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Abstract. Achieving high-availability in service-oriented systems is a
challenge due to the distributed nature of the architecture. Redundancy,
using replicated services, is a common software strategy for improving
the availability of services. However, traditional replication strategies are
not appropriate for service-oriented systems, where diverse services may
be grouped together to provide redundancy. In this paper we describe the
requirements for a redundancy protocol and propose a set of processes
to manage redundant service providers.

1 Introduction

Service-Oriented Architecture (SOA) is a style of software architecture that pro-
motes software reuse and inter-operability. This it achieves by distributing its
functionality amongst services, which are loosely coupled software components.
However, the distributed nature of SOA presents a serious challenge to a system’s
quality of service when services are spread across organizational boundaries.

The availability of a service is a quality that is difficult to manage when
the service depends on inter-organizational services. It is usually improved by
using redundancy, in the form of additional components that provide backup
services in the event of a failure. Traditional redundancy strategies are principally
concerned with the synchronization of state between identical components, but
services in an SOA system are independent and autonomous and so do not need
synchronizing. However, some service invocations incur a cost or result in a
change in the shared state. Therefore, an SOA redundancy strategy is required
to ensure that only one redundant service is executed per invocation.

We address this problem by identifying the requirements that a process must
meet if it is to manage redundant services. These requirements are met by adapt-
ing the three-phase commit (3PC) fault tolerance protocol to SOA.

In the following sections we will cover some background, the protocol, and
draw some conclusions about the protocol and its limitations.

2 Background

In order to define a protocol for redundancy in SOA, we must first provide some
background in the relevant subject areas. In this section we discuss the areas of
service-oriented architecture, fault tolerance, redundancy, and related work.
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2.1 Service-Oriented Architecture

Software architecture is a discipline of software engineering. It can also be viewed
as an abstraction of a software system, in terms of its functional components,
the properties of the components, and the relationships between them [1].

The software components provide the systems functionality and can range
from a primitive computational unit to a whole composite systems. The rela-
tionships between components are called connectors. They represent the means
of communication between components, and can represent a simple association
or a more complex interaction. The properties of a component are its exter-
nally visible, non-functional qualities. They influence the quality by which the
functionality is provided by the component, but do not affect the functionality
provided. Availability is an example of a non-functional property.

Another feature of architecture is the use of styles. These are patterns of soft-
ware composition that have well known quality consequences. Styles are defined
by the components types, their relations and the rules by which they may be
combined [18].

Service-Oriented Architecture (SOA) is a style of software architecture de-
signed to utilize distributed components that may be located across organiza-
tional boundaries. Its goals are to promote the reuse, evolution, scalability and
interoperability of software components [12]. SOA components are called ser-
vices, which interact through the publish and subscribe connection pattern.

The principles of SOA provide guidelines for implementing systems so that
the aims of SOA can be achieved [2,5,12,15,20]. The important principles for this
study are as follows;

• Discoverability: Services should be visible, such that they can be found
and accessed via a discovery mechanism. This is accomplished by publishing
descriptions, to some form of repository, in a widely accessible and under-
standable format.

• Composability: Services can be composed into composite services, either
by static definitions or by the dynamic discovery of services at run time.

• Statelessness: The purpose of invoking a service is to realize an effect. This
may be a response message or a change in the shared state of the participat-
ing services. However, a service provider is stateless in that it need not retain
information about the state of a service consumer between invocations.

Other features of a service include; defined service contract, loose coupling,
autonomy, abstraction, and reusability.

