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Abstract. This paper deals with Unrestorable Flow Optimisation
(UFO) problem in networks protected by p-cycles. This novel protec-
tion technique is used as the efficient tool for ensuring survivability of
computer networks. In this paper there have been formulated mathe-
matical model of UFO problem, discussed its theoretical properties, and
proposed the original solution algorithm based chiefly on metaheuris-
tics. The algorithm combines k-shortest paths method, multi knapsack
problem, p-cycles generator, linear programming and some local search
procedures.

Keywords: computer network, survivability, optimisation, p-cycles,
UFO problem.

1 Introduction

Survivability of computer networks and systems is located among the most im-
portant subjects in modern computer engineering and science. This research
topic embraces the wide spectrum of particular technological and theoretical
problems derived from computer architecture area, network topology, commu-
nication protocols, transmission, coding, cryptography, etc. The topology of the
computer network has crucial meaning for its survivability, since physical cre-
ation of the net links is much more time-consuming and troublesome than pro-
ducing a new (or spare) device, furthermore faults of network links and nodes
are still the common problem. The idea of usage p-cycles is quite new, but have
been widely developed among recent years. p-Cycles are very favorable in com-
parison with traditional ring or mesh topologies. In this paper, we present and
discussed the new optimization problem, generated by the concept of network
protection by using p-cycles, where the criteria is not a cost, but the level of
restorability ensured by using currently available net resources.

This paper is organized as follows. Section 2 provides brief introduction into
p-cycles idea. Section 3 describes, in detail, new problem of unrestorable flow
optimization, called hereinafter the UFO problem. Section 4 discusses some its
properties and solution methods. Conclusions one can find in Section 5. Because
of the strong NP-hardness of UFO problem, this paper introduces basically the
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mathematical model, then discusses its essential properties including layer de-
composition and computational complexity and, at the end, provides a wide
spectrum of solution methods. Particular algorithms, as well as experimental
results based on standard benchmarks are shown in separate our paper [1].

2 Background of p-Cycles

Traditionally, the most popular solution for providing restorability in computer
networks was to use either ring or mesh topology. Ring offers short restoration
time as well as simple restoration scheme, however its design and operation is
rather complex and the usage of total transport bandwidth is inefficient. Mesh
is easy to design, optimize and operate, but have greater than ring restoration
time. Mesh networks don’t require as much spare capacity as rings, because in
the restoration process capacity demand can be split between different links. On
the other hand, rings are so efficient in the restoration process because there
are no need to search for restoration path. Obviously, there is a great need to
find topology, which aggregates all advantageous properties of mesh and ring
networks. This idea was fully realized in the concept of p-cycles, that means
“fast as ring”, “efficient as mesh”, preconfigurable and protected.

In normal non-failure state, routing for flow demands between pairs of nodes,
is done using one of many routing techniques. Set of p-cycles is formed in advance
while configuring network, to be ready to use in case of any failure and perform
real-time recovery. p-Cycles are not an ordinary cycles. Let us consider a mesh
network and choose some cycle (Fig. 1 a). In classical cycle protection approach,
this cycle protects all spans being “on-cycle”. In the paper [2] it is shown that
cycle established on mesh network protects also “straddling spans”, i.e. spans
between cycle nodes, but not belonging to the cycle (Fig. 1 b). Observe, that
in case of failure of “straddling span” the arc of cycle can be used to transfer
whole flow from this failed span. This property allows one to extend protection
provided by p-cycles on straddling spans as well. Fig. 1 c shows which spans
cannot be protected using this properties.

In case of failure of “on cycle” span, there is one path which can be used to trans-
fer flow (Fig. 2 a). But for failure of “straddling span” there are two different paths,
which can be used for recovery process. Arc of the cycle can be used as a path, or
both arcs to achieve lower load on links (Fig. 2 b and c). Because without using
any additional links and spare capacity we achieve much higher level of protec-
tion, protected are not only cycle spans but also “straddling spans”. “Straddling
spans” have twice the leverage of an on-cycle span in terms of efficiency because
when they fail, the cycle itself remains intact and can thereby offer two protection
paths for each of unit of protection capacity. This spans are not limited to be inside
a cycle, each span between two nodes of the cycle is protected by this idea.

