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Abstract. We enrich the classical notion of group key exchange (GKE) protocols
by a new property that allows each pair of users to derive an independent peer-
to-peer (p2p) key on-demand and without any subsequent communication; this,
in addition to the classical group key shared amongst all the users. We show that
GKE protocols enriched in this way impose new security challenges concerning
the secrecy and independence of both key types. The special attention should be
paid to possible collusion attacks aiming to break the secrecy of p2p keys possibly
established between any two non-colluding users.

In our constructions we utilize the well-known parallel Diffie-Hellman key
exchange (PDHKE) technique in which each party uses the same exponent for
the computation of p2p keys with its peers. First, we consider PDHKE in GKE
protocols where parties securely transport their secrets for the establishment of
the group key. For this we use an efficient multi-recipient ElGamal encryption
scheme. Further, based on PDHKE we design a generic compiler for GKE proto-
cols that extend the classical Diffie-Hellman method. Finally, we investigate pos-
sible optimizations of these protocols allowing parties to re-use their exponents
to compute both group and p2p keys, and show that not all such GKE protocols
can be optimized.

1 Introduction

Traditional group key exchange (GKE) protocols allow users to agree on a secret group
key and are fundamental for securing applications that require group communication.
However, messages authenticated or encrypted with the group key attest only that the
originator of the message is a valid member of the group. The goal of this paper is
to investigate the enrichment of GKE protocols with the additional derivation of peer-
to-peer (p2p) keys for any pair of users. A single run of a GKE protocol enriched in
this way would suffice to set up a secure group channel providing possibly each pair
of users with an independent secure peer-to-peer channel “for free”, thus implicitly al-
lowing for a secure combination of group and p2p communication. Note that messages
authenticated or encrypted with a p2p key would attest not only the group membership
but also allow for the identification of the sender. For example, in digital conferences or
instant messaging systems each user can participate in a secure group discussion and if
necessary switch for a while to a secure bilateral discussion with some other user; or a

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 1–19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 M. Manulis

user can encrypt some file for all users using the group key and attach supplementary
files encrypted with p2p keys for the selected subset of its peers.

Obviously, the simultaneous computation of group and p2p keys can be achieved
through the execution of a GKE protocol in parallel with the execution of a two-party
key exchange (2KE) protocol between every pair of users. The drawback of this ap-
proach is that it would require (n2 − n)/2 parallel 2KE executions in order to provide
each pair with the own key (where n is the number of users). The only way to avoid
such parallel 2KE executions is to consider solutions where p2p keys are computed
on-demand; we denote such GKE protocols by GKE+P.

A rather naïve construction of GKE+P protocols can be obtained from the execu-
tion of a GKE protocol followed by a separate execution of a 2KE protocol between
some pair of users. The drawback of this solution is the additional interaction for the
computation of p2p keys (in the worst case requiring up to n − 1 different 2KE proto-
col runs involving the same user) and the deployment of two different protocols (GKE
and 2KE). Therefore, since GKE participants already interact to establish the group
key it appears interesting to investigate whether GKE+P protocols can be constructed
enabling the completely non-interactive derivation of p2p keys?

GKE+P protocols raise new security challenges concerning the independence of
group and p2p keys. Traditional GKE protocols require that a session group key re-
mains secret from any adversary that is an external entity to that session. In GKE+P
protocols this requirement should hold even in case where p2p keys leak. By the same
token GKE+P protocols should provide secrecy of the p2p keys computed in some ses-
sion independent of whether the adversary learns the group key or not. However, the
most significant challenge specific to GKE+P protocols results from the independence
amongst different p2p keys computed in the same session and even by the same user
(for different peers). In particular GKE+P protocols should provide secrecy of some
session p2p key if other participants that are not intended to compute that key collude.
Thus, when defining the secrecy of some session p2p key we should no longer assume
that the adversary remains an external entity to that session but rather that it may act on
behalf of colluding participants and thus deviate from the protocol specification.

Specification of the appropriate security requirements and efficient, provably secure
solutions for GKE+P protocols represents the main focus of our work.

1.1 Related Work

The basic security goal of any key exchange protocol is called (Authenticated) Key
Exchange security ((A)KE-security, for short) and deals with the secrecy or indistin-
guishability of the established session group key with respect to an (active) adversary
which is usually modeled as an external entity from the perspective of the attacked ses-
sion. This requirement became an inherent part of all security models for 2KE protocols,
e.g. [3,5,6,7,17,18,19,34,38], and GKE protocols, e.g. [10,11,13,15,28,29]. A general
signature-based compilation technique proposed by Katz and Yung [29] can turn any
KE-secure (group) key exchange protocol into an AKE-secure one, thus by adding the
authentication and thwarting possible impersonation attacks. Additionally, we remark
that some of the mentioned security models for GKE protocols (e.g. [12, 13, 28]) aim
at defining optional security against insider attacks, and the corresponding compilers
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defined in these papers can turn any AKE-secure GKE protocol into a protocol that
withstands such attacks. These compilers also provide the so-called requirement of mu-
tual authentication (MA) [7, 11, 15], which ensures the bilateral authentication of all
protocol participants and is usually combined with a key confirmation step.

From the variety of the existing GKE protocols (see [9, 35] for surveys) of special
interest in the context of our GKE+P constructions are the (unauthenticated) exten-
sions of the classical 2KE approach by Diffie and Hellman [21] to a group setting,
e.g. [16, 20, 24, 31, 32, 37, 39, 40]. Let us denote all these protocols for simplicity as
Group Diffie-Hellman (GroupDH) protocols since they derive the group key from some
shared secret which in turn depends on the individual exponents chosen by the pro-
tocol participants during the execution. For the design of GKE+P protocols it appears
promising to investigate to what extent the existing GroupDH protocols allow for the
non-interactive, on-demand computation of p2p keys, in particular whether or not secret
exponents used in these GroupDH protocols can be safely re-used for the computation
of p2p keys.

