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Abstract. We provide a collision attack and preimage attacks on the
MDC-2 construction, which is a method (dating back to 1988) of turning
an n-bit block cipher into a 2n-bit hash function. The collision attack
is the first below the birthday bound to be described for MDC-2 and,
with n = 128, it has complexity 2124.5, which is to be compared to the
birthday attack having complexity 2128. The preimage attacks constitute
new time/memory trade-offs; the most efficient attack requires time and
space about 2n, which is to be compared to the previous best known
preimage attack of Lai and Massey (Eurocrypt ’92), having time com-
plexity 23n/2 and space complexity 2n/2, and to a brute force preimage
attack having complexity 22n.
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1 Introduction

MDC-2 is a method of constructing hash functions from block ciphers, where
the output size of the hash function is twice the size of the block cipher (hence
it is called a double-length construction). MDC-2 was developed at IBM in the
late 80s. A conference paper by IBM researchers Meyer and Schilling from 1988
describes the construction [21]. A patent was filed in August 1987, and the patent
was issued in March 1990 [1]. The construction was standardised in ISO/IEC
10118-2 in 1994 [9]. It is mentioned in great detail in both the Handbook of
Applied Cryptography [20, Alg. 9.46] and in the Encyclopedia of Cryptography
and Security [27, pp. 379–380]. Furthermore, it is in practical use (see e.g.,
[10, 15,26]).

Since publication, there seems to have been a wide belief in the cryptographic
community that given an ideal block cipher, MDC-2 provides a collision resistant
hash function. By this we mean that given an n-bit block cipher (thus yielding a
2n-bit hash function), the required effort to find a collision in the hash function
is expected to be 2n. However, there is no proof of this property. The only proof
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that collision resistance is better than 2n/2, as offered by many simpler (single-
length) constructions, is due to Steinberger [25], who showed that for MDC-2
based on an ideal cipher, an adversary asking less than 23n/5 queries has only a
negligible chance of finding a collision.

In this paper we provide the first collision attack on MDC-2 which breaks the
birthdaybound. The attackmakesnonon-standard assumptions on the underlying
block cipher. When applied to an instantiation of MDC-2 with e.g., a 128-bit block
cipher (see e.g., [28]), the attack has complexity about 2124.5, which is better than
the expected 2128 collision resistance for an ideal 256-bit hash function.

We also present improved preimage attacks on MDC-2. The previous best
known preimage attack, first described by Lai and Massey [16], has time com-
plexity about 23n/2 and requires around 2n/2 memory. In this paper we provide a
range of time/memory trade-offs, the fastest of which is significantly faster than
the Lai/Massey attack. We describe attacks of any time complexity from 2n to
22n. The memory requirements are such that the product of the time and space
complexities is always around 22n. Hence, our most efficient preimage attack has
time and space complexity about 2n.

Finally, we describe how to use the preimage attack to find multicollisions
faster than by the previous best known multicollision attack of Joux [11].

Related work. As mentioned, Lai and Massey described [16] a preimage attack
on MDC-2 of complexity around 23n/2. Knudsen and Preneel gave [14] a preim-
age attack on MDC-4 (a stronger and less efficient variant of MDC-2, to which
the attacks described in this paper do not apply) of complexity 27n/4. Steinberger
proved [25] a lower bound of 23n/5 for collision resistance of MDC-2 in the ideal
cipher model.

Our attacks in fact apply to a larger class of hash function constructions based
on block ciphers (see Section 2.1). Knudsen, Lai and Preneel described [13] colli-
sion and preimage attacks on all block cipher based hash function constructions
of rate 1, meaning that one message block is processed per block cipher call.
These attacks do not apply to MDC-2 (having rate 1/2).

