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Abstract. This paper presents an application-level non-blocking mul-
ticast scheme for dynamic DAG scheduling on large-scale distributed-
memory systems. The multicast scheme takes into account both network
topology and space requirement of routing tables to achieve scalability.
Specifically, we prove that the scheme is deadlock-free and takes at most
logN steps to complete. The routing table chooses appropriate neigh-
bors to store based on topology IDs and has a small space of O(logN).
Although built upon MPI point-to-point operations, the experimental
results show that our scheme is significantly better than the simple flat-
tree method and is comparable to vendor’s collective MPI operations.

1 Introduction and Motivations

Multicore architectures are capable of running many threads simultaneously and
require future parallel software be fine-grained and asynchronous [12[3]. An
approach to developing scalable parallel software is to place fine-grained compu-
tations in a directed acyclic graph (DAG) and schedule them dynamically (data-
driven or demand-driven) [4]. Although a centralized DAG scheduler works well
on SMPs, it will not scale well on systems with thousands of nodes or tens of
thousands of cores. One way to overcome the scalability problem is to adopt a
decentralized scheduler, that is, each node runs a private DAG scheduler and
communicates with other nodes regarding data dependences only when neces-
sary. Ideally, the distributed scheduler has no globally shared data structures, no
requirement of much space to store DAGs, and no blocking operations. Further-
more, it respects the critical path, takes into account data locality, maintains
load balancing, and performs communication efficiently.

Instead of solving all the problems at once, we study how to perform com-
munication efficiently during dynamic DAG scheduling. The most common com-
munication operation used to execute DAGs is multicasting where a completed
task must notify its descendants that are blocked awaiting its output (Fig. [I).
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Fig. 1. Data multicast from parent to children in a DAG

MPI libraries provide users with optimized broadcast operations on nearly all
high performance machines. Due to the dynamic and irregular parent/children
relationship in general DAGs, there could be 2V possible subsets of processes
for broadcasting, where N is the number of processes. For every finished task
and its corresponding children, one has to call MPI Comm create() followed by
MPI Bcast to realize the multicast. Even if we ignore the time to create the com-
munication groups, multiple MPI broadcasts involving the same process have to
be executed in sequence because MPI broadcast is a collective operation. Figure
([ shows an example where P3 is involved in three communication groups with
broadcast roots PO, P1, P2, respectively.

This paper presents a novel multicast scheme to enable dynamic DAG schedul-
ing on large-scale distributed systems with tens of thousands of processors. The
multicast scheme is non-blocking, topology-aware, scalable, and deadlock-free,
and it supports multiple concurrent multicasts. We compare its performance to
a flat-tree multicast and a vendor MPI Bcast. Based on the experimental results,
our multicasting scheme is significantly better than the simple flat-tree method
and comparable to the optimized collective MPI broadcast.

2 Computation Model

2.1 Symbolic Task Graph

We represent the semantics of programs with loop nest control structures by
polyhedrons such that each task instance corresponds to a unique coordinate
or iteration vector. A task instance is denoted by a tuple (type, iteration
vector). By identifying data dependences between tasks, we are able to con-
struct the whole DAG. Similar to the method introduced by [5], we define a task
graph symbolically as follows: G = (T, E), where

T = {task t :t = (type,u)}.
The set of edges are defined by a set F' of symbolic functions:
F = {f; for certain task type i} and f; : {u} — T.

Given a task instance (t,u), fi(u) generates a set of tasks that are dependent
on task (¢, u).
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2.2 Programming Model

We designed a simple application programming interface (API) and implemented
a runtime system prototype to support dynamic DAG scheduling. After the user
implements the API routines, the underlying runtime system can automatically
parallelize and execute the DAG on shared- or distributed-memory systems. The
ANSI C programming interface routines are listed below:

int get_children(const Task t, Task children);
int get_num_parents(const Task t);

void set_entry_task(const Task t);

void set_exit_task(const Task t);

Note that we can obtain the child tasks easily by calling get children() if
the finished parent task is given. As long as each member of the multicast group
is notified of the parent task, it is able to deduce the whole group immediately.
If the get children() function is not feasible, the group members have to be
included explicitly in messages.

3 Multicast Scheme Overview

When a set of processes are executing a DAG, multiple sources may want to
notify different groups of children simultaneously. The new multicast method
is able to provide this functionality automatically. The multicast scheme is es-
sentially an application-level routing method. Every process owns a compact
routing table. Although each process only has knowledge of a few neighbors,
the whole group of processes is represented by a collection of hierarchical trees.
Most importantly, every process is the root node of its own multicast tree. The
routing algorithm simply follows the tree to multicast data to a set of children.