GKE protocols proposed in [1, 36] are partially related since they consider a 2KE
protocol as a building block in order to obtain a secure GKE protocol, yet without
enabling on-demand computation of p2p keys amongst any pair of users. Also, the so-
called group secret handshakes [25, 26] should be noticed since these can be seen as
extensions of GKE protocols with another property called affiliation-hiding. We men-
tion them here since the on-demand computation of p2p keys can be also considered in
that scenarios (in particular our results can be extended to deal with [25] that is based
on the GKE protocol from [16]).

One of the main building blocks across all our GKE+P constructions is the parallel
execution of the 2KE Diffie-Hellman protocol (PDHKE), in which each user broadcasts
a value of the form gx (for the appropriate generator g and private user’s exponent
x) and uses x for the computation of different p2p keys. In this context, Jeong and
Lee [27] recently specified and analyzed a related mechanism where keys are derived
in parallel from ephemeral and long-lived exponents. However, their security model
does not consider collusion attacks against the secrecy of p2p keys computed by non-
colluding users. Note also the recent work by Biswas [8] who revised the 2KE Diffie-
Hellman protocol allowing its participants to choose two different exponents each and
obtain 15 different shared keys.

1.2 Contributions and Organization

We start in Section 2 with the extension of the classical GKE security model from [29]
in order to address the additional challenges of GKE+P protocols and define the cor-
responding requirements of (A)KE-security of group and p2p keys; the latter in the
presence of collusion attacks. Our model is designed in a modular way and can be se-
lectively applied to GKE+P and GKE protocols, and also to the protocols like PDHKE.
In Section 3 we introduce general notations and recall some classical assumptions.

In Section 4 we present and analyze our first GKE+P protocol, denoted PDHKE-
MRE. In this protocol we merge PDHKE with the multi-recipient ElGamal encryption
(MRE) from [4, 33]. PDHKE-MRE optimizes the combination of PDHKE and MRE
in that it utilizes user’s exponent for both — generation of p2p keys and decryption of
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ElGamal ciphertexts. This optimization is tricky (compared to the simple “black-box”
combination) since it requires an additional hardness assumption. Our security analysis
of PDHKE-MRE also demonstrates that PDHKE can be used as a stand-alone protocol
to obtain KE-secure p2p keys in the presence of collusion attacks.

In Section 5 we obtain more efficient GKE+P protocols from GroupDH protocols
(see related work for examples). First, we describe a general compilation technique to
obtain GKE+P solutions from any GroupDH protocol based on PDHKE, yet assuming
that the exponents used for the derivation of p2p keys are independent from those used
in the computation of the group key. Additionally, we investigate whether private expo-
nents that are implicit to the GroupDH protocols can be re-used for the on-demand com-
putation of p2p keys. The key observation here is that many GroupDH protocols require
each user Ui to choose some exponent xi and broadcast a public value gxi . The natural
question is whether a value gxixj , if computed from the exponents xi and xj used in the
GroupDH protocol, would be suitable for the derivation of a secure p2p key between Ui

and Uj? In this light we analyze the well-known communication-efficient protocols by
Burmester and Desmedt (BD) [16] and by Kim, Perrig, and Tsudik (KPT) [31] (the lat-
ter as a representative for the family of Tree Diffie-Hellman protocols). We show that in
the BD protocol this technique will not guarantee the KE-security of p2p keys, whereas
in the KPT protocol it will, though at the cost of an additional hardness assumption.
The latter result is of special interest since we do not introduce any new communication
costs to the KPT protocol.

In Section 6, we compare the performance of the introduced GKE+P protocols.
In Section 7 we show that the authentication compiler introduced in [29] for securing

traditional KE-secure GKE protocols is also sufficient for adding the authentication to
KE-secure GKE+P protocols.

2 Security Model for GKE+P Protocols

Our security model for GKE+P protocols extends the meanwhile standard GKE security
model from [29] by capturing the additional requirements concerning the on-demand
computation of p2p keys.

2.1 Participants, Sessions, and Correctness of GKE+P Protocols

By U we denote a set of at most N users (more precisely, their identities which are as-
sumed to be unique) in the universe. Any subset of n users (2 ≤ n ≤ N ) can participate
in a single session of a GKE+P protocol P . Each Ui ∈ U holds a (secret) long-lived
key LLi.1 The participation of Ui in distinct, possibly concurrent protocol sessions is
modeled via an unlimited number of instances Πs

i , s ∈ N. Each instance Πs
i can be

invoked for one session with some partner id pids
i ⊆ U encompassing the identities of

the intended participants (including Ui). At the end of the interactive phase Πs
i holds

1 Our GKE+P protocols are first analyzed in the authenticated links model where long-lived
keys are assumed to be empty. The authentication in GKE+P protocols using the compiler
technique from [29] that we discuss in Section 7 will assume that each LLi corresponds to
some digital signature key pair.
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a session id sids
i which uniquely identifies the session. Two instances Πs

i and Πt
j are

considered as partnered if sids
i = sidt

j and pids
i = pidt

j . The success of the inter-
active phase by some instance Πs

i is modeled through its acceptance, in which case
the instance holds a session group key ks

i . Each instance Πs
i that has accepted can later

decide to compute a session p2p key ks
i,j for some user Uj ∈ pids

i . We are now ready
to formally define what a GKE+P protocol is.

Definition 1 (GKE+P Protocol and Correctness). P is a group key exchange proto-
col enabling on-demand derivation of p2p keys (GKE+P) if P consists of the group key
exchange protocol GKE and a p2p key derivation algorithm P2P defined as follows:

P .GKE(U1, . . . , Un): For each input Ui a new instance Πs
i is created and a proba-

bilistic interactive protocol between these instances is executed such that at the end
every instance Πs

i accepts holding the session group key ks
i .

