
A New Variant of the Cramer-Shoup KEM

Secure against Chosen Ciphertext Attack

Joonsang Baek1, Willy Susilo2, Joseph K. Liu1, and Jianying Zhou1

1 Cryptography and Security Department
Institute for Infocomm Research, Singapore
{jsbaek,ksliu,jyzhou}@i2r.a-star.edu.sg

2 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
wsusilo@uow.edu.au

Abstract. We propose a new variant of the Cramer-Shoup KEM (key
encapsulation mechanism). The proposed variant is more efficient than
the original Cramer-Shoup KEM scheme in terms of public key size and
encapsulation cost, but is proven to be (still) secure against chosen ci-
phertext attack in the standard model, relative to the Decisional Diffie-
Hellman problem.

1 Introduction

Motivation. At Crypto ’98, Cramer and Shoup [9] proposed the first practical
public key encryption (PKE) scheme whose security against adaptive chosen ci-
phertext attack (which we simply call “CCA” throughout this paper) can be
proven without depending on the random oracle model [6]. This is a striking re-
sult as the chosen ciphertext security without random oracles could be achieved
by only adding a few more exponentiations to the original ElGamal encryp-
tion scheme, in contrast to the computationally heavy solutions [11,20] based
on zero-knowledge proofs proposed before. Nearly seven years later, a major im-
provement on the performance of the Cramer-Shoup PKE scheme was made by
Kurosawa and Desmedt [17]. They were able to obtain a very efficient hybrid
PKE scheme by simplifying the Cramer-Shoup PKE scheme with the help of
the “ciphertext authenticity checking” mechanism of the underlying symmetric
encryption primitive. Afterwards, Hofheinz and Kiltz [14] came up with a dual
version of the Kurosawa-Desmedt PKE scheme. Note that chosen ciphertext
security of all these schemes are relative to the (standard) Decisional Diffie-
Hellman (DDH) problem.

In the full version of their Crypto ’98 paper, Cramer and Shoup [10] formulated a
framework called “KEM/DEM (Key Encapsulation Mechanism/Data Encapsula-
tion Mechanism)”. A KEM is a public key scheme that outputs a (session) key tak-
ing public key as input. According to the KEM/DEM framework, a (hybrid) PKE
scheme secure against CCA can be constructed in such a way that a key output by

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 143–155, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 J. Baek et al.

a CCA-secure KEM scheme1 is used as a session key for an one-time CCA-secure
DEM (i.e., symmetric encryption) scheme that encrypts a plaintext message.

In the same paper, Cramer and Shoup proposed a KEM scheme based on
their original PKE scheme, which we denote by “CS-KEM”, and showed it is
CCA-secure assuming that the DDH problem is hard. Interestingly, however, it
was shown [13] that the KEM scheme extracted from Kurosawa and Desmedt’s
hybrid PKE scheme, which we denote by “KD-KEM”, does not satisfy full
CCA-security even though the hybrid PKE scheme remains secure against CCA.
Abe et al. [1] showed later that the KD-KEM scheme is actually secure against
“LCCA (predicate-dependent CCA)” which is weaker than usual CCA-security
of KEM. Similarly, the KEM scheme extracted from Hofheinz and Kiltz’s [14] hy-
brid PKE scheme, denoted “HK-KEM”, was shown to be secure against CCCA
(constrained CCA), which is also weaker than the usual CCA-security of KEM.

Hence, the CS-KEM scheme is, though less efficient than the KD-KEM and
HK-KEM schemes, the only KEM scheme that is fully CCA-secure without
random oracles, assuming that the DDH problem is hard. A remaining question
is whether the performance of the CS-KEM scheme can be further improved. In
this paper, we give a positive answer to this question.

Recent Developments. In 2007, Kiltz [16] proposed a KEM scheme whose CCA se-
curity is based on the gap hashed Diffie-Hellman problem. An interesting feature
of this scheme is that different from the CS-KEM scheme, a key can be computed
from one of the public key components used to create one ciphertext component.
More precisely, let pk = (q, g, c, d) be public key, where g is a generator of a group
of prime order q; c = gx and d = gy for some random (x, y) ∈ Z

∗
q . In this scheme,

a ciphertext and its corresponding key is computed as (gr, (cαd)r) and KDF(cr)
respectively, where KDF denotes a key derivation function. As mentioned earlier,
the public c used to create (cαd)r is reused to produce cr. Note here that one can-
not expect a computational gain even if c is reused. However, if d were reused, a
computational cost could be reduced by computing crα and dr separately to gen-
erate (cαd)r and using dr as a key. Indeed, Lu et al. [18] recently showed that this
modified version of Kiltz’s KEM scheme is CCA-secure.

