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Abstract. This paper presents an approach for optimizing both recog-
nition and processing performance of a biometric system in identification
mode. Multibiometric techniques facilitate bridging the gap between de-
sired performance and current unimodal recognition rates. However, tra-
ditional parallel classifier combination techniques, such as Score sum,
Borda count and Highest rank, cause further processing overhead, as
they require a matching of the extracted sample with each template of
the system for each feature. We examine a framework of serial combina-
tion techniques, which exploits ranking capabilities of individual features
by reducing the set of possible matching candidates at each iteration, and
we compare its performance with parallel schemes. Using this technique,
both a reduction of misclassification and processing time in identifica-
tion mode will be shown to be feasible for a single-sensor hand-based
biometric system.
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1 Introduction

Recently, a number of biometric systems have exploited advantages of multi-
instance and multi-algorithm approaches to biometric recognition based on
single-sensor input. In particular, such systems benefit of increased matching
accuracy, more difficult biometric attacks, reduced enrollment errors in case of
failures to extract single biometric traits and, finally, a less complex acquisition
procedure [TJ2I3]. For single-sensor fusion of iris and face a combined feature
achieved 99.75% Genuine Acceptance Rate (GAR) compared to 97.35% GAR
for face and 95.42% GAR for iris at 0.1% False Acceptance Rate (FAR) in [IJ.
A similar result was obtained for fusion of hand-based modalities with reported
perfect classification compared to 91.5% GAR at 0.01% FAR for palmprints
only and 95-99.9% GAR for individual fingers in [2] and good separation with
0.08% Total Error Rate (TER) compared to 0.24% TER for the best single fea-
ture (Minutiae) in [3]. All these studies combined matching scores by employing
min-max score normalization and (weighted) sum of scores. While this tech-
nique seems to be a good choice outperforming many other alternatives [4lJ5],
processing time requirements are not optimized.

In a system with m biometric matchers M;, 1 < i < m in identification
mode, each sample B is matched against the whole system database D =
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{T1,T3,...T;}. In case of parallel fusion methods based on the outcome of com-
parisons M;(B,T;), an identification involves m - ¢t matches, i.e. for the total
processing time T}, in a single-processor environment we have:

T, (Cp+ > Py) (1)

t m
=1 i=1

J

where P;; denotes the processing time required for the comparison M;(B,T})
and C), is the time needed for parallel combination. Even if C}, is insignificant,
still this term increases linear in the number of users ¢ with a potentially large
factor m. You et al. [6] identified this problem and proposed a 4-level hierarchical
multifeature coding scheme to facilitate coarse-to-fine matching for palmprints.
In this scheme, levels 1-3 reduce the initial set D; := D of possible candidates
(leading to candidate sets D; 1 C D; Vi < m) and level 4 performs final matching
on D,,. With the preclassification capabilities of fast geometry-based features
and final decision by an accurate (but costly) texture-based feature, processing
time compared to sequentially executed parallel schemes were reduced from 6.7
seconds to 2.8 seconds in [6]. A similar idea was used in [7] for face detection,
where simpler, yet fast classifiers rejected a majority of sub-windows before more
complex, but accurate cascaded classifiers guaranteed a low false detection rate.

We extend the approach in [6] and formulate a framework of serial combi-
nations, which, apart from the reduction of candidates, introduces additional
information flow between levels by accumulating matching information accord-
ing to the fusion rule. Serial processing time Ts can be estimated as follows:

DGy + Y Py) 2)

i=1 JEIN(D;)

T

where I(D;) denotes the index set of templates in D; and C;(%) is the time needed
for serial combination at level . With this modification, as will be shown, both
a reduction of processing time and increased accuracy can be achieved at the
same time. Another contribution of this work is a performance comparison with
respect to processing time and accuracy of well-known fusion rules Sum, Borda
count and Highest rank in parallel form and (to be defined) serial application
using a hand-based multibiometric system. The third contribution of this work is
an assessment of individual Minutiae and Eigenfinger-based classifiers in identi-
fication mode when operating on single-sensor data, as motivated in [8]. Finally,
we present an optimal solution for the employed hand-biometric system mini-
mizing a cost function C' = w; * (1 — RR) + wy * T with RR being the Rank-1
Recognition Rate, T' the processing time, and w1, wo weights for misclassification
and processing costs.