Notice, we do not need any additional spare capacity to protect “straddling
spans”, because the spare capacity from ring spans is used to protect those spans.
This means that we can protect much more spans and link capacity using the
same amount of spare capacity as in the ring model. Thus, under the some costs,
we can achieve higher level of network survivability.
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(a) (b) (c)

Fig. 1. p-Cycles in the mesh network

(a) (b) (c)

Fig. 2. p-Cycles protection schemes for various types of failure

3 The UFO Problem

In the literature, most papers dealing with survivable networks concentrate on
ensuring 100% survivability. But only few authors have considered (not only
mentioned) problem, where 100% of restorability may not be achievable. For
networks protected by p-cycles, in [3] there has been proposed problem in which
the level of restorability is maximized, assuming fixed amount of spare capacity.

Another paper [4] mentions about different idea — minimization of
unrestorable flow in the network with fixed capacities, where no additional ca-
pacity is necessary, since restoration is done within available spare capacity, left
after optimization of all flow demands. This problem, called by us Unrestorable
Flow Optimisation (UFO), will be studied extensively in our paper. Below, we
define it formally as follows. (Notation based on [5] and [6] will be used.)

We have given: network topology, link capacities, traffic demand matrix, can-
didate paths for demands, p-cycles configuration. Optimization over working
flows in normal non-failure state of the network is done, for protection in the
case of single link failure. The objective is to minimize the unrestored flow, i.e.
flow that due to limited link capacity cannot be restored using p-cycles.

Indices
e, l = 1, . . . , E network links (spans)
d = 1, . . . , D demands



328 A. Smutnicki

p = 1, . . . , Pd candidate paths for flows realizing demand d
q = 1, . . . , Q p-cycles
s = 1, . . . , S failure states

Constants
D set of all demands
E set of all spans
Q set of all p-cycles
Qe ∈ Q set of p-cycles which can be used for restoration span e
De ∈ D set of demands using span e
δedp = 1, if link e belongs to path p realizing demand d; 0 otherwise
hd — volume of demand d
ce — capacity of link e
βeq = 1, if link e belongs to p-cycle q; 0 otherwise
εeq = 1, if p-cycle q can be used for restoration of link e; 0 otherwise i.e.

link e either belongs to p-cycle q or is a straddling span of q
γeq — coefficient of restoration paths provided for failed link e by an

instance of p-cycle q (= 1 for an on-cycle link; = 0.5 for a straddling
span; = 0 otherwise)

Variables
xdp = 1 if demand d uses path p; 0 otherwise (binary)
fe — load of link e associated with working demands
ydeq = 1 if demand d uses path p-cycle q for restoration in the case of failure

of link e; 0 otherwise
zde = 1 if demand d is not restored in the case of failure of link e; 0 otherwise
gel — load of link e associated with p-cycle in the case of failure of link l

Overall optimization criteria function is:

min
y,z

U(y, z; x,Q) = min
y,z

∑

e

∑

d

zdehd, (1)

with constraints:

zde +
∑

q

εeqydeq = Ade, e = 1, . . . , E, d = 1, . . . , D (2)

gel =
∑

d

∑

q

Beldqydlq, e = 1, . . . , E, l = 1, . . . , E (3)

gel ≤ se, e = 1, . . . , E, l = 1, . . . , E, (4)

where Ade, Beldq, are constants used to make equations more clear for fixed x:

fe =
∑

d

∑

p

δedpxdphd, e = 1, . . . , E, (5)

