
Verification of Security Policy Enforcement in
Enterprise Systems�

Puneet Gupta and Scott D. Stoller

Computer Science Dept., Stony Brook University
{pgupta,stoller}@cs.stonybrook.edu

Abstract. Many security requirements for enterprise systems can be expressed in
a natural way as high-level access control policies. A high-level policy may refer
to abstract information resources, independent of where the information is stored;
it controls both direct and indirect accesses to the information; it may refer to the
context of a request, i.e., the request’s path through the system; and its enforce-
ment point and enforcement mechanism may be unspecified. Enforcement of a
high-level policy may depend on the system architecture and the configurations
of a variety of security mechanisms, such as firewalls, host login permissions,
file permissions, DBMS access control, and application-specific security mecha-
nisms. This paper presents a framework in which all of these can be conveniently
and formally expressed, a method to verify that a high-level policy is enforced,
and an algorithm to determine a trusted computing base for each resource.

1 Introduction

Many security requirements for enterprise systems can be expressed in a natural way as
high-level access control policies. These policies may be high-level in multiple ways.
First, a high-level policy may refer to abstract information resources, independent of
where the information is stored. For example, consider the requirement that only em-
ployees in the registrar’s office may access student transcripts. This should apply re-
gardless of whether the transcripts are all stored in one DBMS, partitioned (e.g., by
campus, college, or grad/undergrad) among multiple DBMSs, saved in backup files,
etc. Second, a high-level policy controls both direct and indirect accesses to the infor-
mation. For example, the above policy implies that other users cannot read transcripts
by directly accessing them in a DBMS or by invoking operations of an application (pos-
sibly running with a different userid) that accesses the database and returns information
from the transcripts. Third, a high-level policy may refer to the context of a request,
i.e., the request’s path through the system. For example, a policy might state that em-
ployees in the registrar’s office are permitted to access student transcripts only via a
web browser running on a host in the campus network and requesting the information
from the Registrar Application Server. Note that this is analogous to the use of calling
context (stack introspection) in the Java security model. Fourth, the policies may be de-
localized, in the sense that the enforcement point and enforcement mechanism may be

� This work is supported in part by ONR under Grant N00014-07-1-0928 and NSF under Grants
CNS-0831298, CNS-0627447, CCF-0613913, and CNS-0509230.

D. Gritzalis and J. Lopez (Eds.): SEC 2009, IFIP AICT 297, pp. 202–213, 2009.
c© IFIP International Federation for Information Processing 2009

Verification of Security Policy Enforcement in Enterprise Systems 203

unspecified. For example, if transcripts are stored in a DBMS, the above requirement
might be enforced in the DBMS or an application that connects to the DBMS. With
the latter approach, the system should be designed so that unauthorized users cannot
circumvent that application and access the DB directly. This policy might also be en-
forced in part by the operating system (based on login permissions and file permissions
on the relevant servers) and the network (blocking connections to the server from hosts
on which unauthorized users have login permissions).

Each high-level policy is enforced by one or more security mechanisms in a sys-
tem (perhaps involving DBMSs, middleware, operating systems, file systems, firewalls,
etc.). Enforcement also depends on the system architecture, which affects the possible
paths that requests can take through the system. We sometimes refer to the configura-
tions of security mechanisms as low-level policies. Ensuring that the low-level policies,
together with a given system architecture, correctly enforce given high-level policies is
a challenging problem.

Since enforcement of the high-level policies that control access to an information
resource might involve multiple hardware and software components in the system, a
natural question during security analysis is to identify a trusted computing base (TCB)
for each information resource. Note that the answer may depend on the low-level poli-
cies as well as the system architecture.

Security policies with one or more of the above “high-level” characteristics are nat-
ural during system design. The main contributions of this paper are (1) explicit iden-
tification of these characteristics of high-level policies, (2) a framework that allows
convenient and formal specification of such high-level policies, modeling of low-level
policies, and modeling of relevant aspects of system architecture, (3) a method for ver-
ifying that the low-level policies in a system correctly enforce (“implement”) the high-
level policies, and (4) an algorithm for computing a trusted computing base (TCB) for
a component or information resource.

