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Abstract. In this work we presents a comparison of different optimiza-
tion methods for the automatic history matching problem of reservoir
simulation. The history matching process is an inverse problem that
searches a set of parameters that minimizes the difference between the
model performance and the historical performance of the field. This
model validation process is essential and gives credibility to the predic-
tions of the reservoir model. Derivative-based methods are compared to
a free-derivative algorithm. In particular, we compare the Quasi-Newton
method, non-linear Conjugate-Gradient, Steepest-Descent and a Genetic
Algorithm implementation. Several tests are performed and the prelim-
inary results are presented and discussed.
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1 Introduction

Reservoir simulation is a powerful tool that has been extensively used in reservoir
engineering. It combines physics, mathematics, reservoir engineering and com-
puter programming. One of the main goals of the models deals with the ability
to predict the behavior of a reservoir. Unfortunately, the computational models
depend on many parameters and features of the reservoir and the prediction’s
performance of a model depends on good estimations of some physical proper-
ties, such as the permeability distribution of the reservoir. Several difficulties
arise during the validation of a model, since most of the oil reservoirs are incon-
veniently buried beneath thousands of feet of overburden. Direct observations
of the reservoir are available only at well locations that are often hundreds of
meters [1].

An alternative for model validation is the estimation of the relevant properties
by History Matching[2]. The History Matching process is an inverse problem
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that utilizes reservoir simulation to find a set of parameters that minimizes the
difference between the model performance and the historical performance of the
field. This process can be made manually or automatically.

Traditional Newton-like methods have been used before[3]. In addition, free-
derivative methods based on Genetic Algorithms were proposed in[4]. This pa-
per presents a comparison of different optimization methods used to perform
the automatic history matching in a 2D flow model. In particular we compare
the Quasi-Newton method, Conjugate-Gradient, Steepest-Descent and a Genetic
Algorithm implementation.

The paper is organized as follows: Section 2 introduces the direct problem
formulation and implementation. Section 3 introduces the inverse problem theory
and the methods implemented. Section 4 presents the methods and the computer
platform used for the tests. Section 5 and 6 present the results and conclusion
of this work, respectively.

2 Forward Problem

2.1 Theory

The problem treated in this paper is a two dimensional two-phase (water/oil)
incompressible and immiscible porous media flow in a gravity-free environment
[12]. The system of partial differential equations which governs this flow is de-
rived from the law of mass conservation and the Darcy Law. The law of mass
conservation for both phases is written as φ∂t(ραsα) + ∇.(ραvα) = Qα, where
α = w denotes the water phase, α = o denotes the oil phase, φ is the porosity
of the porous medium, and ρα, sα, vα and Qα are, respectively, the density,
saturation, volumetric velocity and flow rate in wells of the α-phase. The volu-
metric velocity (vα) is given by the Darcy law: vα = Kkrα(sα)

μα
∇pα, where K is

the effective permeability of the porous medium, krα is the relative permeabil-
ity of α-phase, which is a function that depends on saturation, and μα and pα

are, respectively, viscosity and pressure of the α-phase. In this work we consider
that the capillary pressure is null, that is, pw = po. So, from now on we will
refer to pressure simply as p. We also have that sw + so = 1. We introduce
the phase mobility and transmissibility functions, respectively: λα(s) = krα(s)

μα
,

Tα(s) = Kλα, where s = sw from now on. The volumetric velocity can then be
written as vα = −Tα∇p. We assume that the phases density and viscosity are
constant and get {

φρw∂tsw + ρw∇vw = Qw

φρo∂tso + ρo∇vw = Qo .
(1)

Now we can divide the equations in 1 by ρα and sum both and get{
φ∂ts + ∇vw = qw

∇vt = qt .
(2)
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where qα = Qα

ρα
is the flow rate density of α-phase, qt = qw +qo and vt = vw +vo.

