimensionally re-
solved polymerization, resulting in intricate micro-fabrication and imagining [17]. 

In semi-empirical wave function theory studies of 2PA active organics have been 
carried to a varying degree of success.  The efforts put forward in these studies have 
circled around INDO (intermediate neglect of differential overlap) semi-empirical 
Hamiltonian models for molecular geometry optimizations and the implementation of 
the INDO Hamiltonian coupled to a MRD-CI (multi-reference double configuration 
interaction) formalism in the description of ground and excited states. The description 
of these states were then used to calculate ground and excited state energies, dipoles 
and transition dipoles [18] which in turn were implemented in the sum over states 
formalism (SOS) to calculate linear or nonlinear material response. 

Recently, Time Dependent Density Functional Theory (TD-DFT) was successfully 
used to simulate 2PA electronic spectra in large conjugated molecules [19-21]. The 
coupled electronic oscillator (CEO) formalism performed well, after it was shown that 
the density matrix formulation of the time-dependent Kohn-Sham equations allows 
treatment of adiabatic TD-DFT on the same footing as the TDHF theory to an arbitrary 
order in the external perturbation [22]. This approach was shown to achieve superior 
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accuracy for 2PA excitation energies, when compared to semi-empirical wave function 
theory methods. The tools used for implementation of the third order CEO at TD-DFT 
level are detailed below.  

An alternative approach to using CEO in the framework of TD-DFT is to use state 
to state transition dipole moments calculated within TD-DFT, using second and third 
order response functions, and implement them in the SOS formalism [23, 24]. Diffi-
culties that arise in the implementation of SOS are governed by the descrip-
tion/accuracy of the state to state transition dipole moments and excited state energies 
predicted by DFT. Cronstrand et al. and Kamada et al. present the possibility of using 
few states models derived from SOS to calculate the 2PA cross-section and arrive at a 
mechanism for 2PA [25, 26].  

Of the compounds in Table 1, BzFDp and DpFDp have been previously studied 
theoretically by Hales et al. using INDO-MRD-CI with geometries optimized with an 
AM1 semi-empirical Hamiltonian. All their calculations were carried out on isolated 
molecules and showed a strong qualitative and quantitative agreement with experimen-
tally generated spectra [12]. The three-level model developed in their study provided 
further insight into the mechanisms governing the nonlinear activity of 2PA active chro-
mophores in relation to the description of the molecular states. A second study carried 
out by Day et al. implemented linear and quadratic response density functional theories 
to calculate the photo-physical properties of D-π-A molecules including BzFDp. Their 
comparison of a two-state approximation and with calculation of 2PA via the SOS 
method with the inclusion of higher energy states drew a conclusion that the inclusion of 
higher energy states was necessary in the description of 2PA [27, 28]. 

In this contribution we obtain approximate state-to-state transition dipole moments 
i
nmμ  within a TD-DFT formalism by implementing the a posteriori Tamm-Dancoff 

approximation (ATDA, introduced in Ref. [29]), as an approximation to second order 
DFT, and employ them to identify the essential states governing the 2PA process. We 

also validate ATDA results by using these i
nmμ  to evaluate the resonant 2PA cross-

sections with sum over state models (SOS) and compare them to CEO results as well 
as experimental values. 

2   Theory 

Time-Dependent Density Functional Theory (TD-DFT) was recently combined with the 
Coupled Electronic Oscillator (CEO) formalism to simulate 2PA electronic spectra in 
large conjugated molecules [19, 30]. These and other 2PA predictions using TD-DFT 
[31] were shown to achieve quantitative agreement with experiment and higher-level ab 
initio predictions. In this contribution we also use an alternative Sum Over States (SOS) 

approach, calculate state-to-state transition dipole moments i
nmμ using the a posteriori 

Tamm-Dancoff approximation and employ them to identify essential states governing 

the 2PA process. We also validate ATDA by using these approximate i
nmμ  to predict 

resonant 2PA cross-sections with the SOS model and compare them to CEO results as 
well as experimental values.  

In the 2PA-transition matrix approximation the 2PA cross-section is given by [25]: 
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here g(2ω) is the Lorentzian lineshape, and i
nmμ  are state-to-state transition dipole 

moments. This ATDA/SOS approach opens new venues for interpretation of 2PA 
properties in terms of molecular electronic structure and can be used for rational de-
sign of 2PA chromophores. 

3   Computational Details 

The chromophore molecules selected for this study are presented in Scheme 1. They 
were derived from experimentally studied ones by truncation of the aliphatic chains to 
methyl group. All molecular structures were optimized at HF/STO-3G theory level, 
which favors planar geometry of conjugated molecules and was shown [31] to give 
the best agreement for the bond lengths as compared to the results of X-Ray diffrac-
tion experiments for stylbene and its three derivatives. The optimized geometries were 
confirmed by the absence of imaginary frequencies in the following normal mode 
calculations. The single point energy and transition dipole calculations were per-
formed at the TD-B3LYP/MIDIx level.  
 