Although there is a sizable literature on formal specification and analysis of security
policies, we are not aware of any previous work that explicitly deals with high-level
policies with these characteristics. The interplay between system architecture and the
policies has a significant impact on our framework. Frameworks for security policy
specification and analysis generally ignore system architecture and request context (in
the sense described above), except for specialized frameworks for network (e.g., fire-
wall) policy analysis. Although our framework is broad and flexible enough to model
relevant aspects of network security and operating system security, our focus is on
application-level security policies.

We are implementing a policy development environment based on our framework
and plan to evaluate it on case studies based on a university and a financial institution.
Important directions for future work are to consider policy administration and trust
management.

2 Related Work

Coordination of Policies in Distributed Systems. Firmato [BMNW99] is a higher-
level language for specifying firewall policies. Firmato policies get translated into rule-
sets for different models of firewalls, insulating administrators from the details of each

204 P. Gupta and S.D. Stoller

model’s configuration language. In addition, given the network topology, each firewall’s
policy can be specialized to contain only the rules relevant to traffic that may pass
through it. Work on Firmato does not consider verification of firewall policies against
overall network security requirements or analysis of how firewall policies interact with
security policies of other components.

Garcı́a-Alfaro, Cuppens, and Cuppens-Boulahia [GACCB06] define and give algo-
rithms to detect several specific kinds of anomalies (inconsistencies and potential errors)
in network security configuration, specifically, configuration of firewalls and network
intrusion detection systems (NIDS). In contrast, our work is aimed at verification of
general application-level security requirements, taking network security configuration
into account but in less detail. Thus, the kinds of properties verified, and the analysis
algorithms used, are quite different.

Ioannidis et al. [IBI+07] propose the concept of virtual private services (VPSs) to
describe a service implemented by a collection of components whose security policies
must be configured in a coordinated way to enforce an access control policy associated
with the service. They express all access control policies in the same language, namely
KeyNote [BFIr99], without distinguishing “high-level” and “low-level” policies. A pol-
icy for a VPS can be delocalized—in particular, its enforcement might involve multiple
components—but is otherwise basically a low-level policy, in our terminology. They de-
scribe a system architecture for deploying and enforcing policies. They do not consider
formal analysis, verification, or refinement of policies.

Bandara, Lupu, Moffett, and Russo [BLMR04] propose a formal methodology for
policy refinement, based on event calculus [BLR03]. Since most policies today are de-
veloped in ad hoc ways, not using a formal refinement methodology, we focus instead
on verification of given low-level policies against given higher-level policies (require-
ments). Also, their framework is completely generic; in order to use it for refinement of
enterprise security policies, one would need to introduce relations and rules similar to
those used in our framework to model system architecture and access control policies.

Sheyner, Haines, Jha, Lippmann, and Wing [SHJ+02] present a method to efficiently
construct attack graphs, which represent attacks involving sequences of exploits of vul-
nerabilities in components of a system. Our work is largely complementary to attack
graph analysis. Attack graphs are based primarily on vulnerabilities in components;
access control policies and calling behavior are not considered, except when they affect
a vulnerability. Also, attack graphs are generally used to find violations of system-level
security requirements (e.g., who may login to a host), not application-level security
policies.

3 Framework

Running Example. We use a student information system as a running example to il-
lustrate our framework. Student information is classified as academic (transcript, etc.)
or personal (SSN, citizenship, etc.). The system architecture is shown in Figure 1. Aca-
demic information and personal information are stored in separate databases. solar
is a web-based university information system; for brevity, we model solar and the
associated web server as a single component.

Verification of Security Policy Enforcement in Enterprise Systems 205

Fig. 1. Architecture of student information system. Edge labels specify the corresponding rela-
tion. The components connected on internal LAN are related to each other via link relation.

Information Resources. An information resource, abbreviated IR, represents a kind of
information handled by the system. The relationimplements(C, I)means that com-
ponent C (partially or completely) implements IR I, i.e., C stores that kind of informa-
tion. For example, the student information system contains two IRs, academicIR and
personalIR, each implemented by a corresponding database (e.g., implements
(academicDB,academicIR)). The distinction between an IR and the components
that implement it is useful if the information in the IR is partitioned, replicated, archived,
etc.

