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Abstract. Eigenvalue estimation plays an important role in biometrics.
However, if the number of samples is limited, estimates are significantly
biased. In this article we analyse the influence of this bias on the error
rates of PCA/LDA based verification systems, using both synthetic data
with realistic parameters and real biometric data. Results of bias cor-
rection in the verification systems differ considerable between synthetic
data and real data: while the bias is responsible for a large part of clas-
sification errors in the synthetic facial data, compensation of the bias in
real facial data leads only to marginal improvements.

1 Introduction

An important aspect of biometrics is data modeling. Modeling the statistics
of data by covariance matrices is an example. Two techniques which rely on
modeling by covariance matrices are Principle Component Analysis (PCA) and
Linear Discriminant Analysis (LDA).

Because the covariance matrix of the data generating process, ¥, is usually
unknown, it needs to be estimated from a training set. An often used estimate
is the sample covariance matrix:

1

¢ T

3= N_ 1X -X (1)
where the columns of matrix X contain the training samples with the mean
subtracted and IV is the number of samples in the set.

In the modeling process we are often more interested in functions of the co-
variance matrix than in the covariance matrix itself. A commonly used function
is the decomposition of the covariance matrix in eigenvectors and eigenvalues.
The decomposition results we call population eigenvectors and population eigen-
values when derived from ¥ and we call them by sample eigenvectors and sample
eigenvalues when derived from 3. The it population eigenvalue is denoted by \;
and the i*" sample eigenvalue is denoted by ;. Though % is an unbiased estimate

of ¥ [1], the estimate of A\; by I; does have a bias.
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In this article, we analyse the effect of this bias with two verification exper-
iments. In the first experiment we use synthetic data so we can compare the
verification performance of the system with and without the bias. In both the
synthetic data and the real biometric data we compare performance improve-
ment when applying several bias correction algorithms in several configurations.

An analysis of the bias is given in section 2]l In section[2.2] we present a num-
ber of algorithms which reduce the bias. In section [3 we describe the verification
system used in the experiments. We indicate where the bias will have its largest
effect and where it should be compensated.

In section [.1] we present an experiment with synthetic facial data, to deter-
mine the effect of the bias when the assumed model is correct. In section we
repeat the experiment with real facial data. In section [Bl we present conclusions.

2 Eigenvalue Bias Analysis and Correction

2.1 Eigenvalue Bias Analysis

To find the statistics of estimators often Large Sample Analysis (LSA) is per-
formed. The sample eigenvalues show no bias in this limit case where the number
of samples is large enough that it solely determines the statistics of the estima-
tor. However, in biometrics, the number of samples is often in the same order as
the number of dimensions or even lower. Therefore, in the analysis of the statis-
tics of the sample eigenvalues the following limit may be considered: N,p — oo
while X — 7. Here N is the number of samples used, p is the number of dimen-
sions and +y is some positive constant. Analysis in this limit are denoted General
Statistical Analysis (GSA) [2]. In GSA the sample eigenvalues do have a bias.
To demonstrate GSA, we estimated sample eigenvalues of synthetic data with
population eigenvalues chosen uniformly between 0 and 1. We kept v = é while
we varied the dimensionality between 4, 20 and 100. In Figure[llwe show both the
population eigenvalue probability function and the sample eigenvalue probability
functions for 4 repetitions, given by
P
F()=p~' ) u(l—1) (2)
i=1
where u (1) is the step function. The empirical probability functions converge with
increasing dimensionality, and they converge to a different probability function
as the population probability function, due to bias. This example also shows
that bias reduction is only possible for a minimum dimensionality, because only
then the largest part of the error in /; as estimate of \; is caused by the bias.

2.2 Eigenvalue Bias Correction Algorithms

The bias is a deterministic error and can therefore be compensated. In this
section we present a number of correction algorithms we used in the verification
experiments to reduce the bias. The correction algorithms provide new estimates

of the population eigenvalues, which are denoted by A
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Fig. 1. Examples of eigenvalue estimation bias toward the GSA limit. All lines indicate
empirical probability functions based on sets of eigenvalues (see equation2]). The dashed
line indicates the population distribution, the four solid lines are the empirical sample
distribution.