This paper is structured as follows: An introduction to system design for both
parallel and serial setups and employed features is given in Sect. 2l Section [
presents an overview of implemented parallel and serial combination methods.
Employed biometric databases, performance indicators and experimental results
are summarized and discussed in Sect. [ Finally, Sect. Bl forms the conclusion.
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2 System Setup

In order to evaluate both serial and parallel classifier combination, our multi-
biometric identification system [3] employs exclusive modules for each of the
examined combination schemes, see Fig. [l
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Fig. 1. Experimental setup using a) serial and b) parallel combinations of classifiers

2.1 Proprocessing

At image acquisition stage, each palmar hand is sensed using a HP Scanjet 3500¢
flatbed scanner sensor. After binary segmentation using Otsu’s method and lo-
calization of the hand within the image, visible parts of the arm are removed.
Translational and rotational invariance are achieved using an iterative algorithm,
which aligns each hand based on a hand coordinate system. Its origin is defined
as the inter-finger valley between ring and middle finger and the direction of
the least-squares approximated outer palm boundary is used for alignment. This
method provides better results than traditional moment-based best-ellipse fitting
[9], as it is less degraded by different spreadings of fingers, partially visible arms
or jewelery in the image. However, if applied to individual fingers, moment-based
fitting can improve inter-finger valley and finger tip detection rates.

2.2 Feature Extraction

Results of the preprocessing stage are rectilinear finger images at 100 dpi resolu-
tion and contrast-limited adaptive-histogram equalized high-resolution 500 dpi
images of the finger tips, illustrated as bounding boxes aligned to each finger in
Fig. [l The task of feature extractors, operating each on a single region, is to
extract a feature vector representation. Each extractor contributes its represen-
tation to a common augmented template, individual matchers are designed to
extract the corresponding features from the common representation and return
a scalar value for each match, as defined in Sect [l Finally, the first rank of the
combined ranking vector is used for identity determination within the decision
module.
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Minutiae Feature Extraction and Matching. Ridge bifurcation and ter-
mination points (position, orientation and quality) are extracted from finger-tip
images using NIST’s mindtct [10]. Main processing steps for Minutiae extraction
comprise [I1]: generation of image maps (e.g. ridge orientation maps), Minutiae
detection (by local binarization and pattern matching), and filtering (removing
false Minutiae in specific configurations). As Minutiae sets are not pre-aligned by
this feature extractor, an optimal pairing between Minutiae sets has to be per-
formed at matching stage (we use NIST’s bozorth3 [10] matcher for this task).
Unfortunately this task requires significantly more processing time than just
distance-based matching. The processing overhead becomes even more visible in
our experiment, as we employ bozorth3 in 1:1 comparison mode.

Eigenfingers Feature Extraction and Matching. For the Eigenfingers fea-
ture, which is based on principal component analysis, we adopt the algorithm
proposed by Turk and Pentland [I2], which also works well for fingers [13]. Fea-
ture extraction requires a pre-calculation of a so-called eigenspace for each finger
type, spanned by the most significant eigenvectors obtained from the covariance
matrix of mean-normalized training samples (we used a separate dataset of 25
hand-prints and also selected 25 as feature size). The feature vector is composed
of the projection coefficients of the normalized finger images projected onto their
eigenspace. Therefore, it represents low-resolution 128 x 384 index, middle, ring
fingers and 128 x 256 thumb and little fingers in an optimal way. In order to
obtain matching scores, Manhattan distance is employed in the feature space.

2.3 Matching

Matchers can be distinguised into different groups depending on the type of
information provided [14]:

1. Measurements: M;(B, D) = S; € R! is a measurement vector with its j-th
element S;[j], 1 < j <, indicating the degree that B and T} correspond to
the same identity.

2. Ranks: M;(B, D) = I; € N' is a rank index vector, where I;[j] = x indicates,
that the template T, € D, 1 < x <t is ranked at the j-th position. Closely
related to the index vector is its corresponding rank vector R; satisfying:

Vi, x with 1 < j,xz <t: L[j] =z < Riz] = j. (3)

3. Labels: in case of fully-automatic systems, only the top first rank or class
with the highest score is relevant.

In this paper, we focus on combination schemes at rank and measurement level
(see also [15]). Furthermore, we conduct both open-set (with reject option [16])
and closed-set identification (system users are identified only) experiments using
different ranking dimensions. Since the reject decision is facilitated by threshold-
ing single matching results and returning only classes where the corresponding
matching score exceeds a predefined threshold, we interpret a rank index vector
with dimensionality zero as a reject.