The information in an IR is assumed to be structured as a set of records, whose at-
tributes (fields) and their types are specified in the definition of the IR. We refer to these
as attributes of the IR, although they are actually attributes of the records in it. An at-
tribute type can be a primitive data type (e.g., String) or an IR, denoting a reference to
a record in another IR (recursive types are prohibited). For example, the attributes of
academicIR and studentIR include an attribute id with type String, which iden-
tifies the student that the record is about. IRs have a straightforward API with operations
for manipulating records. For example, the API includes an operationreadFieldwith
arguments record (the record being accessed) and field (the field being accessed).

Components. A system is built from components, which may represent software (e.g.,
solar) or hardware (e.g., a host or firewall). Each component has attributes, accessed
using the dot operator. For example, for a software component C, C.host is the host
on which C runs. Attributes can also provide information about identity management,
e.g., which authentication services and directory services are used by the component.

206 P. Gupta and S.D. Stoller

Each component has an API. For example, the API for the databases academicDB
and personalDB is modeled (ignoring details of SQL) as containing functions like
readField, writeField, readRecord, and addRecord. The API for solar
containsgetTranscript,getSSN, andgetCitizenship. We model the browser
as offering its user a single function,request, which non-deterministically sends some
request to a web server (in this case, solar). For brevity, we consider only the above func-
tions; other functions can be modeled and analyzed similarly.

Each component has a low-level permit policy that controls invocations of functions
in the component’s API and is enforced locally by the component. The language for
low-level policies is described later in this section.

High-Level Policies. High-level policies are expressed in a simple rule-based language,
which is an extension of Datalog with simple data structures that can be read, but not
constructed or updated, by policy rules. A policy rule has the form Q <- P1, . . .,Pn and
means: Q holds if P1 through Pn hold. Variables start with an uppercase letter, constants
start with a lowercase letter, and string constants appear in single quotes. The rules de-
fine the relation hPermit (“high-level permit”). hPermit(U, R, Op, C) holds
if the system should permit (allow) requests from user U to perform operation Op on
resource R in context C. A resource is a component or IR. The rules may also define
auxiliary relations. For convenience, the name and arguments of the operation are mod-
eled as attributes of Op (this is just a modeling convention, not an assumption about
the implementation); the operation name is stored in Op.function. The context C
is a sequence of tuples (c, f)—where c is a component or IR, and f is a function in c’s
API—representing the call chain (or “path”) by which the request propagated through
the system. Figure 2 shows some high-level policies for the running example.

Call Map. A function in a component’s API may call functions provided by other com-
ponents. Such calls must be considered to determine whether the restrictions on indirect
calls expressed by high-level policies are enforced. We introduce a function callMap
that captures the possible calls made by each component function. For simplicity and
efficiency, callMap provides, and our analysis tracks, only equalities involving func-
tion arguments. Such equalities are often needed to verify enforcement of high-level
policies; for example, to verify enforcement of (P1) in Figure 2, the analysis must track
equalities involving the id argument, which identifies the user whose record is being
accessed. callMap represents all interactions between components, regardless of the
actual communication mechanism.

Given a component C and a function F in its API, callMap(C,F) returns a set of
tuples of the form (calledBy,R,F ′,args), each describing a possible call made during
execution of that function. The above tuple represents a call to function F ′ (the “target
function”) of the “target” resource (component or IR) R. calledBy is analogous to a
setuid flag. If calledBy=self, the target resource sees the user executing the calling
component C as the caller; if calledBy=caller, it sees the user that called F on C as
the caller. args characterizes the possible arguments of the call to the target function.
args is represented as a set of equalities of the form attrib = val, where attrib is an
attribute name (recall that we model function arguments as attributes of an operation
object), and val can be a constant, the name of an attribute (meaning that attribute attrib

Verification of Security Policy Enforcement in Enterprise Systems 207

% A Student can read any field in the records for himself or
% herself.
(P1) hPermit(User, Resource, Op, Context) <-