Ade =
∑

p

δedpxdp, e = 1, . . . , E, d = 1, . . . , D, (6)
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Beldq =
∑

p

δldpxdpβeqγlqhd, e = 1, . . . , E,

l = 1, . . . , E, d = 1, . . . , D, q = 1, . . . , Q, (7)

and:
se = ce − fe, e = 1, . . . , E. (8)

Auxiliary variable se, defined in (8) and used in constraint (4), will be called
residual spare capacity, left after fulfilling all traffic demands from set D trans-
fered over paths determined by x. Auxiliary constant Ade takes only binary
values, Ade ∈ {0, 1}, which means that either there is no possibility to restore
demand d in case of failure of span e (then zde = 1 and all ydeq = 0, q = 1, . . . , Q)
or there exists possibility of restoring d in case of failure of span e using one cho-
sen p-cycle q (then ydeq = 1 and zde = 0). The formulated optimization problem
is a Mixed Integer Linear Programming (MILP) task. However, because of the
problem size, and well-known weakness of the general MILP solution methods,
we give up MILP techniques and transform the problem into new one.

Using equation (2) in (1) and substituting equation (3) into inequality (4),
the problem receives the following form:

min
y,z

U(y, z; x,Q) = min
y

∑

e

∑

d

(Ade −
∑

q

εeqydeq)hd

=
∑

e

∑

d

Adehd − max
y

∑

e

∑

d

∑

q

εeqhdydeq, (9)

∑

d

∑

q

Bledqydeq ≤ sl, e = 1, . . . , E, l = 1, . . . , E. (10)

In these equations index e stands for span being damaged; when another index
l is used also for spans, it refers to other span which has been influenced by
damaged span e.

First element in equation (9) is constant and does not have any influence on
the form of optimal solution, but only on its value. Problem (9) described by
second element with constraint (10), can be solved by a sequence of problems
known in literature as Knapsack Problem (KP) or Multiple Knapsack Problem
(MKP). Constraint (10) determines whether there is a need to consider KP either
or MKP case. Transformation of (9) – (10) into MKP is shown below.

Consider right side of equation (9) for fixed span e in a form:

max
y

∑

d

∑

q

Cedqydeq, (11)

where:
Cedq = εeqhd, (12)

with constraints:
∑

d

∑

q

Bledqydeq ≤ sl, l = 1, . . . , E. (13)
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For fixed e, exists d×q binary decision variables ydeq. So the criteria function (11)
corresponds to optimal packing Q knapsacks with elements 1, 2, . . . , D. In order
to match constraint (13) with constraints from MKP [7], the new notion rq will be
used, called hereafter residual capacity of p-cycle q. Value rq stands for maximum
flow which can be added to all spans in p-cycle q, without exceeding residual
capacity of the spans. Calculation of p-cycle residual capacities is a complex
problem – we will discussed it, in detail, in Section 4.3. For further considerations,
we assume that capacity of p-cycle meet constraint rq > 0 and:

sl =
∑

q

βlqrq. (14)

Substituting (14) in constraint (13) one can obtain:
∑

d

∑

q

Bledqydeq ≤
∑

q

βlqrq, l = 1, . . . , E. (15)

Condition (15) is then transformed into sequence of Q × E conditions in the
following form:

∑

d

Bledqydeq ≤ βlqrq, q = 1, . . . , Q, l = 1, . . . , E, (16)

what makes stronger constraint that original (15). Summing inequalities (16) by
sides for each l (this is relaxation) inequality (13) will be received. Observe in
definition (7) that value Bledq does not depend on l, so:

Bledq = B∗
edq =

∑

p

δedpxdpγeqhd, (17)

because (16) is fulfilled obviously for βlq = 0, while this condition have to be
fulfilled additionally for βlq = 1. Using (17), constraint (15) can be transformed
into: ∑

d

B∗
edqydeq ≤ rq, q = 1, . . . , Q. (18)

for those l for which βlq = 1. It corresponds to missing constraint for knapsacks
capacities 1, . . . , Q in MKP (constraints (18) are identical for all l). If Q = 1
(special case) MKP is simplified and takes form of KP.