SOA is an abstract architecture in that it only describes the principles to
which service-oriented systems should adhere. A common set of standards by
which these systems can be implemented, collective known as Web Services, are
published by the Organization for the Advancement of Structured Information
Standards (OASIS) and the World Wide Web Consortium (W3C). The core
standards provide for the description, publication, discovery, and consumption
of services using the publish-subscribe communication paradigm.
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Additional specifications, commonly known as the WS-* extensions, define
standards for managing the quality of service consumption. Some of the Web Ser-
vice extensions include; WS-ReliableMessaging (OASIS), WS-Coordination (OA-
SIS), WS-AtomicTransaction (OASIS), and WS-Policy (W3C). These provide
frameworks for managing messages, coordinating actions, implementing fault tol-
erance features, and defining policies for quality of service constraints. Two ad-
ditional languages have been defined to allow the specification of orchestrations,
BPEL4WS (OASIS), and choreographies, CDL4WS (W3C), of interacting
services.

2.2 Fault Tolerance

A fault tolerant system aims to avoid system failure even if faults are present.
In terms of SOA, a failure occurs if a service is unable to respond to a request
as defined by its published definition. In an inter-organization SOA the most
important phase of fault tolerance is error detection. Once an error is detected,
a service consumer must take the appropriate action to find another provider
to fulfill its request. This form of error recovery is the only guaranteed option
available, where failed service providers may be in external domains. If no al-
ternatives are available for a critical service provider then the fault cannot be
recovered and the consumer must propagate the failure. The service will remain
in a failure state until it can discover a working service provider to satisfy its
critical functions.

Many techniques have been proposed to improve the fault tolerance of dis-
tributed systems. These can be characterized as either optimistic or conservative
approaches. Optimistic techniques make assumptions from the properties of the
system in order to improve the performance of fault tolerance. However, when
the assumptions fail the technique requires additional work to undo operations.
A discussion of optimistic approaches is provided by Jiménez-Peris and Patiño-
Mart́ınez [8].

Conservative techniques, such as atomic commitment, involve a greater num-
ber of messages under normal operation than an optimistic technique, and
hence a worse performance. Two examples of atomic commitment are the two-
phase (2PC) and three-phase (3PC) commit protocols. Both protocols assume
that the communications network is reliable and detection of service failures is
identified by timeout actions initiated by the non arrival of expected messages.
However, the 3PC contains additional operations and states that ensure that it
is a non-blocking protocol.

A finite state automata (FSA) of a 3PC protocol, adapted from Jalote [7,
p239], is shown in Fig. 1. This FSA shows the input and output messages as-
sociated with state transitions, which synchronize a coordinator with any
number of participant components. It can seen that this is a non-blocking
protocol because there is no commit state (c) adjacent to an abort state (a) or
non-committable state.
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Fig. 1. FSA of a Three-Phase Commit protocol

2.3 Redundancy

An availability of less than 100% can result in a failure of a system if it means
that a critical call cannot be serviced. If the required functionality is available in
another component then a system failure may be avoided. A common strategy
for improving the availability of a software component involves adding redun-
dancy into the functionality on which the component depends [17]. Redundancy
can be defined as the introduction of components that are not needed for the
correct operation of the system if no failures occur [7]. This can be achieved by
replicating copies of critical components.

In SOA, replication strategies must be assessed in terms of the service defi-
nition and the dynamic nature of binding. Service discovery allows a consumer
to build a list of providers that are not identical but can still satisfy the re-
quired contract. These can be considered replicas for the sake of redundancy in
SOA. However, these replicas may exist across organizational boundaries, so any
strategy that relies on communication between replicas must be excluded, which
means that passive replication [7] is not feasible in an SOA system. Furthermore,
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we can assume that any request to a group of replicas is atomic, stateless and
satisfied if “at-least-one” response is returned. Finally, the distributed nature
of an inter-organization SOA means that functional error detection is not guar-
anteed. Therefore, the best detection strategy is a time check failure, such as
failing on timeout of a response.

2.4 Related Work

Studies of service redundancy have been focused on traditional solutions using
service replication. They can generally be divided into replication strategies,
replication architectures, and implementation frameworks.

Several studies that focus on the various replication strategies, such as ‘active’
and ‘passive’ techniques, are presented by Maamar et al. [11], Guerraoui and
Shipper [6], and Chan et al. [3]. These papers discuss replication communities in
Web Services, survey replication techniques, and evaluate temporal and spacial
redundancy techniques.