Resource in {academicIR, personalIR},
Op.function = readField, Op.record.id = User.id

% A Graduate School Clerk can read every student’s transcript,
% if accessed through solar from (a browser running on) an
% internal host. Note: Context.head() is the first element of
% the context. internalHost(H) is an auxiliary predicate
% (definition elided) that holds if host H is part of the campus
% network.
(P2) hPermit(User, academicIR, Op, Context) <-

Op.function = readField, Op.field = ’transcript’,
User.role = ‘GradSchlClerk’, Context.contains(solar),
runs-on(Context.head(), H), internalHost(H)

% A registrar can read a student’s personal information, if
% accessed from an internal host
(P3) hPermit(User, personalIR, Op, Context) <-

Op.function = readRecord, User.role = ’Registrar’,
runs-on(Context.head(), H), internalHost(H)

% An administrative user can add new records to academicIR
(P4) hPermit(User, academicIR, Op, Context) <-

Op.function = addRecord, User.role = ‘admin’

% An administrative user can add new records to personalIR
(P5) hPermit(User, personalIR, Op, Context) <-

Op.function = addRecord, User.role = ‘admin’

Fig. 2. Illustrative high-level policy rules for the student information system

of the target call equals attribute val of the enclosing call to F), or newVar (meaning
that a fresh variable will be used in the analysis to represent this value).

For example, callMap(solar, getTranscript) contains the tuple (self,
academicDB, readField, {id=id, field=‘transcript’}). The values
of callMap for solar’s getSSN and getCitizenship functions are similar.
callMap(browser1, request) contains a tuple for every function of every other
component, with newVar arguments, reflecting that browser1 is untrusted and may
make arbitrary calls.

When analyzing the security of a design, the callMap for each component is based
on the component’s behavior as described in the design. For an implemented system,
callMap could be determined from the code. Determining it accurately might be dif-
ficult, but an over-approximation can safely be used when verifying enforcement of
high-level policies. Over-approximations in callMap may cause false alarms, but in
many cases, the low-level permit policy of the target component or an intervening com-
ponent will block the spurious calls or nested calls they make, preventing false alarms.

208 P. Gupta and S.D. Stoller

If the analysis does raise false alarms, the corresponding call chains indicate exactly
what assumptions about possible calls and their arguments are needed for enforcement
of the high-level policies, and the callMap, permit policies, or system architecture
can be refined accordingly.

Hosts and Firewalls. Each component has an attribute type. This attribute can have
any value, but the values host and firewall have special significance. Hosts and
firewalls are hardware components with network connections. Network connectivity is
modeled by the relation link(C1, C2), which means that the network may contain
a path between C1 and C2 that does not pass through a host or firewall. This reflects the
fact that we explicitly model hosts and firewalls but not routers. By taking all paths in
the network topology into account in the link relation, we are making no assumptions
about routing (or its security), although such assumptions could be used to restrict the
link relation.

Hosts, like all components, have attributes, e.g., the set of users with accounts on
the host. Since each software component must run on a host, we introduce a rela-
tion runs-on(C, H), which means that component C may run on host H. Hosts
provide various services, notably communication services, to components running on
them. Host-based security mechanisms may limit the communication performed by a
component, e.g., blocking connections with components on untrusted hosts. Firewalls
provide a similar security mechanism, typically forwarding some messages and drop-
ping others, based on the firewall’s local policy. An obvious way to capture this is to
model network security mechanisms as they are implemented (e.g., at the packet level).
However, this level of detail would unnecessarily complicate the model and slow the
analysis. We adopt a higher-level view, in which hosts and firewalls are modeled as
forwarding (or dropping) inter-component function calls, rather than packets. We in-
clude relevant network-layer information, such as the source and destination network
addresses, as attributes of the operation object Op representing the call. With this ap-
proach, the API of a host or firewall includes the operations (of other components) that
it forwards; its low-level permit policy allows calls that it forwards and denies calls
that it drops; and its callMap normally indicates that the call gets forwarded with
unchanged arguments.