More recently, as one of the applications of their new computational problem
called “Twin Diffie-Hellman”, Cash et al. [8] proposed a new variant ofCramer and
Shoup’sPKE scheme and showed that it isCCA-secure under the hasheddecisional
Diffie-Hellman assumption, which is weaker than the usual DDH assumption2. Al-
though this variant has interesting theoretical implications, it is computationally
more expensive than the original Cramer and Shoup’s one and hence ours.

Our Contributions. We observe that it is also possible to apply the structure
of Kiltz’s KEM scheme to the CS-KEM scheme. As a result, we could con-
struct a KEM scheme which is proven to be fully CCA-secure without random
oracles assuming that the DDH problem is hard, while it is more efficient than

1 The CCA security notion for KEM will be defined in Section 2.
2 Note that although [8] focuses only on a PKE scheme, a corresponding KEM scheme

can easily be derived and analyzed in an obvious way.

A New Variant of the Cramer-Shoup KEM Secure against CCA 145

the CS-KEM scheme. The crux is the efficiency of our scheme in terms of a
shorter public/private key pair and improved encapsulation speed. However, we
honestly state that the improvement on the encapsulation speed would not be
very much dramatic due to the advancement of fast multi-exponentiation al-
gorithms [2,7,19], which makes the cost for computing double exponentiation
very close to the cost of computing a single exponentiation. Nevertheless, the
proposed scheme has a new structure, which reduces one group element of the
public key of the CS-KEM scheme. We believe it is also theoretically interesting
in that it shows yet another way of constructing a more efficient variant of the
CS-KEM without sacrificing full CCA-security.

2 Preliminaries

In this section, we review the formal notion of key encapsulation mechanism
(KEM) and its security against adaptive chosen ciphertext attack (CCA). We
also review building blocks used in our construction of KEM which will be pre-
sented in Section 3.
Key Encapsulation Mechanism (KEM). The KEM scheme, denoted KEM, con-
sists of the following algorithms [10,15,22].

– Key Generation: Taking 1λ for a security parameter λ ∈ Z≥0 as input, this
algorithm generates a public/private key pair (pk, sk).

– Encapsulation: Taking 1λ and a public key pk as input, this algorithm gen-
erates a ciphertext/(symmetric) key pair (ψ,K).

– Decapsulation: Taking 1λ, a private key sk and a ciphertext ψ as input,
this algorithm outputs either a (symmetric) key K or the special symbol ⊥,
meaning “reject”.

The security against CCA of KEM is defined as follows. Consider any at-
tacker A and any value λ > 0 for security parameter in the following game
GameCCAKEM

A (λ) in which A interacts with the challenger.

Phase 1: The challenger runs the key generation algorithm providing 1λ

as input to generate a public/private key pair (pk, sk). The challenger then
computes a challenge ciphertext φ∗ and a key K∗

1 by running the encapsu-
lation algorithm. It also picks K∗

0 ∈ SK at random, where SK denotes the
key space. It then picks β ∈ {0, 1} at random and gives (pk, φ∗,K∗

β) to A.
Phase 2: A submits ciphertexts, each of which is denoted by φ. On receiving
φ, the challenger runs the decapsulation algorithm on input φ and passes the
resulting decapsulation to A. At the end of this phase, A outputs its guess
β′ ∈ {0, 1}.
We define the output of the game to be 1 if β′ = β, and 0 otherwise. A’s
success is defined by the probability

AdvCCA
A,KEM(λ) =

∣
∣
∣ Pr[GameCCAKEM

A (λ) = 1]− 1
2

∣
∣
∣.

We say that KEM is CCA-secure if AdvCCA
KEM (λ) = maxA

{

AdvCCA
A,KEM(λ)

}

is
negligible for any attacker A.

146 J. Baek et al.

The Decisional Diffie-Hellman Problem. We now review the definition of the
Decisional Diffie-Hellman (DDH) problem. Let D be an attacker. Let G be a
finite cyclic group generated by g ∈ G. Let q be a prime order of G, whose size
depends on the security parameter λ. We define the DDH problem using the
attacker D’s advantage in distinguishing two distributions:

AdvDDH
D,G (λ) = |Pr[a R← Zq; b

R← Zq : 1← D(1λ, ga, gb, gab)]

− Pr[a R← Zq; b
R← Zq; r

R← Zq : 1← D(1λ, ga, gb, gr)]|.