Recently, a number of new double-length constructions have been proposed. At
FSE 2005, Nandi et al. [23] proposed a rate 2/3 scheme, and they proved that find-
ing a collision requires at least 22n/3 queries. Later the same year (Indocrypt 2005),
Nandi [22] introduced a class of rate 1/2 double-length schemes, all instances of
which having optimal collision resistance 2n. At Asiacrypt 2005, Lucks [18] pro-
posed the double-pipe scheme as a failure-friendly design, meaning that collision
resistance is retained even if the underlying compression function slightly fails to
be collision resistant. The scheme maintains two chains, which are combined at the
end, and hence is in fact a single-length scheme. However, by omitting the merging
at the end one has a double-length scheme, which is optimally collision resistant.
Hirose [8] proposed (FSE 2006) a collision resistant double-length scheme, based
on an n-bit block cipher accepting keys of more than n bits. The rate depends on
the key size. For all these schemes, the security proof is based on the assumption
that the underlying primitive (compression function or block cipher) is secure. Our
attacks do not apply to any of the schemes mentioned here.
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Hellman has described a generic method to find a preimage of a 2n-bit hash
function with runtime 24n/3 [7]. The caveat is that (apart from requiring 24n/3

memory) a precomputation of cost 22n is needed. The preimage attacks on MDC-
2 that are described in this paper are on a much better time/memory trade-off
curve, and do not require a 22n precomputation.

2 Preliminaries

The collision attack presented in this paper makes use of multicollisions.

Definition 1. Let f be some function. An r-collision for f is an r-set {x1, . . . , xr}
such that f(x1) = . . . = f(xr). A multicollision is an r-collision for some r > 1. A
2-collision is known simply as a collision.

Consider the classical occupancy problem (see e.g., [5]) consisting of randomly
throwing q1 balls into 2n urns, where it is assumed that each of the 2nq1 possible
outcomes is equally likely. In order for the probability that at least one urn
contains at least r balls to be 1 − 1/e, one must throw about

q1 = (r!2n(r−1))1/r (1)

balls in total [5, IV,(2.12)]. The classical occupancy problem can be translated into
the problem of finding an r-collision for a sufficiently random n-bit function f .
Hence, this task has expected complexity q1 as given by (1). In the following we
shall use this expression as an estimate for the complexity of finding an r-collision.

We note that a standard birthday collision attack has complexity 2(n+1)/2, ac-
cording to (1) with r = 2. With 2n/2 queries a collision is found with probability
about 1 − e−1/2 ≈ 0.39.

2.1 Description of the MDC-2 Construction

MDC-2 was originally defined using DES [24] as the underlying block cipher.
Here, we think of MDC-2 as a general double-length construction method for
hash functions based on block ciphers. For ease of presentation we shall assume
that keys and message blocks are of the same size, even if this is in fact not the
case for DES. In Appendix A, we discuss this special case.

Let EK(m) denote the encryption under some block cipher (assumed to be
secure) of plaintext m using the key K. If X is an n-bit string, then we let XL

denote the leftmost n/2 bits of X , and we let XR denote the rightmost n/2
bits of X . Given E, MDC-2 defines a 2n-bit hash function (with some given,
distinct initial values H0 and H̃0) as follows. Split the message M (assumed to
be appropriately padded) into t blocks m1, . . . , mt, and do, for each i from 1 to
t, the following (‘‖’ denotes concatenation).

V = EHi−1(mi) ⊕ mi

Ṽ = EH̃i−1
(mi) ⊕ mi,

followed by
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Fig. 1. The MDC-2 construction

Hi = V L‖Ṽ R

H̃i = Ṽ L‖V R.

The output is Ht‖H̃t. See also Figure 1. In other words, the chaining variables
Hi−1 and H̃i−1 are used as keys in two block cipher calls, which each encrypt
the message block mi, and subsequently xor the resulting ciphertexts with mi.
The two right halves of the results are then swapped to obtain the next pair of
chaining variables. In what follows, these steps will be called an iteration.

In the original description of MDC-2 [21], two bits of each of the two keys
Hi−1 and H̃i−1 were fixed. This had two implications. First of all, all known
weak and semi-weak keys of DES were ruled out, and secondly, this measure
ensured that the two keys were always different. There seems to be no strong
consensus that fixing key bits is a necessary security measure when MDC-2 is
based on some other block cipher for which weak keys are not believed to exist.
However, one might argue that ensuring that the two keys are different increases
security – although this practice also has a cost in terms of security: the amount
of state passed on from one iteration to the next is less than 2n bits. The attacks
presented in this paper can be applied regardless of whether or not some key
bits are fixed. However, the discussion of Section 6 assumes that no key bits are
fixed.