Defining total mobility as λt = λw +λo we introduce the fractional flow functions
as f(s) = Tw

Tt
= λw

λt
. System 1 is then rewritten as{

φ∂ts −∇(f(s)Tt(s)∇p) = qw

−∇(Tt(s)∇p) = qt .
(3)

To complete the model the boundary conditions must be specified. In this paper
we consider no flow boundary condition, vα.ν = 0, x ∈ ∂Ω, where ν is the outer
unit normal to the boundary ∂Ω of the domain Ω. Finally we define the initial
condition given by s(x, 0) = s0(x), x ∈ Ω.

The forwad problem treated on this paper is the system of partial differential
equations given by 3 with the boundary and initial conditions given above.

2.2 Implementation

The differential equations described in Sect. 2.1 are nonlinear and coupled. In
this work the method used to solve these equations is the so called IMPES. Our
implementation of the IMPES methods adopts an adaptive time step scheme.
The basic idea of the IMPES method is to separate the computation of pressure
from that of saturation. The coupled system is split into a pressure equation and
a saturation equation, and the pressure and saturation equations are solved using
implicit and explicit time approximation approaches, respectively. Decoupling
the system 3 we get an elliptic equation for pressure given by (4) and a nonlinear
hyperbolic equation for saturation, given by (5).

−∇(Tt(s)∇p) = qt . (4)

φ∂ts −∇(f(s)Tt(s)∇p) = qw . (5)

For the pressure computation, the saturation s in (4) is supposed to be known
and 4 is solved implicitly for p. In this work, the finite volume method was
used for spatial discretization[5]. As mentioned before, the saturation equation
given by 5 is solved explicitly. The IMPES method goes as follows: given s0;
for n = 0, 1, ... we use (4) and sn to evaluate pn; next we use (5), sn and pn

to evaluate sn+1. To guaranty the stability of this equation the time step Δt
must be sufficiently small which is an expensive requirement. To minimize this
problem, we actually used an Improved IMPES method [6]. This method uses
the fact that pressure changes less rapidly in time than saturation. Knowing
this, it is appropriate to take a much larger time step for the pressure than
for the saturation. Using the Improved IMPES method we have two different
time steps: Δtn for pressure and Δtn,l for saturation. Pressure pn corresponds
to instant tn =

∑
1<=i<=n Δti and saturation sn,l corresponds to instant tn,l =

tn +
∑

1<=j<=l Δtn,j . We deduced the CFL conditions given by the next two

equations. One for cells that have injector wells Δtn,l ≤ φ(1−so,res−sn,l
i,j )

β1qn,l
w (1−f(sn,l

i,j ))
, where
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β1 > 1 and another to the other cells, given by maxf ′(sm)
∑
m

Δtn,l

φΔm
|vn

m| ≤ β2,

where 0 < β2 < 1 and m corresponds to interfaces where the flow enters the
block. To control the pressure time step Δtn we calculate the pressure variation
percentage V Pn = ||pn+1−pn||

||pn|| . If V P n is greater than a given V Pmax pressure
time is reduced and if it is less then a given V Pmin, it is increased.

3 Inverse Problem

3.1 Theory

In this work, the inverse problem proposed aims to estimate the absolute perme-
ability field of a reservoir by history-matching its production data. We denote
by K the vector of permeability to be determined and by O the vector of pro-
duction observations and define as u = (s, p) the vector of the forward problem
unknowns (saturation and pressure). We have that u depends on the permeabil-
ity u = u(K) and O depends on both, permeability and u, O(K) = O(K, u(K)).
If Ō is the vector with the real observations we can search K that minimizes the
least square formulation

f(K) = ‖O(K) − O‖2. (6)

Note however that this is a contrained minimization problem since permeability
is a strictly positive property. In this work, we transformed this problem in an
unconstrained minimization problem via the change of variable mi = ln(Ki).
From now on, the parameters to be estimated are those of the vector m. There
are several ways for solving this optimization problem. In this work we compare
two different approaches to optimize the proposed problem: Newton-like methods
and Genetic Algorithm.