954 A. Uhl and P. Wild

3 Parallel and Serial Classifier Combinations

In our biometric identification experiments, individual classifiers are distance
classifiers in the context of [I4], i.e. each matcher calculates a distance or sim-
ilarity between the given template B and each enrolment-template T} of the
system database, see Sect. [l Following the transformation-based fusion ap-
proach [15], distance scores y = M;(B,T}) are at first converted into similarity
scores by subtraction from an empirically found maximum. Resulting values 3’
are then mapped to the unit interval [0, 1] using min-maz normalization [15].
Since normalized scores may be interpreted as some kind of posterior probability
P(B = T;|B) [14], individual matchers may be incorporated in each of the intro-
duced combination strategies measurement (using the normalized score vector),
rank (by simply ranking measurements) and abstract-level (using the Bayes-rule
estimating the class with the highest posterior probability [14]).

Combining measurements, ranks or labels of individual classifiers has long
tradition in pattern recognition. A comprehensive overview of classifier com-
bination techniques including Average Bayes Classifiers, Voting-based schemes
and classifiers based on Dempster-Shafer Theory is given in [I4]. Combination
rules are derived in [5] using Bayesian statistics. A framework for generalized
classifier combinations is introduced in [I7], with Borda count, Logistic regres-
sion and Highest rank combination methods as special cases. According to [I§],
classifier combination schemes can be divided into fized rules (with all classifiers
assumed to exhibit equal performance), trained rules (introducing weights to ac-
count different strengths) and adaptive rules (weights depend on environmental
factors). We apply traditional fixed parallel rank and measurement combination
rules [15], as they do not need separate training datasets, and compare their
serial and parallel implementation with respect to accuracy and performance.

1. Borda count (BC): With this technique, rank index vectors I; of different
classifiers M; are combined to form a consolidated rank index vector Igc by
estimating the sum of all ranks of individual classifiers as follows:

Inc € S : Wkl with 1<k <l<t= Y Rillsclk]] <> Rillsc[l]], (4)
i=1

i=1

where S; is the set of all permutations of {1,...,¢}. If multiple such vectors
exist, one is chosen randomly [I5]. This method assumes equal performance
of different matchers. Strengths of BC according to [I7] are simplicity and
no necessity for training. However, ties constitute a problem [I8], especially
for open set identification, where the sum of ranks for the rank-1 entry,

> R;[Ipc[0]], is thresholded.
i=1
2. Highest rank (HR): This method assigns each user its minimum rank value
(i.e. highest rank) of all classifiers, again with collisions removed randomly.
Inr €S Vh lwith 1<k <1<t= n@{zRi[IHR[k}] < njbiz%{zRi[IHR[l]].
(®)
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Since neither rank index vectors reveal information for successful rejection
of unseen objects, nor do any other measurements (like the sum of ranks
for the rank-1 entry as employed for the BC) indicate genuine identification
attempts for HR, we exclusively tested this mode in closed set identification.
3. Score sum (SS): This measurement combination method averages scores of

m
matchers M;, i.e. the common score vector is defined as Ssg := nl% > S;.
i=1

If this measurement vector is to be converted into a rank vector, again
we have to break up ties randomly. However, as the set of scores is dense,
we further expect strengths of this matcher in open set identification.

For serial classifier combination, these rules remain unchanged, but input and
output interfaces for single matchers change. The order of matchers, their di-
mensionality and the combination rule define a serial classifier combination.

1. Sequential order of matchers: The matcher M; is applied to a subset of
templates in D specified by a characteristic function ¢;, i.e. M;(B, D, ¢;). In
order to leave introduced rules unchanged, for elements j with ¢;(j) = 0 we
technically set R;[j] := oo in case of BC and HR and S;[j] := 0 in case of
SS. Let R be the rank vector of the chosen combination rule using matchers
My, ..., M; and d[i] be the desired output dimension, then we define:

1ifi=1VvV(E>1ANc¢-1(5) =1AR[j] <d[i—1]),
0 otherwise.

i a) = { )

2. Fixed dimensionality of each matcher’s output in the chain: We
define decreasing dimensionalities d[i], 1 < d[i] < t for each matcher M;, such
that Vi : i > 1 = d[i] < d[i —1]. Finally, the resulting score or index vector is
a transformed version of the outcome of the combination technique using all
matchers My, ..., M,, accounting the final dimensionality reduction to d[m)]
ranks. Note, that the combination method for serial classifiers is applied m
times (after each matcher) instead of just once for parallel combination.