Equivalently [9,10,12],

AdvDDH
D,G (λ) = |Pr[w R← Zq; g2 ← gw

1 ; r R← Zq : 1← D(1λ, g1, g2, g
r
1, g

r
2)]

− Pr[w R← Zq; g2 ← gw
1 ; r′ R← Zq \ {r} : 1← D(1λ, g1, g2, g

r
1 , g

r′
2)]|,

where g1 is the generator of G.
We say that the DDH problem is hard if AdvDDH

G (λ) = maxD
{

AdvCCA
D,G (λ)

}

is negligible for any attacker D.
Target Collision Resistant Hash Function (TCR). The security of the target col-
lision resistant hash function denoted by H is defined as follows. Given a n tuple
of group elements x ∈ G

n, it is hard for an attacker B1 to find y �= x such that
H(x) = H(y). We define the attacker B1’s success probability by AdvCOL

B1,H(λ). We
say that H is target collision-resistant if AdvCOL

H (λ) = maxB1

{

AdvCOL
B1,H(λ)

}

is
negligible for any attacker B1.
Key Derivation Function (KDF). In the proposed variant of the KD-KEM scheme,
we will use the key derivation function denoted by KDF. Specifically, KDF takes
two random elements a and b in the group G as input. Let l be the length of the
output of KDF, which depends on the security parameter λ. We define the security
of KDF with respect to an attacker B2 as follows. (Below, “ROR” stands for “real
or random”.)

AdvROR
B2,KDF(λ) = |Pr[a, b R← G : 1← B2(1λ, a,KDF(a, b))]

− Pr[a R← G;μ R← {0, 1}l : 1← B2(1λ, a, μ)]|.

We say that KDF is secure if AdvROR
KDF (λ) = maxB2

{

AdvROR
B2,KDF(λ)

}

is negli-
gible for any attacker B2.

Notice that the above security requirement on KDF is the same as that of the
KDF functions used in [10].

3 The Proposed Variant of the Cramer-Shoup KEM

Description. We describe our variant of the CS-KEM scheme, which we denote by
“Π”, as follows. (Readers are referred to the end of Section 1 for the underlying
idea of our scheme.)

A New Variant of the Cramer-Shoup KEM Secure against CCA 147

Key Generation: Pick a group G of prime order q and generators g1 and
g2 of G. Pick a target-collision resistant hash function H : {0, 1}∗ → Z

∗
q and

a key derivation function KDF. Then choose (x1, x2, y1, y2) ∈ Z
4
q at random

and compute

c = gx1
1 gx2

2 , d = gy1
1 g

y2
2 .

Return public key pk = (G, q, g1, g2, c, d,H,KDF) and private key sk =
(pk, x1, x2, y1, y2).
Encapsulation: Pick r ∈ Z

∗
q at random and compute

u1 = gr
1, u2 = gr

2 , α = H(u1, u2), v = crdrα, K = KDF(u1, c
r).

Return a ciphertext ψ = (u1, u2, v) and a key K.
Decapsulation: Upon receiving ψ = (u1, u2, v), compute

α = H(u1, u2), v′ = ux1+y1α
1 ux2+y2α

2 , K = KDF(u1, u
x1
1 ux2

2)

If v′ = v then return K; otherwise, return ⊥.

We show that the scheme Π is CCA-secure, relative to the DDH problem.
More precisely, we prove the following theorem.

Theorem 1. The KEM scheme Π is CCA-secure assuming that the DDH prob-
lem is hard and the underlying hash function H s target collision-resistant and
key derivation function KDF is secure. More precisely, we have

AdvCCA
Π (λ) ≤ AdvDDH

G (λ) + AdvCOL
H (λ) + AdvROR

KDF (λ) +
qD
q
.

where λ denotes the security parameter and qD is the number of queries to the
decapsulation oracle.

Outline of Proof. The basic idea of the proof essentially follows the logic of the
proofs of the CS-KEM [10] and CS-PKE [9] schemes. We need to show that
by using a CCA-attacker for the scheme Π as a subroutine, a DDH attacker
can solve the DDH problem: When the DDH attacker is given a right Diffie-
Hellman tuple (g1, g2, gr

1, g
r
2), it can perfectly simulate the environment of the

CCA-attacker. On the other hand, when it is given (g1, g2, gr
1, g

r′
2) where r′ �= r,

the output of the decapsulation oracle will not be legitimate but we will show
that this one won’t be a problem.

In our proof, there is an important difference from the proofs of the CS-
KEM/CS-PKE schemes. Since the public key component c used to create v =
crdrα is “reused” to produce a key material cr, we need to assume that the
attacker’s view include c, d, v and cr when breaking the confidentiality (i.e.
“key indistinguishability”) of the scheme Π . (Note that this is different from the
CS-KEM/CS-PKE schemes in which an independent public key component is
used to produce a key.) By using an argument from linear algebra, we show that
fortunately, this does not cause a problem. (In particular, readers are referred
to Equation (12)).