Architectures are described by Osrael et al. [14], who propose a generalized
architecture for a service replication middleware, and Juszczyk et al. [9], who
describe a modular replication architecture.

Among the frameworks are those described by Salas et al. [16], Engelmann et
al. [4], and Laranjeiro and Vieira [10]. They propose an active replication frame-
work for Web Services, a virtual communication layer for transparent service
replication, and a mechanism for specifying fault tolerant compositions of web
services using diverse redundant services, respectively.

The focus of these studies is on describing and implementing various strategies
for invoking and maintaining replicated services. However, most do not treat
services as autonomous components, and so their applicability is limited for an
SOA system.

3 Protocol

A protocol is a set of rules governing the exchange of data between devices [19]. In
this instance, it can be described by the processes, states and allowable actions,
that satisfy the protocol’s requirements. In order to deduce a protocol we must
first define the requirements and assumptions for redundancy in an SOA system.

We can make the following assumptions of services included in a redundancy
group. Service are stateless outside of the protocol. Each conversation with an
available provider is assumed to be reliable because there are existing proto-
cols, such as WS-ReliableMessaging and WS-AtomicTransaction, to manage a
conversation once it is established. Finally, operations are not guaranteed to
be idempotent, in that they may have an associated cost or state change for
each invocation. However, any operation that is idempotent, such as a simple
query, may be invoked many times without consequence and so will not require
a redundancy protocol.
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CANDIDATE = (begin -> WAIT),

WAIT = (no -> END | yes -> READY),

READY = (abort -> END | prepare -> PREPARED),

PREPARED = (execute -> END).

Fig. 2. FSP and state machine of the candidate process

The requirements of the protocol are as follows;

1. Provider services are autonomous (SOA).
2. Provider services in a redundancy group may have different contracts, but

each must satisfy a common sub-contract (SOA).
3. Consumers must be able to conduct multiple, simultaneous conversations

with provider services (Fault Tolerance).
4. Any invocation of an operation that has a cost must result in the execution

of only one redundant service (SOA).
5. Providers are selected by voting or time ordering (Fault Tolerance).

These requirements lead to the following attributes of the protocol. Firstly,
each redundant service must be modeled as an independent concurrent pro-
cess (Req. 1). Secondly, the protocol must be independent of a particular service
contract (Req. 2). Thirdly, the protocol must be non-blocking (Req. 3). Fourthly,
the protocol must support ‘at most once’ execution (Req. 4). Finally, the pro-
tocol must include a controlling action that can select which redundant service
to invoke (Req. 5). A solution to these requirements is to adapt the 3PC proto-
col. This must be modified to ensure that only one process is executed, rather
than all committed. To reflect this change in emphasis the name ’Participant’ is
replaced by the name ‘Candidate’ to represent the redundant processes.

The constituent processes of the protocol are modeled as Finite State Pro-
cesses (FSPs) [13]. FSP is a language especially suited to modeling synchronized,
concurrent processes. Processes are defined in a textual language that represents
the states and the actions that trigger state transitions. Concurrency is modeled
in FSP with interleaved actions. However, actions that must be performed simul-
taneously can be defined with shared action pairs. FSP does not show message
exchange explicitly, but messages are the normal mechanism used to implement
shared actions. The Labeled Transition System Analyzer (LTSA) [13] is a tool
that can be used to generate state machines from FSP definitions and to check
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COORDINATOR = (begin -> WAIT),

WAIT = (timeout -> END | found -> READY),

READY = (timeout -> END | select -> PREPARED),

PREPARED = (invoke -> END).

Fig. 3. FSP and state machine of the coordinator process

their properties. The protocol definition using FSP consists of a three processes;
candidate, coordinator and redundancy.