1. The Muirhead correction [3] is given by a maximum likelihood estimate of
the population eigenvalues:

2 1 S l
Ai=li— U !
> —1 (3)

li
j=1l...i—K,i+K...p

In the original formula K was set to one. However, to prevent strong fluctu-
ations, we set K = 50, which is a simplified version of the Stein[4] algorithm.

2. The Karoui correction [5] is based on the Marcenko Pastur equation [6] which
gives a relation between sample eigenvalues and the population eigenvalues in
the limit considered in GSA. The algorithm finds an estimate of the empirical
population eigenvalue probability function (Equation [ with [ replaced by
A) as a weighed sum of fixed probability functions, in our case a set of delta
pulses and bar functions.

3. The Iterative feedback algorithm was developed by the authors and is new to
our knowledge. To find the population eigenvalugs the algorithm starts with

an initial guess for the population eigenvalues, 5\11 In the m*" iteration of
the algorithm, synthetic data is generated with population eigenvalues equal

to ;\i,m- The sample eigenvalues l}m of this synthetic data are determined.

Ai,m+1 s constructed via A; m+1 = Aim - i_li . These steps are repeated until

) ) im
f:l (li — li) is below a preset threshold or m > My ax.
4. The Two Subset correction is a classical technique in statistics to remove

bias in estimates, where X is split in two subsets X; and Xz. From (N/2 —
1)_1X1X1 eigenvectors are estimated, denoted @. The varlanceb in the

second set along these estimated eigenvectors are used as )\ S, SO )\ = @1 s

N _1X2X2 ~4317i. The )\i s do not contain the bias of the original estimates.
However, since the estimation is performed on half of the original set, the
variance of the estimate increases. This might explain why this correction is
not commonly used.
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3 Verification System Description

3.1 System Setup

In our experiments we test the influence of the bias of eigenvalues in biometric
systems, using a well known baseline PCA LDA system in our experiments.
In this section we give a brief description of this system. For a more detailed
discussion we refer to [7].

The input of the verification system are facial images. On these images some
standard preprocessing is done, which results in a data sample x for each image.
To transform these input vectors to a space where classification is possible, a
transformation matrix T is determined in 3 steps based on a training set of
example samples. In the first two steps we use PCA to reduce the dimensionality
and whiten the data.

In the third step a projection to the most discriminating subspace is deter-
mined by modeling each data sample as € = x,,+xp. Variations between samples
from the same class are modeled by @,,, which is distributed as N (0, £,,), a multi
variate normal distribution with mean 0 and covariance matrix >,,. We model
the variations between classes by x;, which is distributed as N (u, Xp). Since
the data is whitened, the most discriminating subspace is the subspace of the
largest eigenvalues of ¥;. Therefore the transformation matrix T is given by:

A Al A
T= ‘I)bT,CQ ) Af,cl ’ @ZCI (4)

where (i)t,Cl are the first C eigenvectors of f)t, the covariance matrix of the train-
ing set, and /A\tvcl is a diagonal matrix with as diagonal the first C eigenvalues
of 3. <i>b702 are the first Cy eigenvectors of Y.

After projecting samples in the classification space, we compare sample & with
class ¢ by calculating a matching score. We accept an identity claim if the score
is above a certain threshold. The score is based on the log likelihood:

L@)=—(T-@—po)" - S50 (T — o) + (T — )" (T2 — 1) (5)

3.2 Modifications for Eigenvalue Correction

In this verification system, there are two points where eigenvalue correction may
improve results: in the whitening step, where the data is scaled based on eigen-
value estimates and in the matching score calculation, where the eigenvalues of
the within covariance matrix in the classification space are needed. We perform
eigenvalue correction after the dimensionality reduction, but before the whiten-
ing step.