Low-Level Policies. Low-level policies for all components are represented in a com-
mon rule-based language. The actual configuration languages of the access control
mechanisms get translated to this common language; this can be automated. Low-level
policy rules have the same form as high-level policy rules. They define auxiliary re-
lations (if desired) and the relation permit(U, R, Op, M), where the user U ,
resource R, and operation Op are the same as for hPermit, and the mode M de-
scribes the communication mechanism through which the operation is invoked. The
mode M enables us to model the fact that different functions may be offered through
different interfaces or with different policies. To avoid irrelevant details and distinc-
tions about communication mechanisms, we define modes that reflect how the com-
munication mechanism relates to the system architecture. A mode M has an attribute
type whose possible values are: direct, indicating that the function is called by
a user directly executing/running the component; local, indicating that the function

Verification of Security Policy Enforcement in Enterprise Systems 209

is called via some inter-process communication mechanism by another component on
the same host; or remote, indicating that the function is called over the network via
some communication mechanism. The mode M may have additional attributes, de-
pending on its type. If M.type=local, M.requester identifies the calling com-
ponent. If M.type=remote, the attributes M.srcIP, M.srcPort, M.destIP,
and M.destPort represent the source IP address, source port, destination IP address,
and destination port, respectively.

We could express low-level policies in an existing language for attribute-based ac-
cess control, such as OrBAC [ABB+03], which offers useful abstractions for structuring
policies. Our language is simple but flexible and expressive: those abstractions can eas-
ily be represented in our language using auxiliary relations, and making them built-in
would complicate our analysis algorithm without providing any additional leverage.

Figure 3 contains low-level policies for the student information system.
campusIPaddr(IPaddr) is an auxiliary predicate that holds if the given IP address
is part of the campus network.

4 Verification of Enforcement

This section sketches an algorithm for verifying that the low-level policies and system
architecture together enforce the high-level policies. For simplicity, the algorithm as-
sumes that the policies do not contain recursion. This restriction is satisfied by most
policies and can easily be relaxed if necessary.

The default starting points for requests are all functions s f of all components sr that
can be directly invoked . At each starting point, the arguments to the (top-level) func-
tion call and the identity of the user making the call are represented by variables. The
algorithm computes all possible chains of functions call that can propagate from each
starting point through the system, based on the system architecture and callMap. Note
that these call chains, ignoring the arguments to each function, correspond to the “con-
text” argument of hPermit in the high-level policy. If the call map contains cycles,
the number of call chains may be infinite. If a possible call C would extend a call chain
with a call that is the same, modulo renaming of variables introduced by newVar, as a
call already in the call chain, then that call is not explored. To ensure this condition is
sound, we include in the policy language only selected functions for accessing the con-
text; currently, we include head() and contains(expr) (not, e.g., length()).

While constructing call chains, the algorithm accumulates constraints on the values
of variables (the starting variables and variables introduced by newVar) that represent
function arguments; the constraints express that the calls in the chain are permitted
by the low-level policies of the components involved (including hosts and firewalls).
Values of function arguments obtained from callMap are reflected in the formula as
equality conjuncts; for example, if callMap indicates that a function call represented
by Op1 has CS as the value of the dept argument, Op1.dept = CS is conjoined
to the formula. The constraint for a call is determined by matching the conclusions
of the permit rules in the low-level policy of the component with the call, and, for
each rule that matches, instantiating the variables in the rule based on the match and
then backchaining to construct a first-order logic formula representing conditions under

210 P. Gupta and S.D. Stoller

firewall:
permit(User, Resource, Op, Mode) <-
Resource in {webServer, solar}, Mode.type = remote,
Mode.destPort = 443

solar:
permit(User, solar, Op, Mode) <-
Op.function in {getTranscript, getSSN, getCitizenship},
Op.recordId = User.id, Mode.type = remote

permit(User, solar, Op, Mode) <-
User.role = ‘GradSchlClerk’, Op.function = getTranscript,
Mode.type = remote, campusIPaddr(Mode.srcIP)

webServer:
permit(_, solar, _, _)