BzFBz 
 

 

BzPFPBz 
 

 

DpFDp 
 

 

BzFDp 
 

 

DpPFPBz 

 

Scheme 1. Structural formulas of the molecules studied 
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Transition density matrices for the lowest 24 excited states, as well as Kohn-Sham 
operators on these transition densities were printed out. Contributions of the second 
and third derivatives of the exchange-correlation potentials into Kohn-Sham opera-
tors, and operators on the pair combinations of transition densities were neglected. 
Commercially available computational program Gaussian98 [32] was modified as 
described in previous studies [19] in order to enable this printout. The frequency-
dependent orientationally averaged first- and third-order polarizability tensors were 
generated from the generated matrices using (1) and expressions implemented in CEO 
program [33]. The habitual empirical linewidth of 0.1 eV was used for both 1PA and 
2PA. To analyze the electronic structure of the excited states we used natural transi-
tion orbitals (NTO), which diagonalize the transition density matrix, and give the best 
representation of the electronic excitation in single-particle terms [34]. Graphical soft-
ware XCrysDen [35] was used to plot NTOs. 

4   Results and Discussion 

We present 2PA resonant energies and cross-sections in Table 1. For two of the  
molecules, the profiles obtained with both SOS and CEO formalisms are presented in 
Fig. 1, along with linear spectra, and natural transition orbitals.  

Table 1. Energies and cross-sections for the linear and 2PA absorbing states in the molecules 
studied 

State 
 
 

2PAcalc,GM ∆Evertical, 
eV 

2PAexp,GM ∆Eexp, 
eV 

λexp, 
nm 

BzFBz 
S1 - 3.59 - 3.41 364 
S4 324 4.28 437 4.27 290 

BzFDp 
S1 65 3.08 73 3.21 387 
S3 151 4.10 - - - 
S4 151 4.12 - - - 

DpFDp 
S1 - 3.38 - 3.10 400 
S3 126 3.88 89 4.00 310 

S5,6 - 4.01 - - - 
S15 162 4.60 - - - 

BzPFPBz 
S1 - 3.06 - 3.08 403 
S2 711 3.46 - - - 
S4 - 3.99 - 4.00 310 

S11 486 4.45 - - - 
DpPFPBz 

S1 154 2.83 162 3.24 383 
S2 133 3.56 - 4.03 306 

S6,7,8 445 4.25 - - - 
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The SOS and CEO results (marked by solid lines on 2PA spectra in Fig.1) are in 
excellent quantitative agreement with each other, which provides a validation for the 
ATDA/SOS method. Predicted 2PA profiles also agree well with experimental ones. 
Experimental measurements of their spectral properties were reported in [14-16, 36]. 
While for most molecules agreement between resonant maxima is better than  0.1 eV, 
in the case of DpPFPBz theoretical bands are red-shifted relative to experimental  
 

S1 particle 

S1 hole 

S4 particle 

S4 hole 

S1 particle 

S1 hole 

S3 particle 

S3 hole 
 

Fig. 1. Structural formulas (top row), 1PA profiles (row 2), 2PA profiles (row 3), and isosur-
faces for natural transition orbitals (bottom row) for studied conjugated chromophores. Dia-
monds mark the experimental profiles; solid lines correspond to theoretical predictions with 
SOS and CEO formalisms. 
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ones by approximately 0.44 eV (55 nm).  This can be explained by greater conforma-
tional flexibility of the longer conjugated chain, and blue shift of the absorption spec-
tra for non-planar conformations. Overall, agreement with experiment validates the 
use of TD-DFT as a part of rational design strategies directed toward new and im-
proved two-photon absorbing materials. 

5   Conclusions 

We report theoretical study of five conjugated chromophores experimentally shown to 
have large two photon absorption cross-sections. We use the third order response for-
malism within Time Dependent Density Functional Theory to calculate frequency-
dependent second order hyperpolarizability in both the sum over states and coupled 
electronic oscillator formalisms to describe 2PA cross-sections. While CEO expressions 
do not lend themselves easily to a qualitative analysis, SOS ones can be simplified to 
essential state models and employed to identify 2PA resonant states and interpret the 
relationships between electronic structure and 2PA profiles. 

We also use Natural Transition orbitals to compare the electronic structure of the 
linear and two-photon absorbing states. State to state transition dipole moments, nec-
essary for SOS expressions are calculated with the a posteriori Tamm-Dancoff ap-
proximation and used to describe two-photon processes. Numerical values of the 
cross-sections obtained in SOS and CEO were found to be in good quantitative 
agreement with each other. This is the first time that TD-DFT/CEO and ATDA-DFT/ 
SOS methods have been compared for the calculation of 2PA spectra. Both CEO and 
SOS results are in good agreement with experiment. This validates the use of  
TD-DFT as a part of rational design strategies directed toward new and improved 
Two-Photon absorbing materials for bioimaging and optical data storage. 
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