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Abstract. Biometric authentication using mobile devices is becoming a conve-
nient and important means to secure access to remote services such as telebanking
and electronic transactions. Such an application poses a very challenging pat-
tern recognition problem: the training samples are often sparse and they cannot
represent the biometrics of a person. The query features are easily affected by
the acquisition environment, the user’s accessories, occlusions and aging. Semi-
supervised learning – learning from the query/test data – can be a means to tap
the vast unlabeled training data. While there is evidence that semi-supervised
learning can work in text categorization and biometrics, its application on mo-
bile devices remains a great challenge. As a preliminary, yet, indispensable study
towards the goal of semi-supervised learning, we analyze the following sub-
problems: model adaptation, update criteria, inference with several models and
user-specific time-dependent performance assessment, and explore possible so-
lutions and research directions.

1 Introduction

Portable electronic devices such as mobile phones and PDAs are becoming important
means to provide wireless access to the Internet and other telecommunication net-
works anytime, anywhere. Very often, such access requires the verification of the user’s
identity in order to ensure that the person is really whom he/she claims to be. While
knowledge-based authentication such as PINs or passwords can be used, they can be
forgotten, or easily compromised when shared, copied or stolen. In comparison, bio-
metrics is a more effective alternative because it is by far a more natural, reliable and
friendly means of authentication. Thanks to the availability of cameras and microphones
in today’s mobile devices, audio- and visual-based biometrics such as face and speech
can be readily used for this purpose.

In this context, we aim to develop and evaluate new mobile services that are secured
by bi-modal speech and face biometrics. We shall call this problem “mobile biometry”
(Mobio). Due to the device mobility, the problem of biometric authentication is much
more challenging for at least two reasons: First, it has to deal with changing and of-
ten uncontrolled environments, e.g., external noise and varying illumination conditions.
Under such conditions, a biometric query data can appear very differently from the one
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acquired during enrollment (template). As a consequence, the device performance can
degrade drastically. Second, mobile devices have limited memory and CPU resources.
This provides a natural constraint on the size of biometric template/model1 and the type
of processing algorithms (which favor those of low computation).

One possible way to improve the device authentication performance is by automat-
ically labeling the abundant query (test) data and incorporating them as part of the
training data [3,9]. Such a strategy belongs to a category of processes known as semi-
supervised learning [14]. While initially developed for text classification, its applica-
tion is now extended to speech verification [6] (termed incremental enrollment by the
authors), face recognition [8] (called “Eigenspace updating”) and multimodal biomet-
rics [13] (known as template co-updating).

In [13], two distinct methods have been examined: self-training and co-training. In
self-training, an initially trained classifier based on labeled data attempts to give labels
to an unlabeled data set. The newly labeled data are then incorporated into the training
set. The algorithm iterates until a convergence criterion is satisfied. In co-training, two
initially trained classifiers based on labeled data attempt to provide labels to an unla-
beled data set. Since two classifiers are involved, two labeled data sets are produced.
The union of these two newly labeled data sets are then used as part of the training set
for each of the two classifiers.

The study in [13] is particularly relevant to our problem here, i.e., mobile biometry.
Indeed, it has been shown that both self-training and co-training are promising solutions
to overcome the lack of biometric training samples at enrollment. However, mobile
biometry presents a significantly different challenge, which can be summarized by the
following four issues.

First, mobile biometry requires that data be labeled online (or in small batch of data)
instead of offline (i.e., processing in batch), as is always practiced in experiments in-
volving co-training/self-training. The online or small-batch processing is the conse-
quence of the limited storage of mobile devices.

Second, there is no distinctive co-training and test phases as mobile devices are con-
tinuously updated as needed. This implies that using the usual three-partition experi-
mental designs – involving training or enrollment (with only labeled data), co-training
(with unlabeled data) and test data sets – is inappropriate. An ideal assessment would
reflect the actual application scenario, which should contain only two partitions of data
set: one for enrollment and a separate one for both co-training and testing (where error
is estimated). As a result, there is a need to design an error estimator capable of tracking
the error dynamics.

Third, there is a need to use quality measures in model adaptation2. Until now, proce-
dures on co-training depend uniquely on the confidence of classifier decision, which is

1 We use the term “template” when referring to the stored features representing a person’s bio-
metric trait whereas the term “model” as a more general concept in order to refer to the pa-
rameters of a discriminative classifier or a statistical model, or that of an intermediate feature
extraction process such as eigenspace analysis.