4 Experiments

In our identification mode assessments we address absolute and relative perfor-
mance differences between serial and parallel combination schemes with respect
to accuracy and computational cost in both closed set and open set configura-
tions, see Table [[I We try to identify how parameter choice (e.g. rule, order of
matchers) for serial combinations influences results. In order to be able to com-
pare performance of parallel or serial schemes relative to individual matchers,
we also give a short summary of identification results for single classifiers.

As performance indicators we estimate Cumulative Match Curves (CMC) in-
dicating for each rank r the relative frequency of genuine test templates (i.e.
templates sharing the same identity with an enrolled template) having their
corresponding identity-sharing enrolled template ranked in {1,...,r} [16]. For
direct comparison, we use the RR measure (evaluating the CMC at rank 1).
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Table 1. Comparison of parallel and serial combination results with individual classi-
fiers in identification mode: RR = Rank-1 Recognition (%), RRrar = Rank-1 Recogni-
tion (%) at a specific FAR (%), T' = Processing time (ms)

Parallel classifier fusion Serial classifier fusion Minutiae  Eigenf.
BC HR SS BC1 BC2 HR1 HR2 SS1 SS2 Index Mid. Mid. Ring

Closed set identification
RR 99.7 90.0 99.9 99.2 99.4 91.1 95.6 99.9 99.8 99.1 98.8 91.6 89.7
T 10338 10337 10338 2561 8110 2557 8108 2550 8109 5225 5111 <1 <1

Open set identification

RRo1 959 — 97.4 89.6 95.0 — — 97.6 974 95.6 92.6 60.1 32.6
RRio 991 — 98.9 97.7 99.1 — — 994 994 98.0 97.3 85.1 79.0
T 5189 — 5189 12354016 — — 12324017 2623 2564 <1 <1

As the RR refers to correct rankings of genuine samples (and therefore includes
false rejects, in which case the length of the ranking vector is zero), there is a
tradeoff between RR and FAR (false acceptance rate of imposter samples) in
threshold-based open set identification. We visualize this tradeoff by plotting
both rates against each other, varying the threshold over its entire range.

For testing purposes we use a dataset of 443 palmar scans at 4250 x 5850
resolution (71 males and 15 females, at least 4 different templates per person),
captured in a single session at arbitrary rotations in a controlled environment
(direct exposure to ambient light was avoided by placing the sensor in a box with
a hole for hand insertion). A total of 4 samples were rejected due to enrollment
errors and further excluded from experiments. For closed set identification tests
we set up 4 different enrollment databases from this dataset using the first, sec-
ond, third and fourth template of each user as enrollment template. This yields
a total of 353 possible comparisons of remaining templates with each system
database. For open set identification, again we set up four system databases with
randomly selected 43 users for each database using the first, second, third and
fourth given template, respectively, as enrolment sample. In this configuration,
a total of 177 genuine and 219 imposter identification attempts can be executed
per system database. The presented identification scenarios are intended to re-
flect biometric applications for small-sized companies, e.g. presence detection for
employees (closed-set) or access control applications (open set).

4.1 Individual Classifiers

Since not all combination techniques necessarily increase overall performance,
we first assess closed set (86 enroled users) and open set (43 enroled users)
identification performance of unimodal Minutiae matchers (M-Thumb, M-Index,
M-Middle, M-Ring, M-Little) and Eigenfingers matchers (E-Thumb, E-Inder,
E-Middle, E-Ring, E-Little) in order to obtain reference rates. Closed-set recog-
nition results in form of an average CMC (averaging results over all 4 system
databases) are illustrated in Fig. Presumably, the most accurate feature
turned out to be M-Index with 99.1% RR, followed by M-Middle (98.8%),
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M-Ring (98.0%), M-Thumb (96.7%), E-Middle (91.6%), E-Ring (89.7%), M-
Little (85.6%) E-Little (76.4%), E-Index (68.1%), and E-Thumb (56.7%). How-
ever, whereas Minutiae features exhibit processing times of 2478 ms (M-Little),
4090 ms (M-Thumb), 4205 ms (M-Ring), 5111 ms (M-Middle) and 5225 ms (M-
Indez), all Eigenfinger-based features could create a ranking vector in almost
less than 1 ms. More accurate Minutiae-based matchers tend to exhibit longer
average processing times, as they usually operate on larger sets. M-Little’s CMC
increases slowly with additional ranks, an undesired behavior for serial combi-
nation, as a dimensionality reduction may exclude the genuine identity.