In Fig. 2 the process on node 001 wants to multicast data to {010,100, 101}.
For this system with eight nodes, it takes three steps to complete the multicast.
There could be at most eight processes running (at leaf nodes) on the system,
but certain processes will be mapped to serve as ” virtual masters” responsible for
their corresponding subtrees. Our method to build the routing table guarantees
that there exists a path from the source to every destination by filling in ” virtual
masters” (Lemma [Tl in Sect. [7]). The path length is bounded by logN.

4 Topology ID

To improve communication performance, it is critical to know the communication
cost between a node and the other nodes on a system. One could build a N x N
table to describe the latency and bandwidth information between every pair of
nodes. But for a system with millions of nodes, it is too costly to build and maintain
such a big table. Another natural approach is to use hierarchy as an abstraction to
achieve scalability. The hierarchy abstraction has been widely used on the Internet,
for example for DNS and IP addresses, as well as for message passing operations
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Fig. 2. Data multicasting in a data flow graph

on computational Grids. Instead of exposing all the other nodes to the source, the
hierarchy technique utilizes a hierarchical tree to send data level by level. This way
each node only communicates with a small number of nodes so that the system
keeps scaling. We assign each node a topology ID on the system. Working like ZIP
codes, we assume the longer the common prefix of the two nodes’ topology IDs,
the closer they are and the smaller the latency. When a process is running on a
node with topology ID x, we say the process has topology ID x.

5 Extention to the Plaxton Neighbor Table

In this section, we briefly describe the Plaxton neighbor table and our extension
to support multicasting. Plaxton uses an incremental routing approach similar
to hypercube routing which resolves the destination node address dimension by
dimension [6]. Supposes a system has n = 2™ nodes, where m is a multiple
of b. Plaxton assumes that each node has a label which is independently and
uniformly distributed at random between 0 and n— 1. Instead of using a random
label for each node, we assign a topology ID tid € [0...n — 1] to each node. The
topology ID reflects the latency relationship (near or far) between two nodes,
and is expressed as a sequence of ;' digits with the base 2. For instance, if one
system has 4096 = 2'2 nodes, base = 23 leads to a 4-digit octal topology ID.

Every node has its own neighbor table T'. Table T consists of r rows and ¢
columns, where r is equal to the number of digits (="') and c is equal to the
digit’s base (= 2°). Table entry T'[i, j] stores the forwarding node address. In
the case of application-level multicasting, we store an MPI rank as a forwarding
address. Let node x have a topology ID of id ™) = dody ...d._y. If table entry
TJi, 4] in node z contains node y which has topology ID id®), then id*) and
id®) must satisfy the following two conditions:

(1) idid™ . id®) = idPidY . idY, = dod, ... di_y,
(2) id™ # j and id™ = j.

Please note that there could exist a set Y of nodes meeting the above conditions
for node z. For instance, table entry T[3,5] in a node with octal topology ID
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012345 can contain any node with a topology ID € 012[{0 — 7}/3}][0 — 7]*.
Therefore a decision function is needed to choose the best candidate. For in-
stance, Plaxton chooses y* = Min,cyCommCost(z,y) as the best neighbor.

In the case of Y = (), Plaxton assumes an ordering in the set of n nodes
and picks a node y that matches node x in the suffix 4,7+ 1,...,r — 1 digits
with the highest order. In contrast to the full Plaxton neighbor table, we leave
those entries empty and prove this modification avoids cycles in application-level
multicasting (Theorem 2lin Sect. [7]).

5.1 Compact Routing Table

While routing tables are usually used to connect nodes, we use them to connect
processors and processes in the context of application-level multicasting. Assume
a system has n processors and the base of topology IDs is equal to ¢, then the
routing table will have llif]z((?)) rows and ¢ columns. The routing table occupies a
small amount of space even for large-scale systems. If a system has one million
(229) cores, a base of 16 results in a routing table of 5 rows by 16 columns that
equals 80 entries. If one has a billion (23°) cores, the routing table is of 6 rows
and 32 columns given the base 32. Every table entry just stores a single integer.

6 Algorithms

This section describes how every process builds its own routing table when the
application first starts and how the process constantly receives messages and
forwards them to proper destinations.

6.1 Building a Local Routing Table

Before doing any real work, each MPI process first builds a local routing table.
Each process’s topology ID is assigned by users based on the network topology.
In Fig. Bl a process scans every other process ID and compares that process’s
topology ID to its own topology ID to fill in the routing table. When there are
multiple processes that are legitimate to be stored in T[i,j], we either pick a
process randomly or find the closest process. In our experiments on Myrinet, the
random method is slightly better than the nearest neighbor method.