2 Model adaptation is a more general concept than semi-supervised learning such as co-training.
The latter refers uniquely to training or adaptation on self-labeled test data. In general, adap-
tation refers to the update of model parameters in various contexts, e.g., quality of samples.
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often derived directly from the classifier output. In the biometric community, an impor-
tant and rapidly developing research area is concerned with the use of quality measures.
For example, if a quality measure is designed to annotate the head orientation of a face
image (giving pitch, tilt and yaw angles), it would make sense to cluster the images
according to different head pose and create a new template for each cluster. Conversely,
without quality measures, a direct update to the old model, without considering head
orientations can be catastrophic. The same argument applies to other quality measures
annotating the presence of glasses, the type of emotional states and lighting condi-
tions. This motivates us to use quality-dependent model adaptation, in addition to the
confidence of the classifier output, as a criterion to create a new model or update an
existing one.

Last but not least, when there are several models/templates (recalling that the number
is bounded by the memory of mobile devices), inference with several models requires a
special treatment. Drawing on the work in [10], a possible framework is also proposed
in this paper for mobile biometry.

Section 2 begins with a more formal presentation of the concept of co-training ac-
cording to the original paper of Blum and Mitchell [3]. The remaining sub-sections
analyze the above mentioned four issues related to applying semi-supervised learning
to biometric authentication in general, but using mobile biometry as a test field. For
each issue, a possible solution is also elaborated. Section 3 then concludes the paper.

2 Open Issues and Research Directions for Adaptive Biometric
Systems

We wish to learn the concept f : X → Y given some labeled L and unlabeled U data
set drawn from P (X), where X is a feature vector and Y is a class label. The features
describing X can be partitioned into X(1) and X(2), i.e., X = X(1) × X(2), such that
f can be computed from either X(1) or X(2). Let g1 and g2 be the trained classifier
from X(1) and X(2), respectively. Then, the objective of co-training can be expressed
as finding g1 and g2 such that:

∃g1,g2(∀x ∈ X)g1(x(1)) = f(x) = g2(x(2)).

from U and L. An example of co-training procedure for a bimodal face and speech
biometric authentication problem, which is a binary classification task, is shown in
Algorithm 1.

An important result from [3] is that if X(1) and X(2) are conditionally independent
given Y , and the concept f is “PAC learnable” from noisy labeled data, then, f is PAC
learnable from weak initially labeled data plus unlabeled data. Probably approximately
correct learning or PAC learning refers to the fact that one can train a classifier in order
to learn the concept f , giving low generalization error in finite time and space.

In biometric authentication, X(1) can be a feature vector extracted, for instance, from
a face image, whereas X(2) can be a feature vector extracted from a speech recording.
Y is a person’s identity. Not only that X(1) and X(2) are conditionally independent
given Y , a condition that must be fulfilled in order for co-training to work, they are
simply (unconditionally) independent in our application. Because of this independence,
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Algorithm 1. The co-training algorithm
– Given: labeled data L and unlabeled data U
– Loop:

• Train g1 (face classifier) using L
• Train g2 (speech classifier) using L
• Allow g1 to label p positive, n negative examples from U
• Allow g2 to label p positive, n negative examples from U
• Add these self-labeled examples to L

for instance, it is not possible to predict a person’s face features given his/her speech
features without any prior information. We therefore have a strong case here supporting
the conjecture that co-training will work for bimodal person authentication. However,
in practice, updating the wrong samples, i.e., from other users, may result in degraded
performance [6]. Therefore, despite the sound theory, over-updating a model with the
wrong person’s biometric data will eventually be counter-productive.

A second obstacle to the successful deployment of semi-supervised learning in bio-
metrics is that the intra-person variability is larger than inter-person variability. For
instance, the lighting conditions can cause two face images of the same person appear
much more differently than two images of different persons taken in the same lighting
condition. This implies that trying to incorporate all types of variability into a single
model will only reduce its discriminative power, hence, decreasing the recognition per-
formance. A simple, yet, effective solution is to maintain several models, each capturing
only local variation as gauged by quality measures (lighting conditions being one ex-
ample here).