The candidate process is initialized with a begin action, after which it will re-
spond with a yes or no action to indicate whether it is able to perform its service.
If it is able, it will wait until it receives a prepare action. If none is received before
a specified timeout period then it will abort the process. A candidate that is
prepared will then be executed. This process satisfies the requirements for a
non-blocking protocol because the execute and abort actions are not available
from the same state. The FSP and State Machine for the candidate process
are shown in Fig. 2.

The coordinator process is also initialized with a begin action. It will then
wait until it receives a message to indicate that a candidate has been found.
If none are found before a specified period then the coordinator will timeout
and the process will end. If a candidate is found then the coordinator will
select an appropriate candidate using a specified election method, for instance
the first response. Finally, the coordinator will invoke the candidate in the
prepared state and accept the response. Similarly to the candidate process,
this process also satisfies the requirements for a non-blocking protocol. The FSP
and State Machine for the coordinator process are shown in Fig. 3.

The redundancy process consists of a coordinator and two candidate
processes, labelled a and b. In addition, the FSP includes the following shared
actions pairs; (begin,begin), (yes,found), (select,prepare), and (invoke,execute).
This process ensures that the coordinator will select and invoke a single
candidate, and the other candidate processes will abort if available but
not selected. The FSP and state machine for a redundancy process with two
candidate processes is shown in Fig. 4. The state machine is shown only to
give an impression of its scale. This process satisfies the requirements for a re-
dundancy protocol in an SOA system because;

– Each service provider is modeled by a separate candidate process.
– The protocol is independent of any particular service contract
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||REDUNDANCY = (COORDINATOR || {a,b}:CANDIDATE)
/{ begin/{a,b}.begin,

{a,b}.yes/found,
{a,b}.prepare/select,
{a,b}.execute/invoke }.

Fig. 4. FSP and state machine of a redundancy process with two candidates

– The processes are non-blocking.
– “At most one” candidate is executed.
– The ‘select’ action provides a mechanism for the coordinator to determine

which candidate to invoke.

The state machine covers all available paths of the interleaved actions, syn-
chronized by the shared actions. The safety and liveness properties of the state
machine can be validated using the LTSA. Safety properties include the absence
of deadlocks and mutual exclusion of participant execution. The LTSA reports
no deadlocks for the state machine. In addition, the LTSA animator allows indi-
vidual paths to be traced through the state machine. This shows that each path
that includes an execute action includes only one. Liveness properties include
path progress and successful termination. The LTSA shows that all states, ex-
cept the end state, have at least one out action, and that all paths eventually
terminate at the end state.

4 Conclusions

In this paper we discuss the background to redundancy in SOA systems and
identified the requirements for a protocol to manage redundant services which
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are not idempotent. These requirements have been satisfied by adapting the
three-phase commit protocol to ensure that ‘at most one’ redundant service is
executed per invocation. The protocol consists of two non-blocking processes
(candidate and coordinator) and a synchronizing process (redundancy),
all of which have been modeled as finite state processes.

The protocol is a conservative, passive, fault detection mechanism, in that
it cannot predict where a fault will occur or actively exclude unavailable ser-
vices before the invocation process begins. This will reduce the performance and
increase the number of messages at invocation compared to an active or opti-
mistic protocol. However, a conservative protocol can be adapted to combine
the fault detection with the negotiation of quality attributes for the provided
service. Therefore, this protocol would be more efficient in a dynamic, quality
negotiation scenario.

Only a simple redundancy process has been modeled, with two redundant
candidates and selection by first response. This protocol would benefit by mod-
eling more complex redundancy groups and investigation of how to integrate
different selection strategies. In addition, the modeling of fault recovery has not
been considered. For instance, how would the protocol recover from a failure
whilst in the prepared state?

The processes of this protocol have not yet been implemented. Further inves-
tigation will be required to determine the most appropriate method to commu-
nicate and implement different redundancy strategies. The various Web Service
specifications may provide a basis for the protocol and a means to communicate
implementation parameters, such as whether a service invocation incurs a cost.
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