148 J. Baek et al.

Proof. Fix an attacker A that breaks CCA-security of the scheme Π . Also, fix
an attacker D that is to solve the DDH problem.

Simulation. The DDH attacker D simulates the environment of A as follows.
Assume that D is given a DDH instance (g1, g2, u1, u2) where g1 and g2 are
generators of a group G of prime-order q. D chooses (x1, x2, y1, y2) ∈ Z

4
q at

random and computes c = gx1
1 gx2

2 and d = gy1
1 g

y2
2 . D also chooses a hash function

H and a key derivation function KDF, and gives pk = (G, q, g1, g2, c, d,H,KDF)
as a public key to A.

When A queries ciphertexts to the decapsulation oracle in the find stage, D
decapsulates them using (x1, x2, y1, y2).
D simulates the challenge ciphertext and the key as follows. D first sets u∗1 =

u1 and u∗2 = u2, and computes α∗ = H(u∗1, u
∗
2), v

∗ = (u∗1)
x1+y1α∗

(u∗2)
x2+y2α∗

and K∗
1 = KDF(u∗1, (u

∗
1)

x1(u∗2)
x2). D also chooses K∗

0 at random from the output
space of KDF and picks β ∈ {0, 1} at random. D finally gives A the challenge
ciphertext-key pair (ψ∗,K∗

β) where ψ∗ = (u∗1, u
∗
2, v

∗).
When A queries ciphertexts, all of which are different from ψ∗, to the decap-

sulation oracle in the find stage, D decapsulates them using (x1, x2, y1, y2).
Finally, when A outputs its guess β′, D outputs 1 if β′ = β; otherwise,

outputs 0.
Analysis. We first analyze the case when D is given (g1, g2, gr∗

1 , gr∗
2). First, we

prove the following lemma.

Lemma 1

Pr[D(1λ, g1, g2, g
r∗
1 , gr∗

2) = 1] = Pr[GameCCAΠ
A(λ) = 1]. (1)

Proof. Note that since (x1, x2, y1, y2) is randomly chosen from Z
4
q , the public

key pk is distributed the same as the public key in the real attack.
By the simulation of the challenge ciphertext presented above, we have

ψ∗ = (u∗1, u
∗
2, v

∗) = (gr∗
1 , gr∗

2 , (gr∗
1)x1+y1α∗

(gr∗
2)x2+y2α∗

) = (gr∗
1 , gr∗

2 , cr
∗
dr∗α∗

)

and

K∗
1 = KDF(u∗1, (g

r∗
1)x1(gr∗

2)x2) = KDF(u∗1, c
r∗

).

Since K∗
0 is drawn uniformly at random from the output space of KDF,

(ψ∗,K∗
β) has the right distribution.

It remains to show that the output of the decapsulation oracle (both in the
simulation and the real attack) has the right distribution. Now, we call a ci-
phertext ψ = (u1, u2, v) is invalid if logg1

u1 �= logg2
u2. We show that invalid

ciphertexts are rejected except for negligible probability.
First, by the public key pk that A sees, we have the following equations:

logg1
c = x1 + x2w (2)

and

logg1
d = y1 + y2w, (3)

A New Variant of the Cramer-Shoup KEM Secure against CCA 149

where w = logg1
g2. Hence, one can view (x1, x2, y1, y2) as a random point on

the plane defined by (2) and (3). From the challenge ciphertext, we have

logg1
v∗ = r∗(x1 + x2w + y1α

∗ + y2wα
∗), (4)

where r∗ = logg1
u∗1 = logg2

u∗2 and α∗ = H(u∗1, u
∗
2). Note that the challenge

ciphertext (whether it is in the simulation or real attack) does not constrain
(x1, x2, y1, y2) as the hyperplane defined by (4) contains the plane formed by the
equations (2) and (3). Now consider the following equation obtained from the
invalid ciphertext ψ:

logg1
v = r1x1 + r2x2w + r1y1α+ r2y2wα, (5)

where r1 = logg1
u1 and r2 = logg1

u2 such that r1 �= r2. If the decapsulation
oracle does not reject ψ, the point (x1, x2, y1, y2) should lie on the hyperplane
defined by (5). But observe that the equations (2), (3) and (5) are linearly
independent, so the hyperplane defined by (5) intersects the plane formed by
the equations (2) and (3) at a line. This happens with probability 1/q, which is
negligible.

We now analyze the case when D is given (g1, g2, g
r∗
1

1 , g
r∗
2

2) where r∗1 �= r∗2 . More
precisely, we prove the following lemma.