dbServer:
permit(User, Resource, Op, Mode) <-
Resource in {academicDB, personalDB}, Mode.type = remote,
Mode.destPort = 8000

personalDB:
permit(User, personalDB, Op, Mode) <-
User.role = ‘Registrar’, Op.function = readRecord,
Mode.type = remote, campusIPaddr(Mode.srcIP)

permit(User, personalDB, Op, Mode) <-
User.role = ‘solar’, Op.function = readField,
Mode.type = remote

permit(User, personalDB, Op, Mode) <-
User.role = ‘admin’, Op.function = addRecord,
Mode.type = direct

academicDB:
permit(User, academicDB, Op, Mode) <-
User.role = ‘solar’, Op.function = readField,
Mode.type = remote

permit(User, academicDB, Op, Mode) <-
User.role = ‘admin’, Op.function = addRecord,
Mode.type = direct

Fig. 3. Low-level policies for student information system

which the instantiated conclusion can be derived. Since we assume the policy rules
are not recursive, the backchaining always terminates. If the accumulated constraint
becomes unsatisfiable, the algorithm does not explore extensions of that call chain.

For each call chain S (including prefixes of longer call chains), the algorithm checks
whether the call chain is consistent with the high-level policy. Specifically, let ΨL be
the constraint computed for S, and let C be the context defined by S, i.e., S[i] is a call
to function first(C[i]) of component second(C[i]), where first and second return the

Verification of Security Policy Enforcement in Enterprise Systems 211

indicated components of a tuple. Call chain S is consistent with the high-level policy if,
for every instantiation of the variables that satisfies ΨL (in other words, S is feasible), the
instantiated call last(S) with context C is permitted by the high-level policy. To check
this efficiently, we use backchaining to compute a first-order logic formula ΨH repre-
senting the conditions (including conditions on the context) under which the call last(S)
is permitted by the high-level policy, using a variable V to represent the call’s context,
and then we check whether the formula (V = C)∧ΨL ∧¬ΨH is satisfiable. The satis-
fiability of this formula implies an inconsistency in the system. Our current prototype
uses Yices (http://yices.csl.sri.com/) for this purpose. If the satisfiability
check succeeds, the logic tool can provide an instantiation of the variables for which
the formula is true; this instantiation of S is a counterexample that illustrates how the
high-level policy can be violated.

The following example illustrates how our analysis works and how it can identify
vulnerabilities. For this example, we modify the low-level policies in Figure 3 as fol-
lows: the rule for GradSchlClerk in solar’s low-level policy is removed and re-
placed with the following rule in the low-level policy for academicDB:

permit(User, academicDB, Op, Mode) <-
User.role = ‘GradSchlClerk’, Op.function = readField,
Op.field = ‘transcript’, Mode.type = remote,
campusIPaddr(Mode.srcIP)

Consider a call chain that propagates along the following path (i.e., context)
C0: [(browser2, request),(internalHost, request), (dbServer,
readField), (academicDB, readField)]. The constraint associated with S
is (note: when it is necessary to rename a variable in a rule during backchaining, in or-
der to avoid name collisions, the algorithm appends the name of the component that the
rule is for and/or a sequence number; variables characterizing the top-level call, such as
User and Op in the formula below, never get renamed):

ΨL : Mode_academicDB.type = remote ∧ Mode_academicDB.destPort =
8000 ∧ Op.function = readField ∧ Op.field = ‘transcript’ ∧

User.role=‘GradSchlClerk’ ∧ campusIPaddr(Mode_academicDB.srcIP)

The last call in this chain is to function readField of component academicDB,
which implements academicIR. The following constraint is computed for this func-
tion call from the high-level policy:

ΨH : Op.function = readField∧ Op.field = ‘transcript’ ∧ User.role
= ‘GradSchlClerk’ ∧ Context.contains(solar) ∧
runs-on(Context.head(), H) ∧ internalHost(H)

The formula (Context = C0 ∧ ΨL) ∧ ¬ΨH is satisfiable; note that the conjunct
Context.contains(solar) in ΨH is not satisfied when Context = C0. This
shows that the modified low-level policy does not enforce the high-level policy. The
significance of this violation depends on why the high-level policy requires that solar
be in the context for these accesses. For example, solar might be responsible for log-
ging accesses to student transcripts by grad school clerks, for compliance with student

http://yices.csl.sri.com/

212 P. Gupta and S.D. Stoller

privacy regulations. Such an error might not be noticed during system execution, while
our analysis exposes it during the design stage.