A generalisation. We may generalise the MDC-2 construction. Let f : {0, 1}n

× {0, 1}n → {0, 1}n be any function, and let g be any (efficiently invertible)
bijection from 2n bits to 2n bits. Then a generalised construction is the
following.

W = f(Hi−1, mi)‖f(H̃i−1, mi)
Hi‖H̃i = g(W ).

(2)



110 L.R. Knudsen et al.

Hi−1 H̃i−1

mi
��
f

�

��
f

�
g

� �
Hi H̃i

Fig. 2. The generalised MDC-2 construction

See Figure 2. In standard terms, (2) defines a compression function h : {0, 1}3n →
{0, 1}2n. The attacks presented in this paper apply to any instance of this con-
struction. Notice that MDC-2 has f(x, y) = Ex(y)⊕y and g(a‖b‖c‖d) = a‖d‖c‖b.
In the following we shall use the notation of the generalised construction. We
assume that evaluating g (both forwards and backwards) costs much less than
evaluating f . Our complexity estimates will be in terms of compression function
evaluations. For example, if an attack requires T calls of f , we shall count this
as having time complexity T/2, since f is evaluated twice in the compression
function.

3 The Collision Attack

The collision attack applies to any construction of the type (2). We use the
notation of Section 2 in the following description of the collision attack.

1. Given initial chaining values H0 and H̃0, find an r-collision in H1. Let the
messages producing the r-collision be m1

1, . . . , m
r
1, and let the r (“random”)

values of H̃1 be H̃1
1 , . . . , H̃r

1 .
2. Let � = 1.
3. Choose the message block m�

2 arbitrarily, and evaluate W �
j = f(H̃j

1 , m�
2) for

every j, 1 ≤ j ≤ r. If W �
i = W �

j for some i �= j, 1 ≤ i, j ≤ r, then a collision
(mi

1‖m�
2, m

j
1‖m�

2) has been found. If not, increment � and repeat this step.

See Figure 3. Step 1 requires finding an r-collision in an n-bit function. This
is expected to take time q1 = (r!2n(r−1))1/r as mentioned in Section 2. The
probability of success in Step 3 is about

(
r
2

)
2−n, since there are

(
r
2

)
pairs of

n-bit values, which may be equal. Hence, we expect to need to repeat Step 3
2n/

(
r
2

)
times. In each iteration we evaluate the encryption function r times. In

the construction (2), f is evaluated twice per message block, and hence the r
evaluations of f are equivalent to r/2 compression function evaluations. The
total work required in Step 3 is therefore expected to be

q2 = (r/2) · 2n/

(
r

2

)
= 2n/(r − 1).
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Fig. 3. The collision attack. Thick lines mean that there are r different values of this
variable. Thin lines mean that there is only one.

Table 1. Time complexity of the collision attack on MDC-2 with an n-bit block cipher,
compared to birthday complexity. For details in the case of MDC-2 based on DES
(n = 54), see Appendix A.1.

n r
Collision attack complexity

Section 3 Birthday
54 8 251.5 254

64 9 261.3 264

128 14 2124.5 2128

256 24 2251.7 2256

The total work required is q1 + q2 = (r!2n(r−1))1/r + 2n/(r − 1). Hence, we may
choose r as the integer ≥ 2 that minimises this expression. Notice that q1 is
an increasing function of r, and q2 is decreasing. By setting q1 = q2 one gets,
very roughly, a time complexity around (log2(n)/n)2n. However, it turns out
that the best choice of r is not exactly the one where q1 = q2, as one might
expect. Table 1 shows the best choices of r and the corresponding complexities
for different sizes n of the block cipher.

The probability of success of our attack with these complexities is about 1−1/e
for Step 1, and the same probability for Step 3 when repeated 2n/

(
r
2

)
times, in

total (1 − 1/e)2 ≈ 0.40. As mentioned in Section 2, the probability of success
for the birthday attack with 2n queries is about 1 − e−1/2 ≈ 0.39. Hence, we
consider the comparisons fair.