6.2 Forwarding Algorithm

While participating in the multicast, a process works as either an internal node or
a leaf in the multicast tree. Whenever the root is given, the locations of receivers
become fixed in the particular multicast tree. Data will always flow from root to
leaves. Figure [B] shows how to find the next level of tree nodes in the multicast
tree to which to forward. The index of the next level (i.e., stage) should be at
least one level further from the root. The program looks up the table and gets a
forwarding process for each child and stores it in array destinations.
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typedef struct { while(1) {
int table[NUM_LEVELS * NUM_COLS]; e
int topo_ids[MAX_NUM_PROCESSES]; Received a message from process prev_topid;
}* NeighborTable; stage = longest_prefix(my_top_id, prev_topid)+1;
for(i = 0; i < num_children; i++) {
int *candidates[NUM_LEVELS * NUM_COLS]; p = get_children(i);
NeighborTable my_tbl; if(p == my_pid) continue;
top_id = my_tbl->topo_ids[p];
for(p = 0; p < nprocs; p++) { lcl = longest_prefix(my_top_id, top_id);
if(p == my_pid) continue; if (1l >= stage) {
topid = my_tbl->topo_ids[p]; column = get_kth_digit(top_id, lcl);
level = longest_prefix(my_top_id, topid); forward = TBL_ENTRY(my_tbl, 1lcl, column);
column = get_kth_digit(topid, level); if(!is_element (forward, destinations)) {
idx = level * NUM_COLS + column; destinations[idx++] = forward;
candidates[idx] [counters[idx]++] = p; }
} }
}
/*choose proper neighbor from candidates*/ Send message to processes in destinations[];

choose_best_neighbor (my_tbl, candidates); }

Fig. 3. Algorithms for the non-blocking multicast scheme

7 Theorems

Lemma 1. Suppose process P, has a topology ID = and needs to send data
to process P, with topology ID z. Then there always exists a process P, stored
in P,’s neighbor table such that P, can forward data to P, and LCD(y,z) >
LCD(z,z) + 1.

Proof. Let LCD(i,j) compute the longest common prefix length of ¢ and j.
Suppose ¢ = LCD(z,z), P, will forward data to a process with a topology
ID of the form xgxy...z;_12; % ...*. It is easy to see that at least z have the
form. So one of the processes of P, U {processes with ID zgxy...x;—12; *...%}
will get the forwarded data. Therefore such a process must exist. By definition
of LCD, we know xoxy...x;—1 = 20921...2i—1 and x; # z;. Given ¢ and z,
the forwaring algorithm chooses the process stored in the ith row and the z;th
column. Any process located in T[i, z;] will be the target to which P, forwards
data and it must exist. WLOG, let it be P, with topology ID y. Since P, is in
T[i, Zl] of PI’S neighbor table, Yoyt ---Yi—1 — ox1..-Tj—1 — 20”1 ---%i—1 and
y; = z;. Therefore, yoyi - ..y; = 2021 - - . z;- In other words, LCD(y,2) =i+ 1>
LCD(z,2) + 1.

Lemma [Tl proves that the forwarding method is always successful even if there
exist empty entries in the process’s routing table. For every step of forwarding,
the longest common prefix length to the destination increases by at least one.

Theorem 1 (Reachability). It is always possible to route a message from
process P, to process P, and it takes at most m steps to reach P,. m is the
number of digits in topology IDs.

Proof. By Lemma [ there 3P, such that P, can forward data to P, and
LCD(y,z) > LCD(z,z) + 1. Since topology ID z has m digits, it takes at most
m steps to send data to P,.
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Theorem 2 (Deadlock-freedom). The forwarding mechanism guarantees
that there is mo cycle during the forwarding process.

Proof. Suppose process x; wants to send a message to x,, but there is a cycle
1 — Tz ... — T — o1 formed before the message reaches x,,. If LCD(x1,xp) =
dody ...d;,, then by Lemma [I]

LCD((L'Q, acp) = d0d1 e dl1 N dlz
LCD($37$p) = d0d1 e dl1 . dlz . dlg

LC’D(xk,xp) :d0d1-~-dl1 ...d12...dl3 -~-dlk
LC’D(xl,xp) :d0d1-~-dl1 "'dl2"'dl3"'dlk"'dlk+1

There is a contradiction if we compare the first LCD(x1,x,) and the last
LCD(x1,xp). Therefore, the forwarding mechanism guarantees there is no cycle.

8 Related Work

MPICH-G2 uses depth to represent where an MPI process is located in a com-
putational Grid [7]. The depths include levels of wide area, local area, system
area, and machine-specific area. The topology table represented by depths and
colors is a global table for the whole grid and needs to be accessible by every
process. Our topology ID representation has a distributed compact table and
requires much less space.