At first sight, it seems that the eigenvalues of 3, need to be corrected. How-
ever, under the assumed model, the total covariance matrix >»; can be writ-
ten as ¥ + X,. These matrices are estimated by (C' — 1)~! 25:1 pepl and
(N-0)t Zij\il(mi — Le(a) ) (@i — pa(as))” respectively, where C' is the number
of classes in the training set, j. is the mean of the training samples of class ¢, and
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£(x;) returns the class index of sample ;. Because both matrices are estimated
with a different number of samples, their eigenvalues have a different bias. We
therefore perform the correction in the following manner:

1. Estimate X, and X.

2. Decompose both covariance matrices in eigenvectors and eigenvalues.

3. Construct new estimates of the covariance matrices using the original eigen-
vector estimates and the corrected eigenvalues.

4. Sum the two estimates to get a new estimate of ¥;.

The corrected estimate of the covariance matrix is given by Y, = ®, I, (/A\T)@T

T

where 7 is either w or b and fNy,(/ir) is an eigenvalue correction algorithm.

4 Experiments

In this section we describe two verification experiments with the system pre-
sented in the previous section. In the first experiment we used synthetic facial
data while in the second experiment we used real facial data.

4.1 Synthetic Data Experiment

To generate synthetic data close to real facial data, we determined the data
structure of a large set of face images in the FRGC database. The data contained
8941 facial images. All facial images were taken under controlled conditions with
limited variations in pose and illumination. Also the faces in the facial images
had a neutral expression and nobody wore glasses.

We model the facial data with the model in section[Bl For generating synthetic
data adhering to this model with parameters close to real facial data, we esti-
mated the within class covariance matrix ¥, and the between class covariance
matrix ¥ from the FRGC data. Since the eigenvalues of these estimates also
contain a bias, we corrected their eigenvalues with the Two Subset correction,
knowing from previous experiments that this correction led to better estimates
of eigenvalues [8]. We kept p; zero.

We generated a small training set of 70 identities, with 4 samples per identity,
so the bias should be comparable to small real face data sets. This training set
was used to train a verification system. In the dimensionality reduction stage
of the training the dimensionality was reduced to 150. In the LDA step, the 60
most discriminating features were retained.

We tested the following corrections: no correction, Muirhead correction, Karoui
correction, Iterative Feedback correction, Two Subset correction and alower bound
correction. With the lower bound correction, we use the true covariance matrices of
thesynthetic datato calculate the actual variances along the estimated eigenvectors

and use these values as ;\i’s. We assumed this correction would give an indication
of the best possible error reduction.

We generated a test set with 1000 identities. For each identity 10 enrollment
samples and 10 probe samples were generated. During the experiment 3 config-
urations were tested: correction of only the within class eigenvalues, correction
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of only the between class eigenvalues and correction of both the within and the
between class eigenvalues. The DET curves of the three configurations are shown
in Figure 2 In Figure Fal we show the relative EER improvement averaged over
5 repetitions.

The within class eigenvalues correction configuration shows a large difference
between the no correction DET curve and the lower bound correction. Therefore
the bias in the within class eigenvalues seems to have a large effect on the error
rates. The Two Subset correction achieves on average slightly better results as
the lower bound correction, but this is probably due to measurement noise. The
performance of the Karoui correction fluctuates when the experiment is repeated.
In some repetitions the Karoui correction reduces the error rates by half, but on
average it increases the error rates as shown in Figure Fal

The between class eigenvalues correction configuration shows hardly any dif-
ference between the different correction algorithms. It seems that the bias in
the between class eigenvalues have little influence on the verification scores. The
curve of both eigenvalue sets corrected shows no significant difference with the
within only correction.

In Figure [Bal and Figure Bh we show the corrected within class eigenvalues
and between class eigenvalues respectively. The lower bound correction shows
considerable fluctuations in the curve. This indicates that the ordering of the
sample eigenvectors is wrong.

The lower bound curve is much flatter for the small eigenvalues in the within
class correction than the no correction curve. The Two Subset correction also
makes the curve much flatter for the smaller eigenvalues, although the eigen-
values are considerably larger than the lower bound correction. Considering the
error rates are almost the same, the similarity in flatness seems more important
than the actual value of the eigenvalues.