3.2 Newton-Like Methods

Newton’s iterative method for minimizing f(x) is xk+1 = xk + αkH−1
k ∇fT ,

where Hk is the Hessian matrix of f in iteration k. However the computation of
H is almost allways unaffordable. The idea underlying Newton-like methods is
to use an approximation to the inverse of the Hessian in place of the true inverse
that is required on Newton’s method [7]. In this work we use the steepest de-
scent, the conjugate gradient and a Quasi-Newton methods. In steepest descent
method, the inverse of H is taken as the identity matrix I. The Quasi-Newton
Method iteratively builds up an approximation to the Hessian by keeping track
of gradient differences along each step taken by the algorithm. The nonlinear
conjugate gradient method is mainly an extension of the linear conjugate gra-
dient method but it may be also consider a specialization of limited-memory
Quasi-Newton methods.
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3.3 Genetic Algorithms

Genetic Algorithm (GA) is a numerical optimization algorithm inspired in nat-
ural selection and natural genetics created by Holland in the 60th decade [8].
It is an alternative optimization technique since it is stochastic and does not
need derivatives. In each generation, which corresponds to an iteration of the
algorithm, GA has not only one possible solution. Instead, it keeps a popula-
tion of individuals each representing a potential solution to the problem to be
solved. This population evolves through generations using genetic mechanisms
in search for an optimal individual. In order to use GA it is important to define
some characteristics such as the representation of an individual, a fitness func-
tion and the genetic operators to be used. In this work we used the real-code
representation which is commonly used in problems with continuous variables.
In this representation the individual is a set of real values that represents a
feasible solution. Every individual in the population is assigned, by means of a
fitness function, a measure of its goodness with respect to the problem under
consideration [8]. The fitness function used in this work is given by (6). The
most important genetic operators applied in GA are selection, crossover, muta-
tion and elitism. Selection is used to pick individuals to generate offsprings. The
approach used in this work is the rank-based selection. Crossover is the operator
that combines two individuals to generate a third one. In this work we used the
Blended-crossover approach. Mutation is an operator applied in one individual.
It introduces diversity to the population and prevents the algorithm of being
stuck in local minimums. The GA begins with an initial population that may
or not be generated randomly. To evolve to a next generation all individuals of
the population must be evaluated using the fitness function. After this, selection
is applied to choose which individuals will generate offsprings through crossover
or/and mutation. This process is repeated until a good individual is found.

4 Methods

4.1 Implementation Details and Computer Platform

The numerical solution of the forward problem was implemented in C++. To
solve the linear systems associated to the discretization of the Partial Differential
Equations the PETSc library was used [9]. The GSL library [10] was used for the
optimization with the Newton-like methods. In this work we used the steepest
descent, nonlinear conjugate gradient and Quasi-Newton methods. These meth-
ods need the objective function (6) and its gradient ∇f to be evaluated for each
solution candidate m. The objective function is calculated via the solution of the
forward problem. The calculation of the gradient ∇f is obtained via finite dif-
ference and it involves performing n+1 solutions of the forward problem, where
n is the dimension of the permeability vector to be estimated. The calculation
of the gradient ∇f was implemented in parallel using the MPI library[11] with
each component of the gradient vector calculated by a different process. The
GA was implemented in C++. The implementation also exploits parallelism via



382 E.P. dos Santos et al.

the MPI library and a master-slave decomposition strategy. The master process
implements all the GA operations and requests the slave processes to perform
the fitness evaluation of the solution candidates, or individuals, of the current
population. Again, each fitness calculation given by (6) involves the solution of
the forward problem. The algorithms were executed in a small cluster composed
of 8 Intel Xeon (2GHz) processing cores connected by a 1000MBits Ethernet
switch.

