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Abstract. We propose a novel approach to gender recognition for cases
when face sequences are available. Such scenarios are commonly encoun-
tered in many applications such as human-computer interaction and
visual surveillance in which input data generally consists of video se-
quences. Instead of treating each facial image as an isolated pattern and
then combining the results (at feature, decision or score levels) as gener-
ally done in previous works, we propose to exploit the correlation between
the face images and look at the problem of gender classification from
manifold learning point of view. Our approach consists of first learn-
ing and discovering the hidden low-dimensional structure of male and
female manifolds using an extension to the Locally Linear Embedding
algorithm. Then, a target face sequence is projected into both manifolds
for determining the gender of the person in the sequence. The matching is
achieved using a new manifold distance measure. Extensive experiments
on a large set of face sequences and different image resolutions showed
very promising results, outperforming many traditional approaches.

1 Introduction

Determining the gender (i.e. man or woman) of a person in a given image or
video is useful for many applications such as more affective Human-Computer
Interaction (HCI), content-based image and video retrieval, restricting access
to certain areas based on gender, collecting demographic information in public
places, counting the number of women entering a retail store and so on.

First attempts of using computer vision based techniques to gender classifi-
cation started in early 1990s. Since then, many approaches have been reported
in literature. Among the most notable results to date are those obtained by
Moghaddam and Yang [I], and also by Baluja and Rowley [2]. Moghaddam
and Yang used raw pixels as inputs to Support Vector Machines (SVMs) and
achieved a classification rate of 96.6% on FERET database of images scaled to
12x21 pixels [I]. Note that the considered FERET images were very clean and
some persons may have appeared in both training and test sets. Comparable
accuracy but at a higher speed was also reported by Baluja and Rowley who
used AdaBoost to combine weak classifiers, constructed using simple pixel com-
parisons, into single strong classifier [2]. Note that both approaches are based
on still images and assume well aligned faces. However, in many real-world ap-
plications (e.g. HCI, visual surveillance and content-based video retrieval) input
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data generally consists of video sequences and it is not always obvious to hold
the face alignment assumption. So, the question which arises then is how to ef-
ficiently perform gender classification from face sequences? We believe that this
issue is understudied in literature as most works tend to process each frame (or
some selected ones) and then fuse the results at feature, decision or score levels.
Obviously, such approaches ignore the correlation between the face images as
they are only treated as “single” or “isolated” patterns in the image space while,
in fact, they lie on a low-dimensional manifold.

From these observations, we propose to look at the problem of gender classi-
fication from manifold learning point of view. The goal of face manifold learning
is to discover the hidden low-dimensional structure of the face images. This is a
very useful but also a challenging unsupervised learning problem. It is a useful
task because mapping the high-dimensional faces into low-dimensional coordi-
nates would facilitate and speed-up the further analysis (i.e. gender classification
in our case) and also may avoid “the curse of dimensionality”. It is also a chal-
lenging problem since the face manifold is highly nonconvex and nonlinear and
so is the face manifold of any individual under changes due to pose, illumination
and other factors.

Therefore, instead of treating each facial image as an isolated pattern and
then fusing the results (at feature, decision or score levels) as generally done in
previous works, we propose to exploit the correlation between the face images
and consider the problem of gender classification from manifold learning point
of view. Our approach consists of first learning and discovering, from a set of
training face sequences, the hidden low-dimensional structure of male and female
classes, thus yielding in male and female face manifolds. Then, a target face
sequence can be projected into both manifolds for determining the gender of the
person in the sequence. The “closest” manifold (in terms of a newly introduced
manifold distance measure) will then determine the gender of the person. In
the rest of this paper, we further develop the proposed approach and validate it
through extensive experiments and comparisons against traditional approaches.
Among the novel contributions in this work are:

— A new method to gender classification from face sequences is presented and
extensively evaluated;

— An extension to the Locally Linear Embedding algorithm to handle face
sequences is proposed;

— A simple yet efficient manifold to manifold distance measure is introduced.