The Karoui correction shows a similar flatness until the 78" eigenvalue. After
the 92t" eigenvalue, all remaining eigenvalues are set to 0. This seems to have
only a small effect on the error rates. This is remarkable since 0 within class
variance would indicate very good features, while we know from the lower bound
correction that the within class variance is non zero. However, if the between
class variance is also zero, the direction will be neglected.

4.2 FRGC Facial Data Experiment

Eigenvalue correction with synthetic facial data caused a significant reduction
of the error rates. In the next experiment we replaced the synthetic facial data
with the face data set from the FRGC database. This data set is the set used in
the previous experiment to determine the facial data structure.

The data set is split in a training set and a test set. The training set contained
70 randomly chosen identities, with a maximum of 5 samples per identity. The
test set contained the remaining 445 identities. At most 5 samples per identity
are used for enrolling, at least 1 sample is used as probe per identity.

In the training stage instead of reducing the dimensionality to 150, as de-
scribed in section [ only the null space is removed. After correction of the
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eigenvalues, the dimensionality is reduced to 150. The correction algorithms de-
scribed in section are compared.

The experiment is repeated 5 times for the same 3 configurations as in the
synthetic data experiment. For each correction algorithm in each configuration
we determined the Equal Error Rate (EER). This EER is compared with the no
correction EER. The average over 5 repetitions of the relative improvement of
EER is shown in figure

The results show that correcting only the between class eigenvalues increases
the EER for all correction algorithms. The within correction decreases the EER
for most algorithms. Correcting both eigenvalue sets decreases the EER for the
iterative feedback algorithm and the Two Subset algorithm. But this decrease
in EER is less than the decrease in EER if only the within class eigenvalues are
corrected.

Comparing the different correction methods shows that in the within correc-
tion and both eigenvalue sets correction the Two Subset correction performs
considerably better than the other corrections. The Karoui correction always
increases the EER.

In Figure Bl we show the results of the first repetition. The Karoui corrections
sets a large set of small eigenvalues to zero. This had remarkably little effect on
the error rates. The T'wo Subset correction on the other hand assigns non zero
values to eigenvalues which were originally zero.

Most correction algorithms show a trend: the largest eigenvalues are reduced
while the smaller eigenvalues are increased. This effect is the strongest with the
Two Subset correction. Since this correction method achieved the lowest error
rates, it seems that in face recognition indeed the largest eigenvalues are over
estimated while the smallest are under estimated, at least in the within class
estimation.
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Fig. 4. Relative Equal Error Rate improvement for each correction method. There
are three configurations: only within class eigenvalues correction, only between class
eigenvalues correction and both eigenvalue sets correction.
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Comparing the results of the real facial data test with the results from the
synthetic data shows that the EER’s in real data are an order higher than the
EER’s in synthetic data. This suggests that the model we used is not sufficiently
accurate for describing real facial data. However, in both experiments the Two
Subset method showed the highest reduction in EER.

5 Conclusion

We showed that the GSA provides more accurate analysis of the sample eigen-
value estimator than LSA in biometrics: GSA on the estimator predicts that
the estimates in biometrics will have a bias, which is observed in synthetic data,
especially for the smaller eigenvalues.

Correcting only the within class eigenvalues has demonstrated the most effect.
This is related to the previous conclusion: the best features are determined by
the ratio of between class over within class variance. Therefore the best features
probably lie in space spanned by the largest between class eigenvalues and the
smallest within class eigenvalues. Since the smaller eigenvalues have more bias,
within class correction has the most effect.
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The Two Subset correction gave the best improvement of error rates in both
the synthetic data experiment and the real facial data experiment. Although
the performance of the correction was the same as the synthetic correction, the
scree plots did differ. The corrections of the other algorithms did also significantly
alter the eigenvalues, but this had little effect on the error rates for most of these
corrections. Apparently the actual values of the eigenvalues do not have to be
estimated very accurately.

The relative error reduction in the facial data is much lower as in the synthetic
data by the Two Subset correction. Also the no correction error rates differ more
than an order between the real facial data and the synthetic data. This suggest
that the bias in the eigenvalue bias is only a moderate error factor in the real
facial data.
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