P .P2P(Πs
i , Uj): On input an accepted instance Πs

i and some user identity Uj ∈ pids
i

this deterministic algorithm outputs the session p2p key ks
i,j . (We assume that P2P

is given only for groups of size n ≥ 3 since for n = 2 the group key is sufficient.)

A GKE+P protocol P is correct if (when no adversary is present) all instances partici-
pating in the protocol P .GKE accept with identical group keys and P .P2P(Πs

i , Uj) =
P .P2P(Πt

j , Ui) holds for any pair of partnered instances Πs
i and Πt

j .

2.2 Adversarial Model and Security Goals

Security model for GKE+P protocols must address the following two challenges that are
new compared to the classical GKE setting: The first challenge is to model the secrecy
of a session group key ks

i by taking into account possible leakage of any p2p key that
can be computed in that session (including all ks

i,j). Since for the secrecy of the session
group key the adversary is treated as an external entity and not as a legitimate participant
of that session our model should provide the adversary with the ability to schedule the
on-demand computation of p2p keys and to reveal them. The second, main challenge
is to model the secrecy of a session p2p key ks

i,j by taking into account the leakage of
the group key and also the leakage of other p2p keys computed in that session (with
the obvious exclusion of kt

j,i when Πs
i and Πt

j are partnered). Note that the secrecy of
p2p keys does not require the adversary to be an external entity (unlike the secrecy of
the group key). Hence, we have to face possible collusion attacks aiming to break the
secrecy of ks

i,j and allow for the active participation of the adversary in the attacked
session.

ADVERSARIAL MODEL. The adversary A, modeled as a PPT machine, can schedule
the protocol execution and mount own attacks via the following queries:

– Execute(U1, . . . , Un): This query executes the protocol between new instances of
U1, . . . , Un ∈ U and provides A with the execution transcript.

– Send(Πs
i , m) : With this query A can deliver a message m to Πs

i whereby U
denotes the identity of its sender. A is then given the protocol message generated
by Πs

i in response to m (the output may also be empty if m is unexpected or if Πs
i
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accepts). A special invocation query of the form Send(Ui, (′start′, U1, . . . , Un))
creates a new instance Πs

i with pids
i := {U1, . . . , Un} and provides A with the

first protocol message.
– Peer(Πs

i , Uj): This query allows A to schedule the on-demand computation of p2p
keys. In response, Πs

i computes ks
i,j ; the query is processed only if Πs

i has accepted
and Uj ∈ pids

i , and it can be asked only once per input (Πs
i , Uj).

– Reveal(Πs
i ): This query models the leakage of group keys and provides A with ks

i .
It is answered only if Πs

i has accepted.
– RevealPeer(Πs

i , Uj): This query models the leakage of p2p keys and provides A
with ks

i,j ; the query is answered only if Peer(Πs
i , Uj) has already been asked and

processed.
– Corrupt(Ui): This query provides A with LLi. Note that in this case A does not

gain control over the user’s behavior, but might be able to communicate on behalf
of the user.

– Test(Πs
i ): This query models indistinguishability of session group keys. Depending

on a given (privately flipped) bit b A is given, if b = 0 a random session group key,
and if b = 1 the real ks

i . This query can be asked only once and is answered only if
Πs

i has accepted.
– TestPeer(Πs

i , Uj): This query models indistinguishability of session p2p keys. De-
pending on a given (privately flipped) bit b A is given, if b = 0 a random session
p2p key, and if b = 1 the real ks

i,j . It is answered only if Peer(Πs
i , Uj) has been

previously asked and processed.

TERMINOLOGY. We say that U is honest if no Corrupt(U) has been asked by A; oth-
erwise, U is corrupted (or malicious). This also refers to the instances of U .

TWO NOTIONS OF FRESHNESS. The classical notion of freshness imposes several
conditions in order to prevent any trivial break of the (A)KE-security. Obviously, we
need two definitions of freshness to capture such conditions for the both key types.

First, we define the notion of instance freshness which will be used in the definition
of (A)KE-security of group keys. Our definition is essentially the one given in [29].

Definition 2 (Instance Freshness). An instance Πs
i is fresh if Πs

i has accepted and
none of the following is true, whereby Πt

j denotes an instance partnered with Πs
i : (1)

Reveal(Πs
i ) or Reveal(Πt

j) has been asked, or (2) Corrupt(U ′) for some U ′ ∈ pids
i

was asked before any Send(Πs
i , ·).

Note that in the context of GKE+P the above definition restricts A from active partic-
ipation on behalf of any user during the attacked session, but implicitly allows for the
leakage of (all) p2p keys.

Additionally, we define the new notion of instance-user freshness which will be used
to specify the (A)KE-security of p2p keys.

Definition 3 (Instance-User Freshness). An instance-user pair (Πs
i , Uj) is fresh if

Πs
i has accepted and none of the following is true, whereby Πt

j denotes an instance
partnered with Πs

i : (1) RevealPeer(Πs
i , Uj) or RevealPeer(Πt

j , Ui) has been asked, or
(2) Corrupt(Ui) or Corrupt(Uj) was asked before any Send(Πs

i , ·) or Send(Πs
j , ·).
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Here A is explicitly allowed to actively participate in the attacked session on behalf of
any user except for Ui and Uj . Also A may learn the group key ki and all p2p keys
except for ki,j . This models possible collusion of participants during the execution of
the protocol aiming to break the secrecy of the p2p key ks

i,j .