Lemma 2

Pr[D(1λ, g1, g2, g
r∗
1

1 , g
r∗
2

2) = 1] ≤ 1
2

+ AdvROR
KDF (λ) + AdvCOL

H (λ) +
qD
q
. (6)

The above bound (6) can be obtained by proving the following claims (1) and
(2).

Recall that if a ciphertext ψ = (u1, u2, v) is “invalid” then logg1
u1 �= logg2

u2.
We first prove the following claim.

Claim (1). Let RejInvC to be an event that the decapsulation oracle rejects all
invalid ciphertexts. Then we have

Pr[β′ = β|RejInvC] ≤ 1
2

+ AdvROR
KDF (λ). (7)

Proof of Claim (1). First, assume that that the decapsulation oracle rejects all
invalid ciphertexts. We consider the distribution of the point (x1, x2, y1, y2) ∈ Z

4
q

conditioned on A’s view. Since the decapsulation oracle decapsulates only valid
ciphertexts by the assumption (the decapsulation oracle rejects all invalid cipher-
texts), for each ciphertext (u1, u2, v), A gets only linearly dependent relations

logg1
v = r(x1 + x2w + y1α+ y2wα), (8)

and

logg1
ux1

1 ux2
2 = r(x1 + x2w), (9)

150 J. Baek et al.

where r = logg1
u1 = logg2

u2 and α = H(u1, u2). (In fact, A only gets the key
which is the output of KDF which “wraps” the key material ux1

1 ux2
2 .) Hence, no

information about the point (x1, x2, y1, y2) is leaked from querying valid cipher-
texts to the decapsulation oracle.

Now consider the challenge ciphertext ψ∗ = (u∗1, u
∗
2, v

∗) and the key K∗
1 =

KDF(u∗1, (u
∗
1)

x1(u∗2)
x2), produced by the simulation. Suppose that A gets the

key material (u∗1)
x1(u∗2)

x2 at the worst case. Since v∗ and (u∗1)
x1(u∗2)

x2 are in
A’s view, (x1, x2, y1, y2) should then satisfy the following equations

logg1
v∗ = r∗1x1 + r∗2x2w + r∗1y1α

∗ + r∗2y2wα
∗, (10)

where r∗1 = logg1
u∗1, r

∗
2 = logg2

u∗2 with r∗1 �= r∗2 and α∗ = H(u∗1, u
∗
2), and

logg1
(u∗1)

x1(u∗2)
x2 = r∗1x1 + r∗2x2w. (11)

Now observe that

det

⎡

⎢
⎢
⎣

1 w 0 0
0 0 1 w
r∗1 r∗2w r∗1α∗ r∗2α∗w
r∗1 r

∗
2w 0 0

⎤

⎥
⎥
⎦

= w2α∗(r∗1 − r∗2)2 �= 0. (12)

Hence, the equations (2), (3), (10) and (11) are linearly independent. Note that
(u∗1)

x1(u∗2)
x2 is distributed uniformly in G since r∗1 and r∗2 are chosen uniformly

at random from Zq and that K∗
0 has been chosen uniformly at random and

independently from anything else. Thus the distribution of β is independent
from A’s view under the assumption that KDF is secure and we get the bound
(7). This is the end of proof of Claim (1).

We now show that the probability that the decapsulation oracle does not
reject all invalid ciphertexts, i.e. Pr[¬RejInvC], is bounded by insecurity of hash
function and some negligible probability. Precisely we prove the following claim.

Claim (2).

Pr[¬RejInvC] ≤ AdvCOL
H (λ) +

qD
q
, (13)

where qD denotes the number of the queries to the decapsulation oracle.

Proof of Claim (2). Suppose that A submits an invalid ciphertext ψ = (u1, u2, v)
�= ψ∗ to the decapsulation oracle. First, note that it is not possible that (u1, u2) =
(u∗1, u∗2) since ψ �= ψ∗, we have v �= v∗ and hence the decapsulation oracle will
reject ψ straight away. Note also that it is possible that (u1, u2) �= (u∗1, u

∗
2) and

α = α∗ but the probability that this happens is bounded by the insecurity of
the hash function H since this event implies the violation of the target collision-
resistance of H.

Thus, for up to qD invalid ciphertexts such that (u1, u2) �= (u∗1, u
∗
2), we have

α �= α∗. In this case, if the point (x1, x2, y1, y2) lied on the hyperplane defined
by the following equation

logg1
v = r1x1 + r2x2w + r1y1α+ r2y2wα, (14)

A New Variant of the Cramer-Shoup KEM Secure against CCA 151

where r1 = logg1
u1 and r2 = logg1

u2, the decapsulation oracle would accept the
ciphertext ψ. However, observe that

det

⎡

⎢
⎢
⎣

1 w 0 0
0 0 1 w
r∗1 r

∗
2w r∗1α

∗ r∗2α
∗w

r1 r2w r1α r2αw

⎤

⎥
⎥
⎦

= w2(r1 − r2)(r∗1 − r∗2)(α∗ − α) �= 0.