Finally, value:
max

y

∑

e

∑

d

∑

q

Cedqydeq, (19)

can be calculated step by step, analyzing possibility of restoring flow fe using
p-cycles after the failure of span e, for all e ∈ E such fe > 0. If only fe = 0
nothing have to be restored — ydeq = 1, zde = 0, e ∈ E because hd = 0 for
d ∈ D. So (19) can be finally written in a form:

max
y

∑

e∈E+

∑

d∈De

∑

q∈Qe

Cedqydeq, (20)

where: E+ = {e ∈ E : fe > 0}.
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4 Solution Proposal

Solution proposal tends to decomposition of the problem (1) – (8) leading to the
series of known, simpler cases.

4.1 Decomposition

In the context of Section 3 one can propose quite natural layer decomposition of
optimization problem into several sub-problems. At the begin we have the net-
work with known topology, span capacities and costs and a set of flow demands.
Each demand determines flow transfer between pair of nodes (from source to
destination). In order to satisfy these demands routing paths have to be found.
This problem is known in the literature as multicomodity flow (MCF). MCF
problem requires the set of paths (for example k shortest paths k-SP) between
specified pair of nodes, among which MCF selects the set of the best ones ([5]).
Observe, the configuration of paths satisfying demands need be advantageous
for p-cycles configuration. Our overall aim is to find the optimal set of p-cycles;
this can be done by metaheuristic algorithm, which goes through the solution
space by certain search trajectory verifying candidates on p-cycles. Successive
p-cycles in this space are pre-generated by using a reasonable generator. One
among many described in literature can be used.

For fixed set of p-cycles and fixed routing paths realizing demands we have
to solve the UFO problem. Its optimal solution is created by independent check-
ing of restorability for each span with nonzero flow. If this span transfers single
commodity flow, its restorability case can be simply evaluated. Otherwise, if the
span transfers multicommodity flow, the Multiple Knapsack Problem (MKP) is
used to find optimal restoration scheme (described briefly in Section 4.2). Both
cases require the evaluation of so called spare capacity of the cycle. For disjoin
cycles, inside current p-cycles configuration, such evaluation can be made inde-
pendently and the problem is not troublesome. If cycles inside current p-cycles
configuration are not disjoint, the problem of finding real spare capacity of cy-
cles can be written as special linear programming (LP) problem — described
in Section 4.3.

4.2 Minimisation of Unrestorable Flow

Let us consider criteria function (1) in the mathematical model from Section 3.
In order to calculate its value we need to known matrix zde, where hd is known
in advance as the input data for this problem. According to the description in
Section 3, all routing paths have to be chosen for this calculations (realizing all
flow demands) and dedicated configuration of p-cycles also have to be known,
with its residual capacities calculated. Algorithm for calculation of zde values is
presented in Lis. 1.1. All symbols are consistent with those from Section 3. This
algorithm refers to equations (9) – (10). It examines all spans e ∈ E+ in the
network, whether whole flow from De can be restored using p-cycles Qe in case
of failure of each particular span.
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Listing 1.1. Pseudocode of algorithm for calculation zde values.

for e ∈ E do
begin
(Re, Ue) = checkRestoriationPosibility(e, De, Qe) ;
for d ∈ Re do zde = 0 ;
for d ∈ Ue do zde = 1 ;

end ;

The key role plays function checkRestoriationPosibility(); it determines
whether all flow demands can be restored or not in case of failure of span e.
If all flow demands cannot be restored, the function returns two sets of: Re for
restorable, and Ue for unrestorable demands, minimising the total amount of
unrestored flow.