112 L.R. Knudsen et al.

4 Preimage Attacks

A brute force preimage attack on MDC-2 (or on (2) in general) has time com-
plexity O(22n) and space complexity O(1). The previous best known preimage
attack is due to Lai and Massey [16], and has time complexity O(23n/2) and space
complexity O(2n/2). Hence, for both attacks the product of the time complexity
and the space complexity is O(22n). In the following subsection we describe a
range of preimage attack time/memory trade-offs, for which the product of the
time and the space complexities is at most n22n, but where time complexity
can be anything between O(n2n) and O(22n). In Section 4.2 we describe how to
reach a time and space complexity of O(2n).

4.1 An Attack Allowing for Time/Memory Trade-Offs

The attack uses pseudo-preimages, which are preimages of the compression func-
tion where both the chaining value and the message block can be chosen freely
by the attacker. The attack can be outlined as follows.

1. Build a binary tree of pseudo-preimages with the target image HT‖H̃T as
root: the nodes are labelled with intermediate hash values, and each edge is
labelled with a message block value meaning that this message block maps
from the intermediate hash value at the child node to the intermediate hash
value at the parent. The tree has (on average) two children for each node,
and it has depth d meaning there are 2d leaves.

2. From the initial value Hiv‖H̃iv of the hash function, find a message block
that produces an intermediate hash value equal to one of the leaves in the
tree from Step 1.

See Figure 4. The above technique clearly leads to a preimage consisting of a
message block that maps to a leaf � in the tree, and a sequence of d message
blocks corresponding to the path in the tree that leads from the leaf � to the
root. Hence the total length of the message is d + 1 blocks.

The value of d determines the time/memory trade-off. We shall discuss con-
crete values of d later. The cost of Step 1 will be evaluated in the following.

HT‖H̃THiv‖H̃iv

�

Fig. 4. A binary tree of pseudo-preimages of depth d = 3
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Since the tree has 2d leaves, Step 2 is expected to take time 22n−d. In effect, by
constructing the tree we produce 2d new target images, which improves the effi-
ciency of the final brute force search by a factor of 2d. The memory requirements
are 2d + 2d−1 + . . . + 1 = 2d+1 − 1 intermediate hash values.

We note that the last message block, the one that maps to the target image,
must contain proper padding for a message of d + 1 blocks. If there are not
enough degrees of freedom in the last block to both ensure proper padding and
to find two pseudo-preimages, then a few initial steps (consisting of finding a
small number of pseudo-preimages) are needed to ensure proper padding. It will
become clear in the following that this only has a small effect on the total time
complexity.

Constructing the tree (Step 1 above) is very time consuming for an ideal hash
function. However, for the MDC-2 construction, there is an efficient method
based on the following theorem.

Theorem 1. Given a target hash value HT‖H̃T, a pseudo-preimage can be
found in time at most 2n−1 with probability about (1 − 1/e)2. By a pseudo-
preimage we mean a pair (Hp, H̃p) and a message block m such that
g(f(Hp, m)‖f(H̃p, m)) = HT‖H̃T.

Proof. The method is the following. Let U‖Ũ = g−1(HT‖H̃T). Choose m arbi-
trarily, define fm(x) = f(x, m), and evaluate fm on all x ∈ {0, 1}n. Referring
again to the classical occupancy problem, when randomly throwing 2n balls into
2n urns, the probability that a given urn contains at least one ball is about 1−1/e.
Assuming that fm is sufficiently random, this means that the probability that a
given image has at least one preimage is about 1− 1/e, and additionally assum-
ing independence, it means that the probability of finding at least one preimage
of both U and Ũ is (1− 1/e)2. Let these preimages be Hp and H̃p, respectively.
Then g(fm(Hp)‖fm(H̃p)) = HT‖H̃T. Finally, the complexity of evaluating fm

2n times corresponds to 2n−1 compression function evaluations. 
�
We note that for an ideal 2n-bit compression function, the above task has com-
plexity about 22n. The story does not finish with Theorem 1, however. Clearly, by
evaluating a random n-bit function 2n times, one finds on average one preimage
for all elements of {0, 1}n. Thus, we obtain the following corollary.

Corollary 1. Given t target hash values, in time 2n−1 one pseudo-preimage
(on average) can be found for each target hash value. Here, t can be any number
between 1 and 2n.