(A)KE-SECURITY OF GROUP AND P2P KEYS. For the (A)KE-security of group keys
we follow the definition from [29]. Note that in case of KE-security A is restricted to
pure eavesdropping attacks via the Execute query without being able to access the Send
queries.

Definition 4 ((A)KE-Security of Group Keys). Let P be a correct GKE+P protocol
and b a uniformly chosen bit. By Game(a)ke-g,b

A,P (κ) we define the following adversarial
game, which involves a PPT adversary A that is given access to all queries (except for
Send when dealing with KE-security):

– A interacts via queries;
– at some point A asks a Test(Πs

i ) query for some instance Πs
i which is (and re-

mains) fresh;
– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define: Adv
(a)ke-g
A,P (κ) :=

∣
∣
∣2 Pr[Game

(a)ke-g,b
A,P (κ) = b] − 1

∣
∣
∣

and denote with Adv
(a)ke-g
P (κ) the maximum advantage over all PPT adversaries A. We

say that P provides (A)KE-security of group keys if this advantage is negligible.

Finally, we define (A)KE-security of p2p keys where we must consider possible collu-
sion attacks. For this it is essential to allow A access to Send queries, even in the case
of KE-security. The difficulty is that given general access to Send queries A can triv-
ially impersonate any protocol participant. Hence, when dealing with KE-security of
p2p keys we must further restrict A to truly forward all messages sent by honest users.
According to our definition of instance-user freshness of (Πs

i , Uj) this restriction will
imply an unbiased communication between the instances of Ui and Uj .

Definition 5 ((A)KE-security of P2P Keys). Let P be a correct GKE+P protocol and
b a uniformly chosen bit. By Game(a)ke-p,b

A,P (κ) we define the following adversarial game,
which involves a PPT adversaryA that is given access to all queries (with the restriction
to truly forward all messages of honest users in case of KE-security):

– A interacts via queries;
– at some point A asks a TestPeer(Πs

i,Uj) query for some instance-user pair (Πs
i,Uj)

which is (and remains) fresh;
– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define: Adv(a)ke-p
A,P (κ) :=

∣
∣
∣2 Pr[Game(a)ke-p,b

A,P (κ) = b] − 1
∣
∣
∣

and denote with Adv(a)ke-p
P (κ) the maximum advantage over all PPT adversaries A. We

say that P provides (A)KE-security of p2p keys if this advantage is negligible.
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3 General Notations and Preliminaries

Throughout the paper, unless otherwise specified, by G := 〈g〉 we denote a cyclic
subgroup in Z

∗
P of prime order Q|P − 1 generated by g, where P is also prime.

By Hg, Hp : {0, 1}∗ → {0, 1}κ we denote two cryptographic hash functions, which
will be used in our constructions for the purpose of derivation of group and p2p keys,
respectively. Additionally, we recall the following three well-known cryptographic
assumptions:

Definition 6 (Hardness Assumptions). Let G := 〈g〉 as above and a, b, c ∈R ZQ. We
say that:
The Discrete Logarithm (DL) problem is hard in G if the following success probability
is negligible:

SuccDLG (κ) := max
A′

(

Pr
a

[A′(g, ga) = a
])

;

The Decisional Diffie-Hellman (DDH) problem is hard in G = 〈g〉 if the following
advantage is negligible:

AdvDDHG (κ) := max
A′

∣
∣ Pr

a,b

[A′(g, ga, gb, gab) = 1
] − Pr

a,b,c

[A′(g, ga, gb, gc) = 1
]∣
∣;

The Square-Exponent Decisional Diffie-Hellman (SEDDH) problem is hard in G
2if the

following advantage is negligible:

AdvSEDDHG (κ) := max
A′

∣
∣ Pr

a

[A′(g, ga, ga2
) = 1

] − Pr
a,b

[A′(g, ga, gb) = 1
]∣
∣.

Note that SuccDLG (κ), AdvDDHG (κ), and AdvSEDDHG (κ) are computed over all PPT adver-
saries A′ running within time κ.

4 Optimized PDHKE-MRE

Here we introduce our first GKE+P protocol, called PDHKE-MRE. The optimization
concerns the utilization of each xi ∈ ZQ as a private decryption key for the multi-
recipient ElGamal encryption [4, 33] and as a secret exponent for the computation of
p2p keys via PDHKE. Note that PDHKE-MRE can be generalized by applying other
multi-recipient public key encryption schemes [4]. However, in this case our optimiza-
tion may no longer hold.

4.1 Parallel Diffie-Hellman Key Exchange (PDHKE)

Assuming that users interact over the authenticated channels we define PDHKE as fol-
lows (we describe all our protocols from the perspective of one session using the iden-
tities of users and not their instances):

Round 1. Each Ui chooses a random xi ∈R ZQ and broadcasts yi := gxi .

2 Wolf [41] showed that SEDDH is reducible to DDH and that the converse does not hold.
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P2P key computation. Each Ui for a given identity Uj computes k′
i,j := gxixj and

derives ki,j := Hp(k′
i,j , Ui|yi, Uj |yj). W.l.o.g. we assume that i < j and that if Uj

computes own p2p key for Ui it uses the same order for the inputs of Hp as Ui does.

A special attention in PDHKE should be paid to the key derivation step based on Hp. Note
that in the random oracle model this construction ensures the independence of different
p2p keys (possibly computed by the same Ui for different Uj). The reason is that if Ui is
honest then the hash input remains unique for each derived p2p key (due to the uniqueness
of Ui|yi across different sessions and the uniqueness of each Uj within the same session).
The uniqueness of hash inputs is of importance. Assume, that ki,j would be derived as
Hp(k′

i,j). In this case A may impose dependency between k′
i,j and k′

i,a for some user Ua

that it may control, e.g. by using ya = yj . With this simple attackA cannot compute k′
i,a

due to the lack of xa = xj but it can easily distinguish ki,j by obtaining ki,a (which would
then be equal to ki,j) via an appropriate RevealPeer query to an instance of honest Ui.