2 Locally Linear Embedding

The first key issue in our proposed approach is to learn the face manifolds by
embedding the face images into low-dimensional coordinates. For that purpose,
there exist several methods. The traditional ones are Principal Component Anal-
ysis (PCA) and Multidimensional Scaling (MDS). These methods are simple to
implement and efficient in discovering the structure of data lying on or near
linear subspaces of the high-dimensional input space. However, face images do
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not satisfy this constraint as they lie on a complex nonlinear and nonconvex
manifold in the high-dimensional space. Therefore, such linear methods gener-
ally fail to discover the real structure of the face images in the low-dimensional
space. As an alternative to PCA and MDS, one can consider some nonlinear
dimensionality reduction methods such as Self-Organizing Maps (SOM) [3], tal-
ent variable models [4], Generative Topographic Mapping (GTM) [5], Sammon’s
Mappings (SM) [6] etc. Though these methods can also handle nonlinear mani-
folds, most of them tend to involve several free parameters such as learning rates
and convergence criteria. In addition, most of these methods do not have an ob-
vious guarantee of convergence to the global optimum. Fortunately, in the recent
years, a set of new manifold learning algorithms have emerged. These methods
are based on an Figen decomposition and combine the major algorithmic fea-
tures of PCA and MDS (computational efficiency, global optimality, and flexible
asymptotic convergence guarantees) with flexibility to learn a broad class of non-
linear manifolds. Among these algorithms are Locally Linear Embedding (LLE)
[7], ISOmetric feature MAPping (ISOMAP) [§] and Laplacian Eigenmaps [9].

We adopt in our present work the LLE approach for its demonstrated sim-
plicity and efficiency to recover meaningful low-dimensional structures hidden in
complex and high dimensional data such as face images. LLE is an unsupervised
learning algorithm which maps high-dimensional data onto a low-dimensional,
neighbor-preserving embedding space.

In brief, considering a set of NV face images and organizing them into a matrix
X (where each column vector represents a face), the LLE algorithm involves
then the following three steps:

1. Find the k nearest neighbors of each point Xj.
2. Compute the weights W;; that best reconstruct each data point from its
neighbors, minimizing the cost in Equation ():

W) => Xi— Y WyX; (1)
=1 j€Eneighbors(i)
while enforcing the constraints W;; = 0 if X; is not a neighbor of X;, and
Z;‘Vﬂ W;; = 1 for every i (to ensure that W is translation-invariant).
3. Compute the embedding Y (of lower dimensionality d << D, where D is
the dimension of the input data) best reconstructed by the weights W,
minimizing the quadratic form in Equation (2):

N
aV)=Y |vi- Y WY (2)

jE€neighbors(i)
. N L . .
under constraints ) ;" ; ¥; = 0 (to ensure a translation-invariant embedding)
1 N T . . .
and >, Y;Y;" =0 (normalized unit covariance).

The aim of the first two steps of the algorithm is to preserve the local geometry
of the data in the low-dimensional space, while the last step discovers the global
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structure by integrating information from overlapping local neighborhoods. LLE
is an efficient approach to compute the low-dimensional embeddings of high-
dimensional data assumed to lie on a non-linear manifold. Its ability to deal
with large sizes of high-dimensional data and its non-iterative way to find the
embeddings make it attractive. However, in its actual formulation, the LLE
method can only be used with still images but not with video sequences. In the
next section, we introduce extensions to LLE to also handle face sequences and
then present our proposed approach to gender classification from face sequences.

3 The Proposed Approach to Gender Classification from
Face Sequences

Given a set of training face sequences of males and females. First, let us de-
note the male face sequences as {Seq1, Seqa, ..., Seqar }. In order to discover the
male face manifold in the low-dimensional space, we modify and apply the LLE
algorithm as follows:

1’.a. Let Xi(]) be the column vector representing the i*" face image of the j**
sequence Seg;.

1".b. In every sequence Seg;, find the k nearest neighbors of each point Xi(])
among all points which do not belong to the sequence Seg;.

2'. Compute the weights on the newly constructed data and neighborhood in a
similar way as in Step 2 of the original LLE algorithm.

3’. Compute the embedding in a similar way as in Step 3 of the original LLE

algorithm.

Note that, in this modified version of LLE, we enforce (in Step 1’.b.) the
neighbors of each point to be taken from other sequences than the one to which
the data point belongs. The aim of this constraint is to avoid constructing disjoint
manifolds, each corresponding to an individual. The other reason is that we are
not only focusing on the relationships between the image instances of the same
individual but more importantly we are also looking at learning the relationships
between the images of different subjects from the entire male class. In other
terms, we are interested in discovering the features and structure that are shared
among the male faces. The introduced changes to LLE are somehow inspired by
the recent works on semi-supervised locally linear embedding for classification
(e.g. [10]). From now and on, we only consider LLE with the proposed changes.
Therefore, for the clarity of the presentation, we continue using the term LLE
to refer to the modified version of the algorithm in the rest of this paper.