The following four sections will address open issues related to adaptive biometric
systems. The first section provides a Bayesian interpretation of model adaptation. An
example based on fingerprint minutia-based classifier is also shown. The second sec-
tion addresses training and inference with several models. Each model differs from the
others as it captures an aspect of a biometric template based on some observed qual-
ity measurements. The third section proposes a simple model creation/update criterion,
also based on quality measurements. Finally, the last section addresses the issue of per-
formance estimation as models adapt through time.

2.1 A Bayesian Interpretation of Biometric Model Adaptation

There are basically three operations that are essential to manipulating biometric models/
templates; they are defined as follow:

– Model creation
Create : data → new model

– Model adaptation:

Update : model, data → updated model

– Model deletion
Delete : model → ∅
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While adding and deleting models is straightforward, it is not so for model adaptation
because the latter requires combination of several biometric samples. Classifiers based
on statistical models can often be implemented in the form of online learning, i.e., “old”
model parameters can be updated with new ones after observing a training sample. This
implies that learning can be done incrementally. A state-of-the-art classifier in speaker
verification known as Gaussian mixture model (GMM) with maximum a posteriori
(MAP) adaptation is a good example:

p(θ|x) ∝ p(x|θ)p(θ)

where p(x|θ) is the likelihood of the data (given a model with parameter θ) and p(θ) is
the prior probability over the parameter θ. One maximizes the right hand side in order
to find the most probable value of θ, i.e., θ∗. This value becomes an initial estimate that
can be updated when a new sample becomes available.

If there are x1, . . . , xT observations, also denoted as x1 : xT , one finds the value of
θ that maximizes p(θ|x1 : xT ), as follows (ignoring the normalizing factor in each step
since we are only interested in maximizing the function with respect to θ):

p(θ|x1 : xT ) ∝
T∏

i=1

p(xi|θ)p(θ)

∝
T∏

i=2

p(xi|θ)p(θ|x1)

∝
T∏

i=3

p(xi|θ)p(θ|x1, x2)

∝ ...

∝ p(xT |θ)p(θ|x1 : xT−1) (1)

where p(θ|x1) ∝ p(x1|θ)p(θ). The recursive formulation of (1) implies that in order to
calculate the optimal value of θ given all previously observed T samples, one only needs
to use the parameter calculated up to T−1 to do so. This dispenses with the need to keep
all previous training samples, which is a memory demanding requirement. The above
recursive formulation of MAP implies that density-based classifiers can benefit from
continuous training as this leads to finding the optimal value of θ. In the terms used
in [4, Chap. 3], the recursive formulation of (1) is known as true recursive Bayesian
learning, its right hand term, p(θ|x1 : xT ), as a reproducing density; and the term p(θ)
as a conjugate prior.

For non-statistical model, adaptation may seem not obvious at first. For instance,
Jiang and Ser [7] showed that it is possible to combine several minutiae-based finger-
print templates to form a “super-template”. It turns out that the super-template approach
can be seen as a simplified statistical model taking the form of a multivariate Gaussian
distribution with isotropic covariance. Let xt

m be a minutia at the m-th location of the
t-th fingerprint. We require here that all minutia locations of different templates are
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aligned first. A minutia can contain location and/or directional information. Assuming
that the minutiae of a fingerprint is independent, a fingerprint template can then be
represented by p(X |θ) =

∏
m p(xm|θ) where p(xm|θ) is a Gaussian and θ = ε is

common to all observations t and locations m, i.e.,

p(X |θ, t) =
M∏

m=1

p(xm|θ, t) =
M∏

m=1

N (xm|μt
m, ε)

=
1

(2πε)M/2
exp

{
− 1

2ε

M∑

m=1

||xm − μt
m||2

}

where μt
m is the location (and orientation) of a minutiae taken from the t-th template.

Note that ε corresponds to the variance of xm. The posterior is then:

p(θ|X1 : XT ) ∝ p(X1 : XT |θ)p(θ) (2)

=
T∏

t=1

p(Xt|θ)p(θ)

∝ exp

{
− 1

2ε

T∑

t=1

M∑

m=1

‖ xm − μt
m︸ ︷︷ ︸ ‖

2

}
(3)

with equality only if we consider the normalizing factor 1
(2πε)MT/2 . Here, p(θ) is a

uniform distribution over the θ space.
When ε → 0, the minutia xt

m that is close to μt
m will give a peak value and near

zero otherwise. In this limit, we see that the counting approach proposed by Jiang and
Ser [7] and (3) converge. According to (3), with a large number of samples T , spurious
minutiae will receive low weights, whereas frequently occurred minutiae will receive
high weights, hence, playing a more important role during recognition. This behavior
is very similar to the k-nearest neighbor algorithm [4].