4.2 Multi-Recipient ElGamal Encryption (MRE)

In the classical ElGamal encryption [23] a message m ∈ G is encrypted under the
recipient’s public key y = gx through the computation of the ciphertext (gr, yrm)
using some random r ∈R ZQ. A multi-recipient ElGamal encryption (MRE) [33, 4]
re-uses the random exponent r for the construction of ciphertexts of several messages
m1, . . . , mn under several public keys y1 = gx1 , . . . , yn = gxn , i.e., by computa-
tion of (gr, yr

1m1, . . . , y
r
nmn). However, in PDHKE-MRE we will be encrypting the

same message m = m1 = . . . = mn. For this case [33] defines a computation-efficient
MRE version where the ciphertext has the form (mgr, yr

1 , . . . , y
r
n). Obviously, this tech-

nique results in shorter ciphertexts should a single protocol message contain ciphertexts
for multiple recipients. Informally, the IND-CPA security of MRE means that any en-
crypted plaintext remains indistinguishable, even if the adversary is in possession of
the secret keys {xj}j �=i. This has been proven in [33] (and also in [4] under a stronger
setting) based on the DDH assumption.

4.3 Description of PDHKE-MRE

Our optimization in PDHKE-MRE is based on the idea to re-use the same exponent
xi for both — derivation of p2p keys from k′

i,j = gxixj and decryption of {x̄j}j .
The protocol PDHKE-MRE.GKE amongst a set of n users U1, . . . , Un proceeds in two
rounds:

Round 1. Each Ui chooses a random xi ∈R ZQ and broadcasts yi := gxi .
Round 2. Each Ui chooses random x̄i ∈R G, ri ∈R ZQ, computes zi := x̄ig

ri and
{zi,j := yri

j }j and broadcasts (zi, {zi,j}j).

Group key computation. Each Ui decrypts

{

x̄j := zj

z
(1/xi)
j,i

}

j

and accepts with ki :=

Hg(x̄1, . . . , x̄n, sidi) where sidi := (U1|y1, . . . , Un|yn).

The algorithm PDHKE-MRE.P2P when executed by some user Ui for a peer Uj com-
putes k′

i,j := gxixj and outputs ki,j := Hp(k′
i,j , Ui|yi, Uj |yj) whereby the inputs Ui|yi
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and Uj |yj are taken from sidi. W.l.o.g. we assume that i < j and that Uj will use the
same order for the inputs to Hp in the computation of kj,i.

4.4 Security Analysis of PDHKE-MRE

Although the stand-alone security of MRE can be proven under the DDH assumption,
its optimized merge with PDHKE requires the additional use of the SEDDH assumption
for the proof of KE-security of group keys as motivated in the following.

The natural way to prove the IND-CPA security of MRE under the DDH assumption
would be to simulate yj = gaαj , zi = x̄ig

bβi , and each zi,j = gabαjβi , where ga and
gb belong to the DDH tuple and αj , βi ∈R ZQ (observe that the DDH problem is self-
reducible). However, in PDHKE-MRE this simulation would also mean that yi = gaαi

for some αi ∈R ZQ and possibly imply gxixj = ga2αiαj upon the simulation of p2p
keys, which in turn involves ga2

from the SEDDH tuple.

Theorem 1. If both problems DDH and SEDDH are hard in G then PDHKE-MRE
provides KE-security of group keys and

Adv
ke-g
PDHKE-MRE(κ)≤ 2(N(qEx + qSe)2 + qHg)

Q
+

(qHg + qHp)2

2κ−1

+2NAdvSEDDHG (κ)+2N(N−1)AdvDDHG (κ)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at
most qHg and qHp random oracle queries being asked.

Since secret contributions x̄i used in the computation of the group key are independent
from the secret exponents xi we can prove that PDHKE-MRE provides KE-security of
p2p keys based on the DDH assumption.

Theorem 2. If the DDH problem is hard in G then PDHKE-MRE provides KE-security
of p2p keys and

Advke-p
PDHKE-MRE(κ) ≤ N(2(qEx + qSe)2 + qSeqHp)

Q
+

(qHg + qHp)2

2κ−1
+ NqSeAdvDDHG (κ)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at
most qHg and qHp random oracle queries being asked.

4.5 On Security of PDHKE as a Stand-Alone Protocol

The result of Theorem 2 allows us to derive the following corollary, which is of inde-
pendent interest since it addresses security of PDHKE as a stand-alone protocol.

Corollary 1. If the DDH problem is hard in G then PDHKE as defined in Section 4.1
guarantees the KE-security of p2p keys in the random oracle model in the sense of
Definition 5.3

3 Observe that our security model can be used to deal with PDHKE as a stand-alone protocol
assuming that in the execution of PDHKE instances accept with empty group keys. In this
case all parts of the model that explicitly deal with the computation and security of group keys
become irrelevant.
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4.6 Performance Limitations of PDHKE-MRE

The drawback of PDHKE-MRE despite of our optimizations is the quadratic communi-
cation complexity, i.e. the total number of bits communicated throughout the protocol
and usually measured in the size of group (or public key) elements [29]. This complex-
ity is due to the rather naïve secure transport of each x̄i for the computation of the group
key. Note that the linear communication complexity of PDHKE used to compute p2p
keys is already optimal since each user has to broadcast at least one message in order to
contribute to the on-demand computation of its p2p keys.

Therefore, we will try to replace the computation of the group key via MRE with an
alternative process, while preserving the computation of p2p keys based on PDHKE.
Since PDHKE derives p2p keys from Diffie-Hellman secrets it appears promising to
search for alternative candidates amongst the family of GroupDH protocols, i.e. GKE
protocols that extend the original Diffie-Hellman method.