4.2 Numerical Experiments

The reservoir simulation we consider in this work is the classical five-spot config-
uration with 4 injection wells in the corners of the reservoir and one production
well in its center (see Figure 1). The reservoir is a square of sizes equal to 200m.
Each injection well injects a total of 100m3 per day. The reservoir’s history is
given by the oil production of the center well during 350 days of simulation. The
other parameters of the model are: porosity (0.2), relative permeability, given by
the Corey curve, irreducible water saturation (siw = 0.2) and residual oil satu-
ration (sro = 0.2). The spatial discretization used was.Δx = Δy = 7.4m. In this
work, three different synthetic histories were generated from different reservoirs
that differ only on the number of rectangular regions with different permeability
values: a reservoir model with two different permeability blocks mapped as a 1x2
mesh (half by half), K = (47.82, 142.5) (natural ordering); a model with an uni-
form 2x2 permeability mesh, K = (39.12, 67.99, 52.85, 267.68); and an uniform
3x3 permeability mesh with K = (43.22, 38.21, 55.76, 56.39, 95.61, 148.45, 36.84,
135.84, 261.57) These three synthetic histories are the targets of three different
history-matching problems. Each one of these inverse problem was solved by
the Newton-like methods and the GA, and each of the optimization methods
were executed 10 times with different initial guesses. The population of the GA

Fig. 1. 5-spot Fig. 2. Objective Function
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has a size of 100 and the mutation rate was 0.025. Convergence is achieved
when a solution candidate m satisfies f(m) < 10−6. All initial guesses were
randomly generated but satisfy f(m) > 10−3. Therefore, after convergence the
objective function is decreased by at least 3 orders of magnitude. In the case of
the Newton-like methods there is also a stop criterion to handle local minima:
∇f(m) < 10−8. In addition, for all methods we implemented a stagnation crite-
rion: the method stops if after 3 consecutive iterations f(m) is decreased by less
than 10−6.

5 Results

Figure 2 shows the objective function for the problem that has two parame-
ters or permeability values to be estimated. We note that there are infinitely
many global minima and that the shape of the function is symmetric with re-
spect to the line m = α(1, 1). The reason we have many global minima lies in
the following observation. Imagine two simulations where in the second one the
permeability is given by K2 = βK1, with K1 the permeability of the first simu-
lation. Let us further identify this simulations with s1, p1, K1 and s2, p2, K2. It
follows that from (4) we have ∇(f(s2)Tt2(s2)∇p2) = ∇(f(s2)K2λt(s2)∇p2) =
β∇(f(s2)K1λt(s2)∇p2) = ∇(f(s1)K1λt(s1)∇p1). Using this in (5) we observe
that for both simulations the saturation equation becomes exactly the same.
Thus, the production history will be the same for these simulation with differ-
ent permeability maps. Now, the fact that the shape of the objective function
is symmetric is a particular feature of the simulation we perform, the classical
five-spot. Since water injection is the same in all injection wells, 180o rotations
of the permeability distribution map do not alter the production of the centered
well.

For the simulations with the two parameters to be estimated we have per-
formed 4 different set of tests. Set 1, 2, 3 and 4 have initial guesses (initial
population for the GA) randomly chosen but that satisfy f(m) ≥ 2.5 10−3,
f(m) ≥ 2.0 10−3, f(m) ≥ 1.5 10−3 and f(m) ≥ 1.0 10−3, respectively. For the
Newton-like methods, the initial guess was taken as the permeability pair with
the smallest objective function value in the corresponding GA initial popula-
tion. In each test the algorithms were executed 10 times. Table 1 presents the
results in terms of successfull convergence of the methods. The GA is the most
robust method. It has always converged to a global minimum. The performance
of the Newton-like methods clearly depended on the proximity to a global min-
ima. The performance improves if the initial guess is close to the minima. The
Steepest-Descent (SD) achieved the worst result.

Table 2 presents some statistics of the results for set # 3. The general behavior
of the methods were similar for the other test sets. The results obtained by the
GA in terms of error (fitness) average and standard deviation (std) are at least an
order of magnitude smaller than those obtained by the CG (Conjugate Gradient)
and QN (Quasi-Newton) methods and two orders of magnitude better than those
of the SD method (Steepest Descent). However, the computational cost of the
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Table 1. Successfull convergence with 2 parameters

Initial guess (m) GA CG QN SD

f(m) ≥ 2.5 10−3 10 3 3 2

f(m) ≥ 2.0 10−3 10 4 4 4

f(m) ≥ 1.5 10−3 10 6 6 3

f(m) ≥ 1.0 10−3 10 7 7 4

Table 2. 2 parameters statistics- initial guess m - f(m) ≥ 1.5 10−3

Best fit Mean Std # of eval. (fastest) Total # eval.