A related study on face recognition, called “Eigenspace-updating”, found in [8] can
also be considered a special case of our recursive MAP framework. In this case p(x|θ) is
a multivariate Gaussian whose parameters θ are a mean vector and a covariance matrix.
It is well known that mean and covariance can be incrementally updated by observing
one example at a time. This is, again, a realization of (1). However, slightly different
from this formulation, the authors introduced the concept of weight decay whose aim
is to give more weight to the latest test samples rather than giving all samples equal
weights.

A second concept called “twin-subspace updating”, also found in [8], is to maintain
two models (classifiers) instead of one. The motivation is that one model may capture
a frontal view whereas another may capture another slightly different view (a profile
view would be another extreme). When there are more than one models, it is necessary
to decide which model will contribute more to the final match score. This issue is treated
in the next section.
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2.2 Quality-Based Training and Inference with Multiple Models

In this section, we will first treat the subject of training with several models and then
consider how inference conditioned on quality can be approached using a Bayesian
framework.

Before doing so, it is instructive to categorize templates/models into the following
three primary types:

– single-template, where only a single template is available
– multi-template, where several templates are used
– super-template, where several templates are combined to form a single one.

Higher level types of templates are possible, for example, using multiple super-
templates where each super-template captures an aspect of biometric features, acquired
in a particular condition (e.g., same head orientation, lighting conditions, etc) or using
a particular device.

Let q denote a sample quality measurement and θ∗ be the optimal value that max-
imizes (2), i.e., θ∗ = arg maxθ p(θ|X1 : XT ). In this case, it is reasonable to expect
that samples of similar quality to be comparable; otherwise, they are not. This suggests
that one should choose a model/template that matches a particular acquisition condition
measurable by q ∈ R

q, i.e., a vector containing q measurements. For instance, for face
verification, these measures can be illumination, focus, reliability of face detection, etc.
It is possible to cluster q into several states. Let Q be the cluster indices of q. We expect
that images of good quality will cluster together and similarly for those of moderate
and bad quality. A well known clustering algorithm that can suitably be used for this
purpose is a Gaussian mixture model (GMM) [1]. For a pre-specified number of clus-
ters Q, a GMM models the density p(q) =

∑Q
Q=1 p(q|Q)p(Q). The parameters of this

model are found using the Expectation-Maximization (EM) algorithm. The posterior
probability of a cluster Q given an observation q, also known as responsibility in EM,
is then given by P (Q|q) = p(q|Q)P (Q)

p(q) . Now, we can estimate the optimal parameter θ

using the recursive MAP framework, but in a quality-dependent manner:

p(θ|x1 : xT , Q) ∝ p(xT |θ, Q)p(θ|x1 : xT−1, Q) (4)

which is very similar to (1), except that all terms are dependent on the cluster index Q.
Thanks to (4), we can estimate:

p(θ|x1 : xT , q1 : qT ) =
∑

Q

p(θ|x1 : xT , Q)P (Q|q1 : qT ) (5)

which is the actual goal. One maximizes (5) with respect to θ and this can be done in a
recursive MAP framework, i.e., when samples arrive one at a time. Using a derivation
very similar to (1), except that all terms are dependent on Q, one can show that (5) is
proportional to:

p(θ|x1 : xT , q1 : qT ) ∝
∑

Q

p(xT |θ, Q)P (Q|qT )

︸ ︷︷ ︸

·p(θ|x1 : xT−1, q1 : qT−1). (6)



760 N. Poh et al.

(6) shows that new parameters (the left hand side of equation) can be updated from old
parameters (represented by p(θ|x1 : xT−1, q1 : qT−1)) using the underbraced term.
Therefore, in order to maximize p(θ|x1 : xT , q1 : qT ) with respect to θ, one does
not need to keep the previous samples (x1 : xT−1, q1 : qT−1) but only needs the last
estimate of parameters from these samples. This shows that one can design an online
algorithm not only for a conventional model (without quality information), but also for
the conditional model based on quality.