5 GKE+P Protocols from Group Diffie-Hellman Protocols

We start by describing a generic solution that would convert any secure GroupDH pro-
tocol into a secure GKE+P protocol. Then, we address possible optimization issues.

5.1 GKE+P Compiler Based on PDHKE

Let us first capture the similarities between different GroupDH protocols by providing
a generalized definition of what a GroupDH protocol should mean (we define from the
perspective of one session).

Definition 7 (GroupDH Protocols). A GroupDH protocol is a GKE protocol amongst
n users U1, . . . , Un such that during its execution each user Ui chooses own exponent
xi ∈R ZQ and at the end computes a group element k′

i ∈ G which can be expressed as
the output of f(g, x1, . . . , xn) for some function f : G × Z

n
Q → G which is specific to

the protocol.
We say that a GroupDH protocol is KE-secure if it achieves KE-security of group

keys in the sense of Definition 4 whereby considering k′
i instead of ki and thus requiring

its indistinguishability from some random element in G instead of some random string
in {0, 1}κ.4

The above definition of KE-secure GroupDH protocols already captures many proto-
cols, including those from [16, 20, 24, 31, 32, 37, 39, 40].

The actual generic solution (GKE+P compiler) for obtaining a GKE+P protocol from
such GroupDH protocols is to combine them with PDHKE, while ensuring indepen-
dence between the exponents used in both protocols. More precisely, GKE+P com-
piler requires each user Ui to choose a random exponent x̄i ∈R ZQ and broadcast
ȳi := gx̄i prior to the execution of the given GroupDH protocol. If the GroupDH proto-
col requires each user to broadcast a message in the first round, e.g. [16, 31, 32, 39],
then the compiler can also append ȳi to this first message, without increasing the

4 Note that Definition 4 can be easily adapted by the appropriate modification of the Test query.
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number of rounds. After the GroupDH protocol is executed each Ui holds the secret
group element k′

i. The GKE+P compiler computes sidi := (U1|ȳ1, . . . , Un|ȳn) and
derives the group key ki := Hg(k′

i, sidi). On-demand, the compiler computes any
ki,j := Hp(ȳx̄i

j , Ui|ȳi, Uj |ȳj).
The key derivation is essentially the same as in PDHKE-MRE. The only difference

is that sidi is constructed from ȳi instead of yi = gxi for the exponent xi which is
implicit to the original GroupDH protocol. The reason is that yi may not be available to
all users at the end of the protocol. For example, in [24, 40] only two users U1 and U2

compute such y1 and y2, whereas in [37, 20] each Ui computes yi but sends it only to
some designated subset. Of course, for the latter case it is possible to add a modification
to the original protocol by requiring users to broadcast yi; however, this contradicts to
the idea of a compiler, which takes some protocol as a “black-box”.

The KE-security of group keys output by our compiler follows from the KE-security
of the group elements k′ and can be proven similarly to Theorem 1. Note that the re-
placement of yi with ȳi in the computation of sidi has no impact since also ȳi is
uniformly distributed in G for any honest Ui. Since the exponents xi and x̄i are in-
dependent and values ȳi and ȳj exchanged between any two honest users Ui and Uj

are not modified during the transmission (as required by our model) the KE-security
of computed p2p keys would follow directly from Corollary 1. We omit the detailed
analysis of the GKE+P compiler, which seems fairly natural.

Instead, we focus on the next challenge and investigate whether GroupDH protocols
can be merged with PDHKE in order to obtain possibly more efficient GKE+P proto-
cols than those given by our generic compiler. Can we find suitable GroupDH protocols
where the implicitly used exponents x1, . . . , xn can be safely re-used for the com-
putation of p2p keys? Intuitively, this question should be answered separately for each
GroupDH protocol. Due to space limitations, we restrict our analysis to two well-known
protocols from [16] and [31] that implicitly require each Ui to broadcast yi := gxi and
so seem suitable at first sight for the merge with PDHKE.

5.2 PDHKE-BD Is Insecure

The Burmester-Desmedt (BD) protocol from [16] is one of the best known unauthenti-
cated GroupDH protocols. It has been formally proven KE-secure under the DDH as-
sumption in [29]. Its technique has influenced many GKE protocols, including [30, 2].
The BD protocol arranges participants U1, . . . , Un into a cycle, and requires two com-
munication rounds:

Round 1. Each Ui broadcasts yi := gxi for some random xi ∈R ZQ.
Round 2. Each Ui broadcasts zi := (yi+1/yi−1)xi (the indices i form a cycle, i.e.

0 = n and n + 1 = 1).

This allows each Ui to compute the secret group element

k′
i := (yi−1)nxi · zn−1

i · zn−2
i+1 · · · zi+n−2 = gx1x2+x2x3+...+xnx1 .

At first sight, BD suits for the merge with PDHKE, i.e. we would have then k′
i :=

Hg(k′
i, U1|y1, . . . , Un|yn) and any ki,j := Hp(yxi

j , Ui|yi, Uj|yj). Unfortunately, this
merge is insecure. We analyze two distinct cases based on the indices of Ui and Uj .
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CASE Ui AND Ui+1. The attack in this case is trivial since the knowledge of k′ and
the secret exponents of all other colluding users allows to compute gxixi+1 . This would
break the secrecy of the p2p key ki,i+1 when derived using gxixi+1 for any group size
n ≥ 3. Also observe that each Ui sends zi = gxi+1xi−xixi−1 ; thus every Ui−1 can
individually extract gxi+1xi and every Ui+1 is able to compute gxixi−1 , even without
colluding with other users.