5 Trusted Computing Base

In general, a trusted computing base (TCB) consists of the hardware and software re-
sponsible for enforcing a security policy. We define a set T of components to be a TCB
for resource (component or IR) r in system S (a system is defined by sets of compo-
nents and IRs, with their attributes; links, runs-on, and implements relations;
and low-level policies for each component) with high-level policy H if “correct” be-
havior by the components in T (i.e., behavior consistent with their low-level policy and
callMap) is sufficient to ensure that all call chains that end at r are consistent with H.
Recall that consistency of a call chain with a high-level policy is defined at the end of
Section 4.

More formally, to check whether T is a TCB for enforcement of the high-level policy
for r in system S with high-level policy H, we construct a variant relax(S, T̄) of the
system, where T̄ (the complement of T) is the set of components of S not in T , and then
use the method described in Section 4 to check whether call chains in that system that
end at r are consistent with H. The variant relax(S, T̄) is the same as system S except
that, for every component C in T̄ , the low-level permit policy of C is replaced with the
single rule permit(User, Resource, Op, Mode) <- true, and for every
function F in C’s API, callMap(C,F) returns the set containing all tuples of the form
(calledBy,R′,F ′,args) such that calledBy ∈ {self,caller}, R′ is a component or IR
of S other than C, F ′ is a function in the API of R′, and args maps all parameters of F ′
to newVar.

Designers might want to specify conditions on the acceptable TCB for a resource—
for example, that the TCB for a resource contains only components with specified ad-
ministrators. Our TCB analysis provides a basis for checking such properties.

References

[ABB+03] Abou El Kalam, A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miège, A., Saurel, C., Trouessin, G.: Organization Based Access
Control. In: 4th IEEE International Workshop on Policies for Distributed Sys-
tems and Networks (Policy 2003) (June 2003)

[BFIr99] Blaze, M., Feigenbaum, J., Ioannidis, J., Ke romytis, A.D.: The KeyNote trust
management system, version 2, IETF RFC 2704 (September 1999)

[BLMR04] Bandara, A.K., Lupu, E., Moffett, J.D., Russo, A.: A goal-based approach to
policy refinement. In: 5th IEEE Workshop on Policies for Distributed Systems
and Networks (POLICY), pp. 229–239 (2004)

[BLR03] Bandara, A.K., Lupu, E.C., Russo, A.: Using event calculus to formalise policy
specification and analysis. In: Proc. 4th IEEE Workshop on Policies for Dis-
tributed Systems and Networks (Policy 2003) (2003)

[BMNW99] Bartal, Y., Mayer, A.J., Nissim, K., Wool, A.: Firmato: A novel firewall manage-
ment toolkit. In: IEEE Symposium on Security and Privacy, pp. 17–31 (1999)

Verification of Security Policy Enforcement in Enterprise Systems 213

[GACCB06] Alfaro, J.G., Cuppens, F., Cuppens-Boulahia, N.: Analysis of policy anomalies
on distributed network security setups. In: Gollmann, D., Meier, J., Sabelfeld,
A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 496–511. Springer, Heidelberg
(2006)

[IBI+07] Ioannidis, S., Bellovin, S.M., Ioannidis, J., Keromytis, A.D., Anagnostakis,
K.G., Smith, J.M.: Virtual private services: Coordinated policy enforcement for
distributed applications. International Journal of Network Security 4(1), 69–80
(2007)

[SHJ+02] Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated genera-
tion and analysis of attack graphs. In: IEEE Symposium on Security and Privacy,
pp. 273–284 (2002)

	Verification of Security Policy Enforcement in Enterprise Systems
	Introduction
	Related Work
	Framework
	Verification of Enforcement
	Trusted Computing Base
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