After embedding the face sequences {Seqi, Seqs, ..., Seqy} using LLE, we
obtain the coordinates of each face image in the low-dimensional space, thus
defining the face manifold of the male class. Let us denote then the obtained
embedding result as My . Note that the calculation of My involves only two
free parameters which are the number of neighbors (k) and the dimension of
the embedding space (d). We discuss the values of these two parameters in the
experimental analysis in Section 4.
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Similarly to the analysis of the male sequences, we also apply our described
procedure to the female training face sequences to compute the face manifold
Fy corresponding to the female class. Thus, we finally obtain two embeddings
(face manifolds My and Fy) that are extremely useful to gender classification
of unseen individuals in target face sequences, as the next section explains.

Classifying a New Face Sequence?

To determine the gender of an unknown person in a given face sequence

{Faceframe(l)a Faceframe(Q)a [X3) Fa'ceframe(L)}

we first project every face instance Facef,qme(iy into both male and female
face manifolds in the low-dimensional space. The “closest” manifold will then
determine the gender of the person in the sequence. The projection of the target
face sequence into the male manifold, for instance, is done using the following
steps:
a. Let now X; be the column vector representing the face image (F'ace frame(s))
from the new sequence.
b. Find the k nearest neighbors of each point X; among the male training face
samples.
c. Compute the weights W;; that best reconstruct each data point X; from its
neighbors using Equation ().
d. Use the obtained weights W;; to compute the embedding Y; of each point
X (ie. Facegrame(s)) as:

Yi= > Wiy (3)
j € neighbors(X;)

where M{/ refers to the embedding point in the male manifold of the j** neighbor
of the point X;.

As a result, we obtain the embedding Y of the new face sequence in the male
manifold. Then, we compute how close is the embedding Y to the male manifold

MY uSing'
L male P 1

where L is the length of the target face sequence, Y; is the embedding of the

Y'i _ M;(l)

point X; in the low-dimensional space and My’ () is the closest point (in term of
Euclidean distance) from the manifold My to Y; as shown in Fig. [I1

In the same way as for the male manifold, we also compute the embedding of
the new face sequence into the female manifold and then calculate the distance
D temaie. Finally, the smallest value between the two distances (D femate and
Dinaie) defines the “closest” manifold and thus determines the gender of the
person in the new sequence, as formulated in Equation (&).

MG/I’L, Zf Dmale < Dfemale

Gender(Face frame(1); -+, Face prame(r)) = {Womcm, otherwise
(5)
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Fig. 1. Calculation of the distance between the manifold of a new face sequence (rep-
resented by its embedding Y') and the male manifold represented by its embedding My

4 Experimental Analysis

4.1 Experimental Data

For experimental analysis of our proposed approach, we considered three dif-
ferent publicly available video face databases (namely CRIM [I1], VidTIMIT
[12] and Cohn-Kanade [I3]) containing several face sequences subject to changes
caused by different factors including face image resolution, illumination varia-
tions, head movements and facial expressions. CRIM is a large set of 591 face
sequences showing 20 persons (10 female and 10 male) reading broadcast news
for a total of about 5 hours. There are between 23 and 47 video sequences for
each individual. The VidTIMIT database consists of audio recordings and video
sequences of 43 subjects (19 female and 24 male), reciting ten short sentences

Fig. 2. Examples of face images from some sequences from the considered datasets
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in three sessions with an average delay of a week between sessions, allowing for
appearance and mood changes. Cohn-Kanade database consists of 100 subjects
expressing different emotions like anger, disgust, fear, joy, sadness, and surprise.
Sixty-five percent of the subjects were female, 15 percent African-American,
and three percent Asian or Latino. We randomly segmented the datasets and
extracted over 1000 video shots of 15 to 80 frames each. From each shot or se-
quence, we automatically detected the eye positions from the first frame. The
determined eye positions are then used to crop the facial area in the whole se-
quence, yielding in nonaligned face images. Finally we scaled the resulted images
into 3 different resolutions: 20x20, 40x40 and 60x60 pixels. Examples of face
images from some sequences are shown in Fig.

4.2 Results and Analysis

For evaluation, we adopted a 5-fold cross validation test scheme by dividing the
1000 sequences into five groups and using the data from four groups for training
and the last group for testing. We repeated this process five times and we report
the average classification rates.