Fig. [ illustrates the tradeoff between RR and FAR for all features in open
set identification. The best RR performance at 0.1% FAR is 95.6% (M-Index),
while the worst performing feature (E-Little) only achieves 18.4%. Generally,
in this configuration, Eigenfingers perform significantly worse than Minutiae-
based features. If FAR is relaxed to 10%, RR reaches 48.2 — 98%. Regarding
performance, single Minutiae-based classifiers require up to 2623 ms, whereas
Eigenfingers remain at processing times of less than 1 ms.

4.2 Parallel versus Serial Classifier Combinations

The first question arising naturally when serial and parallel classifier combination
techniques are compared is the choice of parameters for the serial combination
scheme. Recall, that serial combinations are defined by rule, order, count and di-
mensionality of each matcher. As both the number of possible choices for dimen-
sionalities and order of matchers grow exponentially in the number of matchers,
an exhaustive search within a training set to find the best parameters becomes
unfeasible if the number of matchers is large. For the comparison of serial and
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parallel techniques, we restrict the set of possible individual classifiers to the best
two Minutiae features M-Index, M-Middle and the two best Eigenfinger features
E-Middle and E-Ring. In order to be independent of training datasets, we con-
servatively define a class reduction factor of two, i.e. d[0] := &, d[i + 1] := dg],
and examine two natural choices for the order of matchers:

— Configuration 1: In order to exploit the intrinsic property of class reduction
in serial combinations, we select fast classifiers at lower ranks followed by
more costly features, i.e. the order is E-Middle, E-Ring, M-Index, M-Middle.

— Configuration 2: Here we select matchers in the order of accuracy to avoid
early loss of potential matches: M-Index, M-Middle, E-Middle, E-Ring.

Results of all employed parallel and serial combination experiments can be
found in Table [l In a first test we assessed closed set identification perfor-
mance of the introduced combination rules Borda count (BC), Highest rank
(HR) and Score sum (SS) in its parallel (P-BC, P-HR, P-SS) and serial forms
(S-BC1, S-HR1, §-SS1 for Configuration 1, and S-BC2, S-HR2, S-552 using
Configuration 2). Whereas for BC serial classifiers exhibit slightly worse accu-
racy (99.2 — 99.4% instead of 99.7%), serial SS combinations perform almost
equally well (99.8 — 99.9%) and serial HR even outperforms parallel techniques
(up to 95.6% instead of 90%). However, serial combination techniques could re-
duce required processing time of parallel schemes significantly (up to a factor of
4 using the fast configuration, and at least by over 20% using the conservative
configuration). When comparing different combination rules, SS combination
performs best and is at the same time least affected by serial class reduction,
followed by BC and the HR method, which is no good choice for the selected
classifiers, as overall accuracy even degrades compared to individual classifiers.

When assessing open set identification mode performance of the BC and SS
methods in Fig. B again SS turns out to be highly accurate. The faster serial
combination technique S-SS1 outperforms the best individual matcher (with
97.6% RR at 0.1% FAR) and at the same time even requires less processing time
(1232 ms instead of 2623 ms). Serial combination S-BC1 however seems to be
more affected by the worse performance of Eigenfingers. Finally, we have applied
exhaustive search using a separate (randomized) training system database, to
find the best serial combination with respect to the cost function C' introduced
in Sect. [ using weights w; = 1,ws = 1075, The best serial combination turned
out to be SS considering FE-Middle, E-Ring, M-Index with dimensions 9, 4, 1
yielding a total accuracy of 98.7% at 616 ms (99.7% at 591 ms on training set).

5 Conclusions and Future Works

We have examined parallel and serial combination techniques on classifiers of a
single-sensor hand-based multimodal biometric system. Serial classifiers turned
out to decrease processing time significantly at almost the same or even higher
accuracy than their parallel combination counterparts. The Score sum method
was found to produce the best results for both parallel and serial combination,
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followed by Borda count and Highest rank. The ability to improve both accuracy
and processing performance simultaneously makes serial combination techniques
an excellent choice for classifier fusion. Still, the choice of parameters for serial
classification influences recognition accuracy and performance and deserves fur-
ther attention in future work.
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