Hence, (2), (3), (10) and (14) are linearly independent, implying that the hyper-
plane defined by (14) intersects the line formed by intersecting (2), (3) and (10)
at a point, which happens with negligible probability 1/q. Considering that there
are qD decapsulation queries, we get (13). This is the end of proof of Claim (2).

Note that from (7) and (13), we get

Pr[β′ = β] = Pr[β′ = β|RejInvC] Pr[RejInvC] + Pr[β′ = β|¬RejInvC] Pr[¬RejInvC]
≤ Pr[β′ = β|RejInvC] + Pr[¬RejInvC]

≤ 1
2

+ AdvROR
KDF (λ) + AdvCOL

H (λ) +
qD
q
.

(The above inequality shows that regardless of the quantity of Pr[β′=β|¬RejInvC],
i.e. the advantage that the adversarymay get through querying invalid ciphertexts
to the decapsulation oracle, Pr[β′ = β] is not much deviated from 1/2 due to
Pr[β′ = β|¬RejInvC] and Pr[¬RejInvC], which turn out to be negligible.)

Then, from the construction of D, we have

Pr[D(1λ, g1, g2, g
r∗
1

1 , g
r∗
2

2)=1]=Pr[β′=β] ≤ 1
2

+AdvROR
KDF (λ)+AdvCOL

H (λ) +
qD
q
.

Combining the bounds from Lemmas 1 and 2 (i.e., by subtracting (1) from
(6)), we get the bound in the theorem statement.

4 Comparisons

In Table 1, we summarize the basic parameters such as public key, ciphertext
of CS-KEM [10], KD-KEM [17], HK-KEM [14] and ours. We also summarize
whether those schemes provide full CCA-security, assuming the hardness of the
DDH problem. Note that KD-KEM and HK-KEM are proven to be CCCA-
secure [14], which is weaker than full CCA. Note also that it is an open problem
to prove or disprove that HK-KEM provides full CCA-security.

As one can notice from the above table, our scheme is more efficient than
the CS-KEM scheme while it is less efficient than the KD-KEM and HK-KEM
schemes. However, an advantage of our scheme and CS-KEM schemes might
be the simplicity that they provide full CCA-security without introducing ad-
ditional primitive like MAC. – As formally shown in [3], one can generically
convert a CCCA-secure KEM into a CCA-secure KEM by authenticating the
CCCA-secure KEM ciphertext using a MAC. Hence, KD-KEM and HK-KEM

152 J. Baek et al.

Table 1. Comparison of Our KEM Scheme with Other KEM Schemes

Scheme Public key Ciphertext Key Full CCA

CS-KEM [10] g1, g2, c, d, h gr
1 , gr

2 , (cdα)r KDF(gr
1 , hr) Yes

KD-KEM [17] g1, g2, c, d gr
1 , gr

2 (cdα)r No

HK-KEM [14] g1, c, d, h gr
1 , (cdα)r hr Not Known

Ours g1, g2, c, d gr
1 , gr

2 , (cdα)r KDF(gr
1 , cr) Yes

Table 2. Comparison of Computational Costs

Scheme Enc. Cost Dec. Cost

CS-KEM [10] 3E + 1DE (4.39E) 2DE (2.78E)

KD-KEM [17] 2E + 1DE (3.39E) 1DE (1.39E)

HK-KEM [14] 2E + 1DE (3.39E) 1SE (≈1.39E)

Ours 4E 2.78E

can be made to be CCA-secure by introducing the overhead of MAC. In this
case, expansion of the ciphertext is unavoidable and as a result, the length of
the ciphertext is close to the original CS-KEM and ours.

In Table 2, we summarize the computational costs of the above-mentioned
schemes. In the table, “E” stands for “Exponentiation”, “DE” stands for “Double
Exponentiation”, which is a special case of multi-exponentiation for two bases,
e.g. AaBb, and finally “SE” stands for “Sequential Exponentiation” [7], which
is as efficient as multi-exponentiation (in our case, double exponentiation).