As the proposed approach involves two free parameters which are the number
of neighbors (k) and the dimension of the embedding space (d), we started then
by analyzing the effect of these two factors on the system performance. Fig. 3]
plots the gender classification results when varying k and d (These results are
obtained using 40 x 40 pixels as face image resolution). For k, we can notice
that the best rates are obtained using around 15 nearest neighbors and then the
performance is decreasing for too small (k < 6) or too large (k > 25) values.
This can be explained by the fact that too small values of k£ tend to make the
reconstruction of each data point from its neighbors weak (see Equation (II)),
while too large values tend to break the embedding as the locality assumption in
LLE calculation may not hold. However, for a wide range of values between 10
and 20, the results remain good and stable. For the dimension of the embedding
space (d), we can notice that the best results are obtained using values between
10 < d < 15. Smaller values of d tend to decrease the performance while larger
values (d > 15) do not alter the results. In fact, d corresponds to the intrinsic
dimension of the training face sequences. An alternative to estimate the optimal
value of d is to analyze the residual variance which characterizes how well the
low-dimensional Euclidean embedding captures the geodesic distances of the
input data. The lower the residual variance is, the better high-dimensional data
are represented in the embedded space. We computed the residual variance as
1 — p?(Dx, Dy), where p is the standard linear correlation coefficient taken
over all entries of Dx and Dy; Dx is the matrix of geodesic distances between
pairs of points in X (in the high-dimensional space) and Dy is the matrix of
Euclidean distances in Y (in the embedding space). Our experiments showed
that the residual variance does not further decrease for dimensions > 12 which
consolidates our earlier findings.

Setting k = 15 and d = 12, we obtained gender classification rates of 96.8%,
97.1% and 97.2% for resolutions of 20 x 20, 40 x 40 and 60 x 60 pixels,
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Fig. 3. Gender classification rates for different values of the number of neighbors (k)
and the dimension of the embedding space (d)

Table 1. Comparison of gender classification results of several approaches on our test
sequences with three different face image resolutions

Average Gender Classification Rate (%)

Method 20 x 20 Pixels 40 x 40 Pixels 60 x 60 Pixels
Pixels + SVM + Fusion 88.0 89.2 88.5
LBP + SVM + Fusion 90.5 91.0 92.1
VLBP + SVM 82.3 83.9 84.5
EVLBP + AdaBoost 83.1 84.4 84.6
Manifold Learning (Proposed Approach) 96.8 97.1 97.2

respectively. Although we did not perform any face alignment, the obtained
results are very good and compare favourably against what is generally reported
in literature even for well aligned faces [I][2]. For extensive and more objective
comparison, we also implemented some state-of-the-art methods including (i)
Use of raw pixels with SVM and fusion over the face sequence at score level;
(ii) Use of Local Binary Pattern features (LBP) [14] with SVM and fusion over
the face sequence at score level [I5]; (iii) Use of Volume LBP with SVM [16]
and (iv) Use of Extended Volume LBP with AdaBoost [15]. The obtained re-
sults using all these methods are summarized in Table. [l From the table, we
can clearly see that our proposed approach significantly outperforms all other
considered methods.

Perhaps, the key reason behind the success of our approach lies in the effec-
tive use of the correlation between the face images through manifold learning.
Our experimental analysis also showed that most state-of-the-art methods fail
to handle faces under severe illumination changes and miss alignments, while
our proposed approach seems to perform much better under such conditions.
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Our results also indicated that image resolution does not affect very much gen-
der classification performance and this confirms the conclusions of many other
researchers.

5 Discussion and Conclusion

We proposed a novel approach to gender classification from face sequences. Our
approach consisted of first learning the hidden low-dimensional structure of male
and female manifolds using an extension to the original LLE algorithm. Then, a
target face sequence is projected into both manifolds for determining the gender
of the person in the sequence. The matching is achieved using a new manifold
distance measure. Under natural conditions and without face alignment, a high
classification rate of 97.2% is obtained for face sequences of 60 x 60 pixels, while
most state-of-the-art methods fail to handle faces under miss alignments and
illumination changes.

It is worth noting that, in addition to its efficiency, our approach involves
only two free parameters which are quite easy to determine. Our future work
consists of experimenting with much larger databases and further analyzing the
few misclassification errors made by our system. It is also of interest to extend
our approach to explicitly incorporate the temporal information during manifold
learning.

Note that the proposed methodology can also be applied to other face analysis
tasks such as face recognition, facial expression recognition and age classification
from videos.
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