Note that the responsibility term P (Q|qT ) only appears in the underbraced term,
implying that P (Q|qT ) is only effective on the latest T -th observation. Conditioning
the parameter estimation based on Q, as in (4), therefore makes the estimation of (5)
(being the real objective) a tractable proposition.

When there are several models/templates, it is reasonable to expect that some models
may contribute more in making the accept/reject decision than the others. Let θQ

∗ be the
optimal value that maximizes (5), and Q = 1, . . . , Q. In this case, using the Neyman
Pearson theorem, the optimal classifier should give the following output:

y = log

∑
Q p(x|θQ

∗ , C)P (Q|q)
∑

Q p(x|θQ
∗ , C̄)P (Q|q) (7)

where p(x|θQ
∗ , C) is the density of a client (the reference user) model whereas p(x|θQ

∗ , C̄)
is the density of an anti-client model, i.e., one that represents all other users. This is
a concept borrowed from speaker verification, also known as a universal background
model [12]. It can be observed that the contributions of these two terms are appro-
priately weighted by the responsibility term P (Q|q). The effectiveness of the above
formulation was shown in [10], in the context of intramodal fusion involving several
face verification systems, with x being a vector of system outputs and q being a vector
of some face related quality measures such as reliability of face detection, background
uniformity, presence of glasses, head orientation, etc. Note that these factors are used
because they are known to affect the performance of a face verification system.

Instead of using (7), in a simplified case, we can also choose to use only a single
model that is the most appropriate (according to the responsibility term):

y = log

∑
Q p(x|θQ

∗ , C)f(Q, q)
∑

Q p(x|θQ
∗ , C̄)f(Q, q)

,

where

f(Q, q) =
{

1 Q = argmaxQ P (Q|q)
0 otherwise,

2.3 Quality-Based Model Update and Creation

In the previous section, we showed that it is possible to make inference with several
models. Each model is different because it gauges the feature density for a given Q
which can be the acquisition condition, or a different presentation. In both cases, an
observed biometric feature set will appear very differently from the previously stored
biometric template.
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A criterion is indeed needed to identify when a model should be updated or created.
If x′ is a newly labeled sample having q′ as its quality measurements, one chooses the
quality state Q∗ that maximizes the responsibility P (Q|q′), i.e.,

Q∗ = arg
Q

max
Q=1

P (Q|q′). (8)

However, in reality, the model p(x′|θ, Q∗) may not exist. In fact, right after enrollment,
in a typical scenario where enrollment is done with a single template, there is only one
quality state, i.e., Q = 1. In the absence of the model p(x|θ, Q∗), one should naturally
create the model p(x|θ, Q∗) using the observation x′.

However, if the model p(x|θ, Q∗) exists, one can update the model using (6). The
new parameter can be obtained as follows:

θQ
new = argmax

θ

∑

Q

p(x′|θ, Q)p(θQ
old)P (Q|q′) (9)

A simpler approach, taking the hidden variable Q as an observed one, is to use the
following update rule:

θQ∗
new = argmax

θ
p(x′|θ, Q∗)p(θQ∗

old) (10)

Both (9) and (10) constitute two variants of the maximization step in a typical EM
algorithm. In comparison, in both cases, (8) corresponds to the expectation step in an
EM algorithm [2].

P (Q|q) represents a prior knowledge of all possible combinations of factors affect-
ing the system performance. This function was obtained by modeling p(q|Q) using a
clustering algorithm. This suggests that one should train p(q) =

∑
Q P (Q)p(q|Q) from

as much data as possible from a separate development database containing many more
persons, environmental conditions, presentation styles, and even different devices. An
accurate estimation of P (Q|q) would guarantee the success of model adaptation. De-
signing a good set of quality measures, therefore, cannot be overemphasized.

2.4 Person-Specific and Time Dependent Performance Evaluation

There are, in general, two approaches to performance assessment with evolving bio-
metric models. We shall refer to one of these approaches as a separate adapt-and-test
strategy and another as a joint adapt-and-test strategy. Both are shown in Figure 1. In
the first strategy, a partition of data is used to adapt a biometric model and another dis-
joint partition is used for evaluating its performance. Such an approach is inefficient in
terms of data usage since the data used for adaptation cannot be used for testing, and
vice-versa. Worst still, it does not reflect our actual application scenario where a mo-
bile device is allowed to update biometric models on the test data. However, by using
a unique test set, one can use the widely accepted error counting approach. In this ap-
proach, one first determines a threshold and then calculates the number of false match
and false non-match events.