Plaxton introduces local neighbor tables at each node [6]. Our work is an
extension to Plaxton’s neighbor table where we build routing tables for MPI
processes instead of nodes. Since a user’s processes are always a subset of all
the nodes on the system, we modify the table-building method to allow empty
entries (or ”holes”) in the routing table. In addition, we design a multicast
scheme based on the extended routing table. Wu [§] designs a deadlock-free
prefix-based multicasting scheme for irregular networks. Each outgoing channel
of anode is assigned a label. The multicast packet is first forwarded up to the root
and then forwarded down to leaves. But the whole system is based on a single
spanning tree. In our multicast method, every process has its own spanning tree.
Panda proposes a Hierarchical Leader Based approach to support one-to-many
multicasting [9]. The set of nodes are grouped into subsets explicitly so that
each subset is represented by a leader. Banerjee et al. also uses a hierarchical
clustering method to multicast the data stream to large receiver sets [10]. In
contrast, our method builds routing tables to form hierarchies automatically
(represented by spanning trees).

Bayeux uses the structure of Tapestry to provide an application-level multicast
scheme for streaming multimedia applications [ITJ12]. Bayeux builds a distribu-
tion tree based on four control messages: JOIN, LEAVE, TREE, PRUNE. To
construct a distribution tree, the source server must advertise the session infor-
mation first. Then the clients have to join the session to form a tree. We don’t
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need to construct distribution trees and simply use the implicit spanning trees
to multicast data.

9 Experiments

We conducted experiments on a cluster machine with 64 nodes each with two
processors. The cluster is connected by a Myrinet network. We also did experi-
ments on a SGI Altix 3700 BX2 machine which has a fat tree network topology.
The performance result on the SGI machine is similar to that on the cluster and
is not shown here due to the space limitation.

9.1 Effect of Segments

The performance of the non-blocking multicast method could be affected by the
segment size. Given a message size, we can choose to send it out once or in a num-
ber of segments. Figured considers two message sizes: 512KB and 1MB. For each
message size, we use different segments with sizes from 64Bytes to the whole mes-
sage size and run it on a range of processors from 4 CPUs to 128 CPUs. Based on
the data from Fig.[] a segment size between 1KB and 32 KB always produces the
best performance. Therefore in the experiments described in Sect.[3.2] we choose
the segment size 8KB for our multicast method whenever possible.

\ ~ 4GPU ~ 4cpu
0 — 8C PYY = 8CPU
16 CPU 76 CPU
\ 32 GPU - 32GPU
_ S84 G — 64 CPU
o 128 GPU o —=128CPY
£ £,
Fo = \
o
o \\‘\ /
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Segment Size (Bytes) Segment Size (Bytes)
(1) Multicast a 512KB message (2) Multicast a 1IMB message

Fig. 4. Performance of multicast varies with different segment size on Myrinet

9.2 Experimental Results

We compare our non-blocking multicast method (labeled as ”dag mcast”) to
Myricom’s MPICH-MX 1.1 MPI Bceast (labeled as "mpi bcast”) and a straight-
forward implementation that uses a flat-tree to perform multicasting (labeled as
"flat mcast”). The flat-tree method simply sends the message to every destina-
tion one by one. Both flat mcast and dag mcast are implemented using point-
to-point MPI Send and MPI Recv operations.

We conducted experiments on a range of processors from 16 up to 128. From
Fig. B we can see that both dag mcast and mpi bcast are significantly better
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Fig. 5. Multicast performance on a cluster connected with Myrinet

than flat mcast. And the non-blocking multicast method is comparable to the
highly-optimized collective MPI Bcast. Note that the time to invoke MPI Init
and MPI Comm create was not counted for the mpi bcast experiments (in favor
of mpi bcast). The reason why the non-blocking multicast method is slower
than MPT Bcast is because our implementation is built over MPI point-to-point
operations and we cannot do similar optimizations as MPI collective operations
do (e.g., broadcast may be implemented as scatter followed by allgather,
optimal binomial tree is built in advance). Although MPI Bceast is faster, it is
difficult to create communication groups and do collective broadcasts for every
distinct group in dynamic DAG scheduling programs.

10 Conclusion

Our non-blocking multicast scheme is designed to support dynamic DAG
scheduling on distributed-memory machines. While it is possible to use
MPI Bcast directly to implement it, creating communication groups and per-
forming collective operations for arbitrary sets of parent/children is cumbersome
to program. We have designed a multicast scheme, using topology IDs, compact
routing tables, and multiple spanning trees. The multicast scheme is proven
to be deadlock free, scalable in terms of time and space, topology-aware, and
non-blocking. Our experimental results show that performance of our scheme is
significantly better than the simple flat-tree method and comparable to vendor-
optimized collective MPI operations.
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