CASE Ui AND Uj . In this case we consider ki,j (w.l.o.g. we assume that i < j)
computed for a pair of users that do not have neighbor positions within the cycle, i.e.
j 	= i + 1. We demonstrate that also this key remains insecure if derived using gxixj .
Our attack, which is not as trivial as in the previous case, works because users may col-
lude and misbehave while attacking the secrecy of p2p keys. In particular, we assume
that Ui−2, Ui−1, and Ui+1 collude and their goal is to obtain gxixj upon the successful
execution of the protocol from the perspective of honest Ui and Uj . Due to the collu-
sion of three users the attack works for any group size n > 4. The core of the attack is
to let Ui−1 broadcast yi−1 := yj , which is possible since the communication is asyn-
chronous and A can wait for the protocol message of Uj containing yj ; observe that
xj is chosen by Uj and remains unknown to the colluding users. Other malicious users
Ui−2 and Ui+1 choose their exponents xi−2 and xi+1 truly at random. As a conse-
quence, in the second round honest Ui broadcasts zi = gxi+1xi−xixi−1 = gxi+1xi−xixj .
Then, malicious Ui+1 can extract gxixj := y

xi+1
i /zi. Finally, Ui−1 without knowing

the corresponding exponents xj and xi has to broadcast a value of the form zi−1 =
gxixi−1−xi−1xi−2 = gxixj−xjxi−2 which can be easily done with the assistance of Ui+1

that provides gxixj and of Ui−1 that provides gxjxi−2 = y
xi−2
j . Thus, through their

cooperation malicious users Ui−2, Ui−1, and Ui+1 can extract gxixj for any Uj . The
above attacks works similarly even if Ui−1 re-randomizes yj , i.e. broadcasts yi−1 = yr

j

for some r ∈R ZQ.
This shows that BD cannot be merged with PDHKE in a secure way. Nevertheless,

it can be compiled to a KE-secure GKE+P protocol as discussed in Section 5.1.

5.3 PDHKE-KPT Is Secure

Here we focus on the GKE protocols proposed by Kim, Perrig, and Tsudik [31, 32],
which in turn extend the less efficient construction by Steer et al. [39]. These protocols
belong to a family of the so-called Tree Diffie-Hellman protocols (see also [22,14]). We
analyze whether the protocol from [31], denoted here as KPT, which is more efficient
in communication than [32], can be securely merged with PDHKE.

The KPT protocol requires a special group G = 〈g〉 of prime order Q, which is a
group of quadratic residues modulo a safe prime P = 2Q+1 with the group law defined
as ab := f(ab mod P ) for any a, b ∈ G where f : ZP 
→ ZQ is such that if z ≤ Q
then f(z) := z, otherwise if Q < z < P then f(z) := P − z (see [31, 32, 14] for more
information about G which equals to ZQ as sets). In KPT each Ui derives the secret
group element k′

i within two communication rounds (it is assumed that the sequence
U1, . . . , Un is ordered):
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Round 1. Each Ui broadcasts yi := gxi for some random xi ∈R ZQ.
Round 2. U1 computes and broadcasts (gz2 , . . . , gzn−1) whereby z2 := yx1

2 and each
zi := y

zi−1
i for all i = 3, . . . , n − 1.

This allows each Ui to compute the common secret k′
i := zn as follows.

– U1 computes k′
1 := y

zn−1
n

– each Ui, 2 ≤ i ≤ n − 1 recomputes the subsequence zi, . . . , zn−1 and computes
k′

i := y
zn−1
n ; note that U2 starts with z2 := yx2

1 , whereas Ui, 3 ≤ i ≤ n − 1, starts
with zi := (gzi−1)xi using gzi−1 received from U1.

– Un computes k′
i := (gzn−1)xn using gzn−1 received from U1.

Note that each k′
i has an interesting algebraic structure

k′
i = gxngxn−1g...gx3gx2x1

.

In the following we investigate the possibility of merging KPT with PDHKE, thus using
exponents xi to compute the group key ki := Hg(k′

i, U1|y1, . . . , Un|yn) and any p2p key
ki,j := Hg(k′

i,j , Ui|yi, . . . , Uj|yj) with k′
i,j = gxixj . Our analysis shows that indeed this

construction, which we denote PDHKE-KPT, gives us a KE-secure GKE+P protocol.
Let us first provide some intuition. Note that the only value of the form gxixj which

appears in the computations of KPT is gx1x2 (given by z2). Nevertheless, it will be
computed only by U1 and U2, which is fine since the p2p key should be known only to
these users. Further we observe that the broadcast message of U1 contains gz2 = ggx1x2

and so hides gx1x2 in the exponent (under the hardness of the DL problem). By comput-
ing k1,2 := Hp(gx1x2 , U1|y1, U2|y2) we are able to provide independence between k1,2

and gz2 while working in the random oracle model since the corresponding RevealPeer
query would reveal only k1,2 and not gx1x2 .

We start with the KE-security of group keys. The original KPT protocol has been
proven KE-secure in [31] (see also [14]) under the classical DDH assumption. Briefly,
the proof considers several hybrid games. In the l-th game, 2 ≤ l ≤ n, the simula-
tor embeds a re-randomized DDH tuple (g, ga, gb, gab) to simulate gzl−1 = gaαl−1 ,
yi = gbβl , and zl = gabαl−1βl , such that in the final game the value zn = k′

i is uni-
formly distributed and independent. In general we can apply a similar simulation tech-
nique, however, we should additionally take care of the special dependency z2 = k′

1,2.
The trick is first to obtain a uniform distribution of z2 = k′

1,2 (in G) and its indepen-
dence from y1 and y2 using the above technique and then to compute k1,2 completely
independent from k′

1,2, in which case a reduction to the DL problem becomes possible.