Since there are many factors that determine the running time of various multi-
exponentiation algorithms [2,19], it would be difficult to state decisively one
double exponentiation is equivalent to how much of single exponentiation. (Note
that if we use the naive approach that computes two single exponentiations
separately and multiply them together, 1 DE = 2 E.) But if one adopts the
“multi-exponentiation with a sliding window” algorithm assuming the unsigned
binary representation of exponents as described in [2], one can obtain 1 DE
= 1.39E if window size = 2 and the bit-length of q = 256. The figures in the
parentheses in Table 2 are obtained based on this assumption.

Notice from the above table that in terms of computational costs, the dif-
ference between our scheme and both KD-KEM and HK-KEM is less than one
exponentiation.

We also remark that as done for CS-KEM and KD-KEM respectively in [10]
and in [21], one can make the key generation and decapsulation algorithms of
our KEM scheme more efficient, which is described in detail in Appendix A.

5 Conclusion

In this paper, we proposed a new variant of the Cramer-Shoup KEM (CS-KEM)
scheme which is more efficient than the original Cramer-Shoup KEM and fully
CCA-secure in the standard model, relative to the DDH problem. Our result

A New Variant of the Cramer-Shoup KEM Secure against CCA 153

shows that the original CS-KEM can further be optimized without losing full
CCA-security.

It is natural to ask whether the same technique (that is, to “reuse” dr in
(cαd)r) can be applied to the dual version of KD-KEM scheme presented in
[14]. We found that it is difficult to provide a security reduction in this case
since, when an inconsistent ciphertext is queried to the decapsulation oracle,
one cannot always extract a key uniformly distributed in the simulation.

Thus, an interesting open problem is how to construct a PKE scheme that
is more efficient than the PKE schemes based on the KD-KEM or the dual
KD-KEM.

Acknowledgement. The authors are grateful to Eike Kiltz for his suggestions
of improvement on an earlier version of this paper. The authors also thank
the anonymous referees of ACNS ’09 for their valuable comments. The first,
third and fourth authors are partially supported by the European Union project
SMEPP-033563. The second author is partially supported by ARC Discovery
Grant DP0877123.

References

1. Abe, M., Genaro, R., Kurosawa, K.: Tag-KEM/DEM: A New Framework for Hy-
brid Encryption and A New Analysis of Kurosawa-Desmedt KEM, Cryptology
ePrint Archive, Report 2005/027 (2005) (Last update: 11 October 2006)

2. Avanzi, R.M.: The Complexity of Certain Multi-Exponentiation Techniques in
Cryptography. Journal of Cryptology 18(4), 357–373 (2005)

3. Baek, J., Galindo, D., Susilo, W., Zhou, J.: Constructing Strong KEM from Weak
KEM (or How to Revive the KEM/DEM Framework). In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 358–374. Springer, Heidelberg
(2008)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among Notions
of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

6. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: ACM-CCS 1993, pp. 62–73. ACM Press, New York (1993)

7. Bernstein, D.J.: Pippenger’s Exponentiation Algorithm (preprint) (2002),
http://cr.yp.to

8. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008); full version available on Cryptology ePrint Archive: Report
2008/067

9. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

10. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal of
Computing 33, 167–226 (2003)

http://cr.yp.to

154 J. Baek et al.

11. Dolev, D., Dwork, C., Naor, M.: Non-malleable Cryptography. In: STOC 1991, pp.
542–552. ACM Press, New York (1991)

12. Gennaro, R., Shoup, V.: A Note on An Encryption Scheme of Kurosawa and
Desmedt, Cryptology ePrint Archive, Report 2004/294 (2004)

13. Herranz, J., Hofheinz, D., Kiltz, E.: The Kurosawa-Desmedt Key Encapsulation is
not Chosen-Ciphertext Secure,Cryptology ePrint Archive, Report 2006/207 (2006)

14. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

15. ISO 18033-2, An Emerging Standard for Public-Key Encryption (2004)
16. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed

Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282–297. Springer, Heidelberg (2007)

17. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

18. Lu, X., Lai, X., He, D.: Improved efficiency of Kiltz07-KEM, Cryptology ePrint
Archive, Report 2008/312 (2008)

19. Möller, B., Rupp, A.: Faster Multi-Exponentiation through Caching: Accelerating
(EC)DSA Signature Verification. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 39–56. Springer, Heidelberg (2008)

20. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: STOC 1990, pp. 427–437. ACM Press, New York (1990)

21. Phong, L.T., Ogata, W.: On Some Variations of Kurosawa-Desmedt Public-Key
Encryption Scheme. IEICE Transactions 90-A(1), 226–230 (2007)

22. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (version
2.1), ISO/IEC JTC 1/SC 27 (2001)

A An Efficient Variant of Our KEM Scheme

Description. Adopting the techniques in [10,21], one can design an efficient vari-
ant of our KEM scheme, which we denote by “Π̃”, as follows.