One can distinguish four following scenarios in case of failure of span e (We
say that particular span belongs to p-cycle, if it is either on-cycle span or
a straddling-span on this p-cycle.):

1. span e does not belong to any p-cycle, so Qe = ∅; thus definitely flow from
span e cannot be restored, so ydeq = 0, q = 1, . . . , Q and in consequence
zde = 1, d ∈ De;

2. flow on span e consists of only one commodity |De| = 1 and span e belongs
to one p-cycle, so |Qe| = 1; flow can be either restored or not, depending on
residual capacity of this p-cycle;

3. flow on span e is a multicommodity flow, |De| > 1 and span e belongs to one
p-cycle, so |Qe| = 1 — flow can be restored or not depending on residual
capacity of this p-cycle;

4. flow on span e is a multicommodity flow and span e belongs to more than
one p-cycle, so flow can be restored or not depending on residual capacity
of those p-cycles.

Case (1) is obvious. Case (2) is simple – flow can be restored if hd ≤ rq (hd

is a value of flow for demand d, rq is a residual capacity of p-cycle q). In case
(3), the total flow for span e can be restored if

∑
d∈De

hd > rq. In this case,
the selection of demands to be restored is significant — it is the optimization
problem, modeled by using Knapsack Problem. The most complex case (4) is
modeled by MKP, as already mentioned.

4.3 p-Cycles Residual Capacities

According to description in Section 3 there is no possibility to add any spare
capacity, only existing spare capacity in working spans can be used. This assump-
tions generates several additional constraints. The most important is a decision
problem how much of spare capacity have to be assigned to each of used p-cycles,
in situation when at least two cycles have common span — Fig. 3. In this sit-
uation sum of p-cycles capacities cannot exceed span spare capacity. Additionally
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maximization of sum of whole p-cycles spare capacity is desired. Mathematical
formulation of this problem is described below. Let us define:
rq — capacity of p-cycle q;
se — available spare capacity on span e;
rmax
q — maximum potential capacity of p-cycle q (defined in equation (21));

βeq = 1 if span e belongs to p-cycle q;

Maximum potential capacity of each p-cycle is bounded by value:

rmax
q = min{se : e = 1, . . . , E, e ∈ q}. (21)

For each span we have constraint:
∑

q

rqβeq ≤ se, e = 1, . . . , E (22)

Total amount of p-cycles capacity should be maximised:

max
∑

q

rq, q = 1, . . . , Q (23)

taking into account constraints:

0 ≤ rq ≤ rmax
q , q = 1, . . . , Q (24)

The problem (23) – (24) is a typical linear programming task, so simplex
method can be recommended here to solve it.

Fig. 3. Example of configuration where two p-cycles have common span

4.4 Problem Complexity

Two described previously problems, namely the finding of zde values and calcu-
lation of residual capacities, are only activities performed during the evaluation
of the current (fixed) p-cycles and the current routing paths configuration. In the
pessimistic case, we have to solve certain MKP problem(s), which is, according
to [7], strongly NP-hard. So the process of evaluation single solution is strongly
NP-hard, too. Note, that the generation of the set of p-cycles candidates (in
the local search algorithm) appears to be also quite complicated problem, see [1]
for detail, because the number of possible cycles in network has non-polynomial
character; the similar remarks refers also to generation of the set of paths – can-
didates for realizing routes for each demand.
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5 Conclusions

We have formulated problem of increasing computer network survivability by us-
ing p-cycles as an combinatorial optimization problem. The problem alone has
been neither discussed nor solved in the literature, yet. Although the problem
can be modeled as a general MILP task, presented by us transformations show
that it is quite complicated case. We have also shown that problem is strongly
NP-hard, which suggests that the most suitable solution methods should rely on
metaheuristic approaches. We have also shown original decomposition method
and then proposed highly dedicated algorithm for each particular subproblem.
Due to limited size of the paper, we have presented here the primal part of ex-
tensive studies made for the problem stated – detailed analyzes of the algorithm
as well as wide experimental research on common benchmark test are presented
in the complementary paper [1], also submitted for this conference.
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