In contrast, the joint adapt-and-test strategy, which allows one to adapt (with unla-
beled data) and test (with the known labels), has two advantages. First, it corresponds
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E n r o l A d a p t T e s t

T i m e

(a) Separate adapt-and-test strategy

E n r o l A d a p t   + T e s t

T i m e

(b) Joint adapt-and-test strategy

Fig. 1. Two assessment strategies for co-training: (a) is a usual strategy and (b) is our proposal

better to our mobile application scenario. Second, it is more efficient in terms of data
usage, since the data used in model adaptation can, at the same time, be used to asses
the model performance. Unfortunately, its major disadvantage is the absence of an error
estimator.

We shall elaborate on an error estimator that can be used for joint adapt-and-test strat-
egy mentioned above, which is adapted from [11]. This procedure is able to track per-
formance change in terms of false match rate (FMR) and false non-match rate (FNMR)
over time and on a per person basis. Estimating this error is difficult because of the
paucity of data, especially the genuine user scores. However, it is possible if one im-
poses the constraint that the user-specific class-conditional (genuine user or impostor)
scores follow a particular parametric family of distributions (Gaussian in [11]) and that
it is continuous in time. In so doing, one can estimate the performance to an arbitrary
time precision. This method compares favorably with the conventional error-counting
approach which utilizes a sliding window, e.g., [5], and as a result suffers from the
dilemma between precision in performance and the time resolution, i.e., higher perfor-
mance precision entails lower time resolution and vice-versa.

In the context of [11], it was found that even without any model adaptation, some
biometric models can degrade over time, while others improve with use. This phe-
nomenon justifies the adaptation of biometric model by using the test data. However,
they also suggest that one should consider the adaptation on a per user basis. In our
case, when one regularly adapts a model through time, it is reasonable to expect that the
performance of a biometric model will evolve with time.

We shall summarize the procedure to estimate the error trend on a per person basis
below [11]:

1. Fit a regression line to each of the genuine and impostor match scores. An example
of regression fits for both genuine and impostor scores can be found in Figure 23.

3 In principle, one does not expect any trend for the impostor scores, i.e., the regression line
for the impostor should be parallel to the x-axis. Therefore, any deviation from this can be
attributed to estimation error.
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Fig. 2. Scatter plot of genuine user (“+”) and impostor (“◦”) match scores for a single user’s tem-
plate over 250 days (the X-axis). Higher match scores imply genuine user class. The interruption
in genuine match scores around the 100-th day is due to no observations being made during the
term break. The straight lines are the regression fits on the data (continuous line for the genuine
user match scores and dashed line for the impostor ones).

2. Obtain the first and second order statistics of the two regression lines for a fixed
time interval. Let these parameters be (μI

j,t, σ
I
j,t) for the impostor regression line

and (μC
j,t, σ

C
j,t) for the client counterpart, where j denotes the identity of a user and

t ∈ [1, T ] is a time index.
3. Estimate the false match rate and false non-match rate as follows:

FMRj,t(Δ) = Φ
(
Δ|μI

j,t, (σ
I
j,t)

2
)

(11)

and
FNMRj,t(Δ) = 1 − Φ

(
Δ|μG

j,t, (σ
G
j,t)

2
)

(12)

for a given threshold Δ in the score space, where Φ
(
Δ|μ, (σ)2

)
is a cumulative

density function with mean μ and standard deviation σ for a chosen distribution.

Once FNMRj,t(Δ) and FMRj,t(Δ) are calculated, they can be plotted for each user j
and through time t = 1 : T . In this way, one can plot a user-specific detection error
trade-off (DET) or receiver operating characteristic (ROC) curves that evolves with
time.

3 Conclusions

In this paper, we highlighted four challenges as well as provided solutions to semi-
supervised learning in the context of biometric person authentication. The issues are:
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online model updating, training and inference with several models, quality-based crite-
ria to control the creation of a new model, and person-specific time-dependent perfor-
mance evaluation. At the time of writing, an audio-visual database is being collected
with mobile devices. Future experiments will be conducted to test each of the proposed
solutions.
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