Key Generation: Pick a group G of prime order q and generator g1 of G.
Pick a target-collision resistant hash function H : {0, 1}∗ → Z

∗
q and a key

derivation function KDF. Then choose (w, x, y) ∈ Z
3
q at random and compute

g2 = gw
1 , c = gx

1 , d = gy
1 .

Return public key pk = (G, q, g1, g2, c, d,H,KDF) and private key sk =
(pk, x, y, w).
Encapsulation: Pick r ∈ Z

∗
q at random. Compute

u1 = gr
1, u2 = gr

2 , α = H(u1, u2), v = crdrα, K = KDF(u1, c
r).

Return ciphertext ψ = (u1, u2, v) and key K.
Decapsulation: Upon receiving ψ = (u1, u2, v), compute

α = H(u1, u2), u′2 = uw
1 , v′ = ux+yα

1 , K = KDF(u1, u
x
1).

If u′2 = u2 and v′ = v then return K; otherwise, return ⊥.

A New Variant of the Cramer-Shoup KEM Secure against CCA 155

The above scheme is also CCA-secure. Regarding this, we prove the following
theorem.

Theorem 2. If the KEM scheme Π (described in Section 3) is CCA-secure then
the above KEM scheme Π̃ is CCA-secure. More precisely, we have

AdvCCA
Π̃

(λ) ≤ AdvCCA
Π (λ) +

qD
q
.

where λ denotes the security parameter and qD is the number of queries to the
decapsulation oracle.

Proof. Fix an attacker A for the scheme Π . Also, fix an attacker Ã for the
scheme Π̃ .

Assume that A is provided with the public key pk = (G, q, g1, g2, c, d) and the
private key sk = (pk, x1, x2, y1, y2), where g1 and g2 are generators of G and c =
gx1
1 gx2

2 and d = gy1
1 g

y2
2 . A simply gives Ã pk as the public key of the schemeΠ . A

sets g2 = gw
1 for some w ∈ Zq, x = x1+wx2 and y = y1+wy2. (Note that A does

not the value w.) Since c = gx1
1 gx2

2 = gx1+wx2
1 = gx, d = gy1

1 g
y2
2 = gy1+wy2

1 = gx

by definition of w and (x, y), the public key pk is distributed identically in both
A and Ã’s view.

When Ã queries a ciphertext ψ = (u1, u2, v) to the decapsulation oracle in the
find stage, A forwards it to its decapsulation oracle, gets a decapsulation result
and sends it back to Ã.

Sometime later, A gets a challenge ciphertext and a key pair (ψ∗=(u∗1, u
∗
2, v

∗),
Kβ), where β ∈ {0, 1} is chosen at random, and forwards the pair to Ã as a
challenge ciphertext of the scheme Π̃ and a key.

When Ã queries a ciphertext ψ = (u1, u2, v) to the decapsulation oracle in
the guess stage, A forwards it to its decapsulation oracle, gets a decapsulation
result and sends it back to Ã.

When Ã outputs its guess, A outputs it as its guess.
We compute the probability that an invalid ciphertext ψ = (u1, u2, v), which

should have been rejected, is accepted by the simulated decapsulation oracle.
Since we have assumed that ψ = (u1, u2, v) is invalid, the condition [(uw

1 �=
u2) ∧ (ux+yα

1 = v)] or [(uw
1 = u2) ∧ (ux+yα

1 �= v)] or [(uw
1 �= u2) ∧ (ux+yα

1 �= v)]
holds. However, if the last two conditions held, the simulated decapsulation
oracle would reject ψ. Hence the first condition [(uw

1 �= u2) ∧ (ux+yα
1 = v)] must

hold when invalid ψ is not rejected by the simulated decapsulation oracle. Note
that uw

1 �= u2 means r1 �= r2 where r1 = logg1
u1 and r2 = logg1

u2. Note also
that since x = x1 + wx2 and y = xy + wy2, u

x+yα
1 = v is equivalent to

[r1{(x1 + wx2) + (y1 + wy2)α}] mod q
= [r1(x1 + y1α) + r2w(x2 + y2α)] mod q
⇐⇒ w(r1 − r2)(x1 + wy2) = 0 mod q.

As r1 �= r2 by the assumption and w �= 0 mod q, the above equation holds with
probability 1/q, which is negligible. Hence we get the bound in the theorem
statement.

	A New Variant of the Cramer-Shoup KEM Secure against Chosen Ciphertext Attack
	Introduction
	Preliminaries
	The Proposed Variant of the Cramer-Shoup KEM
	Comparisons
	Conclusion
	References
	A An Efficient Variant of Our KEM Scheme

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