Theorem 3. If both problems DDH and DL are hard in G then PDHKE-KPT provides
KE-security of group keys and

Advke-g
PDHKE-KPT(κ) ≤ 2(N(qEx + qSe)2 + qHg)

Q
+

(qHg + qHp)2

2κ−1

+2(N − 1)AdvDDHG (κ) + 2qHpSuccDLG (κ)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at
most qHg and qHp random oracle queries asked.
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Finally, we prove that on-demand p2p keys computed in PDHKE-KPT are also KE-
secure. In general we can follow the proof of Theorem 2 based on the DDH assumption,
however, we have also to take care of the special case (i, j) = (1, 2). Observe that if
k1,2 becomes a subject of the attack then U1 and U2 must be honest, in which case we
can still apply the above trick.

Theorem 4. If both problems DDH and DL are hard in G then PDHKE-KPT provides
KE-security of p2p keys and

Advke-p
PDHKE-KPT(κ) ≤ N(2(qEx + qSe)2 + qSeqHp)

Q
+

(qHg + qHp)2

2κ−1

+NqSe
(

AdvDDHG (κ) + qHpSuccDLG (κ)
)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at
most qHg and qHp random oracle queries asked.

6 Performance Comparison and Discussion

In Table 1 we present a brief comparison of the complexity of the mentioned GKE+P so-
lutions. We measure the communication costs as a total number of transmitted elements
in G, and computation costs as a number of modular exponentiations per Ui (in the
case of BD we count only exponentiations with xi assuming that |xi| � n). From the
latter we exclude the costs needed to compute a Diffie-Hellman secret k′

i,j that requires
constantly one exponentiation per each Uj . For the GKE+P compiler from Section 5.1
with the prefix ‘+’ we indicate the increase to the original costs of the given GroupDH
protocol when combined with PDHKE; we also mention the compiled GKE+P version
of the BD protocol as a special case. Note that the PDHKE-KPT protocol has asym-
metric costs, depending on the position of Ui in the ordered sequence U1, . . . , Un; this
may have benefits in groups with heterogeneous devices.

Table 1. Communication and Computation Costs of Introduced GKE+P Protocols

GKE+P Protocols Communication (in log Q bits) Computation (in mod. exp. per Ui)

PDHKE-MRE n2 + n 2n

GKE+P compiler +n +1
BD (as a special case) 3n 3

PDHKE-KPT 2n − 2 n + 2 − i (2n − 2 for U1)

From Table 1 we highlight that PDHKE-KPT has better communication complexity
than the compiled version of the BD protocol, but (in general much) worse computa-
tion complexity. The same holds for the original KPT and BD protocols. Therefore,
we do not claim that GroupDH protocols when merged with PDHKE in an optimized
way (via exponent re-use) would result in more efficient constructions compared to
other protocols obtained via our GKE+P compiler. Nevertheless, with PDHKE-KPT we
could show that there exist GKE protocols that provide the property of non-interactive,
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on-demand computation of p2p keys almost “for free” (if one neglects the computation
costs needed for the derivation of keys then the costs of PDHKE-KPT from Table 1 are
identical to those of KPT).

7 Adding Authentication to GKE+P Protocols

Yet, we were assuming that described GKE+P protocols are executed over authenticated
links and focused on the KE-security of their group and p2p keys. On the other hand, it
is well-known that any KE-secure GKE protocol can be converted into an AKE-secure
protocol (preserving its forward secrecy) using the classical and inexpensive compilation
technique from [29] which assumes for each user Ui a long-lived digital signature key
pair (ski, pki) such that in the preliminary protocol round users exchange their nonces
ri and then sign each l-th round message ml concatenated with U1|r1| . . . |Un|rn prior
to the transmission. The EUF-CMA security of the digital signature and the negligible
collision probability for the nonces protects against impersonation and replay attacks.

The following theorem shows that this technique is also sufficient to obtain AKE-
security of group and p2p keys in GKE+P protocols.

Theorem 5. If P is a GKE+P protocol that provides KE-security of group/p2p keys
then P compiled with the technique from [29] results in a GKE+P protocol P ′ that
provides AKE-security of group/p2p keys.

Proof Idea: Theorem 5 can be proven in two steps (one for group keys, another one for
p2p keys) using the same strategy as in the proof of [29, Theorem 2]. Briefly, in each of
the both steps the proof first eliminates signature forgeries and replay attacks and then
constructs an adversary A against the KE-security of group/p2p keys that interacts with
the user instances and also simulates the additional authentication steps while answering
the queries of an adversary A′ against the AKE-security of group/p2p keys. In case of
group keys A will need to guess the session in which the Test(Πs

i ) query will be asked
in order to simulate the protocol execution in that session through the authentication of
the transcript, which A obtains initially via own Execute query. In case of p2p keys A
will need to guess the session in which the TestPeer(Πs

i , Uj) query will be asked and
two corresponding identities Ui and Uj of honest users in order to add authentication
to their messages, which A obtains by relaying the Send queries of A′. We omit the
details.

8 Conclusion

We discussed the enrichment of GKE protocols with the property of non-interactive,
on-demand derivation of peer-to-peer keys, which allows for the establishment of a se-
cure group channel and up to n independently secure peer-to-peer channels through
a single run of the protocol. We extended the standard GKE security model captur-
ing independence of group and p2p keys as well as possible collusion attacks against
the secrecy of the latter and proposed several provably secure solutions with varying
efficiency. With PDHKE-KPT we demonstrated the existence of GKE protocols that



Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 17

implicitly allow derivation of p2p keys without any increase of their original communi-
cation complexity. Future work may include consideration of the optional insider threats
against the group keys computed in GKE+P protocols in the spirit of [28, 12, 13]. An-
other interesting direction is to investigate to what extent (xi, g

xi) often computed in
GroupDH protocols can be used as key pairs in digital signatures, public-key encryption
schemes, etc.
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