GA 1.587007e-09 1.4882e-07 2.0064e-07 208 3236

CG 2.868986e-16 6.6401e-05 9.9601e-05 32 486

QN 3.400530e-17 6.6401e-05 9.9601e-05 32 462

SD 5.446458e-07 1.3550e-04 1.0114e-04 25 700

GA in terms of total number of objective function evaluations is around 8 (6)
times higher than that of the CG and QN methods (SD).

For the tests with 4 and 9 parameters we chose to compare the GA against
the CG method, as this method and the QN method achieved very similar per-
formance in the tests with 2 parameters. The two algorithms were executed 10
times with different initial guesses for the inverse problem with 4 parameters.
The GA successfully converged 6 times whereas the CG converged only once to
the desired error tolerance of 10−6. Table 3 presents some statistics of the results.
The results obtained by the GA in terms of error average and standard deviation
(std) are near two order of magnitudes smaller than those obtained by the CG.
However, the computational cost of the GA is around 6 times higher than that
of the CG. The fastest execution of the GA needed 10 times more evaluations
of the objective function than the CG method. Figure 4 presents the evolution
of the executions of the GA and CG methods. The GA is quite robust in terms
of convergence and the executions perform similarly whereas the evolution of a
CG execution highly depends on the initial guess.

Table 4 presents some statistics of the results obtained by the methods for
the History-matching problem with 9 parameters. The two algorithms were ex-
ecuted 10 times with different initial guesses. The CG successfully converged
twice whereas the GA converged only once. Nevertheless, the results obtained
by the GA in terms of error average and standard deviation are smaller than
those obtained by the CG. However, the computational cost of the GA is around

Table 3. Statistics of the tests with 4 parameters

Best fit Mean Std # of eval. (fastest) Total # eval.

GA 1.2590e-07 4.7753e-06 5.4781e-06 624 18489

CG 3.000341e-07 1.7023e-04 2.7912e-04 62 2989
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Fig. 3. GA performance for 4 parameters Fig. 4. CG performance for 4 parameters

Table 4. Statistics of the tests with 9 parameters

Best fit Mean Std # of eval. (fastest) Total # eval.

GA 9.479320e-07 3.8718e-06 3.0535e-06 4160 50960

CG 9.197778e-07 6.1349e-05 8.2611e-05 252 3940

Fig. 5. GA performance for 9 parameters Fig. 6. CG performance for 9 parameters

13 times higher than that of the CG. Figure 6 presents the evolution of the exe-
cutions of the GA and CG methods. Again, the evolution of the GA executions
were very similar whereas the evolution of a CG execution highly depends on
the initial guess.

6 Conclusion

This work presents a comparison of different optimization methods for the au-
tomatic history matching problem of reservoir simulation. The computational
model implemented was based on the formulation of a two dimensional two-phase
(water/oil) incompressible and immiscible flow in a gravity-free porous media.
The reservoir simulation considered was the classical 5-spot configuration. The



386 E.P. dos Santos et al.

inverse problem proposed aims to estimate the absolute permeability distribu-
tion of the reservoir by history-matching its production data. Derivative-based
methods were compared to a free-derivative algorithm. In particular, we com-
pared the Quasi-Newton method (QN), non-linear Conjugate-Gradient (CG),
Steepest-Descent (SD) and a Genetic Algorithm (GA) implementation. The GA
presented the most consistent results in terms of accuracy and convergence but
it was computationally very expensive. On the other side, the performances of
CG and QN methods were very dependent on the initial guesses. Their results
were less consistent, but the methods demanded few evaluations of the objective
function and therefore few executions of the reservoir simulator. In conclusion,
the preliminary results suggests a tradeoff in terms of robustness, towards the
Genetic Algorithm, and speed, which favors the Newton-like methods.
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