Proof. The technique is the same as above (we note that inverting g, which
must be done 2t times, is assumed to be a much simpler task than evaluating
f). Since fm is evaluated on all 2n possible inputs, on average one preimage is
found for each element of {0, 1}n. Therefore, again assuming independence, we
also expect one preimage on average of each of the t target hash values. With
respect to the complexity, we repeat that 2n calls to fm is equivalent to about
2n−1 compression function calls. 
�
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In the case of MDC-2, where g has a special form that allows to compute n bits
of the output given only n bits of the input (and vice versa), t above can actually
be 22n without affecting the complexity. The reason is that g (in this case) never
has to be inverted more than 2n times.

Due to Theorem 1 and Corollary 1, the tree described above can be efficiently
constructed as follows (note that the tree will, in fact, not be binary, due to some
nodes having no children, and others having more than two, but on average the
number of children per node will be two):

Assign the value HT‖H̃T of the target image to the root of the tree. Then find
(in expected time 2n) two pseudo-preimages of the target image by the method
of Theorem 1 (applied twice with different message blocks m). This means the
tree now contains the root and two children of the root. Then find two pseudo-
preimages of each of the two children of the root. This also takes time 2n due to
Corollary 1 (again, applied twice). Continue like this d times, ending up with a
tree of depth d having 2d leaves. The time complexity is d2n.

As mentioned, with 2d leaves, meaning 2d new target images, finding by brute
force a true preimage has complexity 22n−d. Hence, the total time complexity is
about d2n + 22n−d. Memory requirements are 2d+1 − 1 intermediate hash values
and a negligible number of message blocks.

Observe that with d = 0 one gets time complexity 22n and space complexity 1,
which is not surprising since we do not build a tree at all, so we have a standard
brute force preimage attack. With d = n/2 one gets time complexity about 23n/2

and space complexity about 2n/2, equivalent to the attack of Lai and Massey, but
the technique is different. The most efficient attack appears when d = n, in which
case the time complexity is about (n+1)2n, and the space complexity is 2n+1. We
improve the efficiency of this particular time/memory trade-off in Section 4.2.

We note that this attack provides practically any time/memory trade-off for
which the product of the time and the space complexities is about 22n. Figure 5
shows some example trade-offs.

2n

22n

1 2n

d = 0

d = n/2

d = 2n/3
d = 3n/4

d = n

Space

T
im

e

Fig. 5. A visualisation of the time/memory trade-off. Both axes are logarithmic. The
case d = 0 corresponds to the brute force attack. Larger values of d constitute improve-
ments with respect to attack efficiency.
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HT‖H̃T

�
��

�

�

�	


��

�

Fig. 6. Constructing a tree of pseudo-preimages by finding one child of every node in
each step

Alternative methods. The tree above does, in fact, not have to be binary. If
every node has on average 2b children, then when the tree has depth d, there
are 2bd leaves. The time required to construct the tree is d2b+n−1. The time
required for Step 2 above is 22n−bd. The memory requirements are about 2bd for
reasonably large b. With b = n/(d + 1), which approximately balances the time
spent in Steps 1 and 2, the total time complexity is about (d/2+1)2n(d+2)/(d+1)

and the memory requirements are 2nd/(d+1).
An alternative way of constructing the tree is the following. First, find a

pseudo-preimage of the root. Then, find a pseudo-preimage of the root and its
child. Continue applying Corollary 1 this way, finding in each step a pseudo-
preimage for each node in the tree, thus doubling the tree size in every step.
After d steps, the tree contains 2d nodes. The time complexity is d2n−1. See
Figure 6.

Now, if there is no length padding, then we may perform a brute force search
that links the initial value to any of the 2d nodes in the tree. This brute force
search has complexity 22n−d. Compared to the variant of the previous section,
both time and space requirements are roughly halved. We note that this attack
resembles a method described by Leurent [17] of finding preimages of MD4.

Length padding can be circumvented in the same way as it is circumvented
in Kelsey and Schneier’s second preimage attack on the Merkle-Damg̊ard con-
struction [12], but the resulting attack is slightly slower than the variant above,
since there is (apparently) no efficient method of finding fixed points of the
compression function.

4.2 Pushing the Time Complexity Down to 2n

The attack above can be modified to obtain an attack of time complexity very
close to 2n. The attack applies a technique which bears some resemblance with
the one used in a preimage attack by Mendel and Rijmen on the HAS-V hash
function [19], and also with the P3graph method introduced by De Cannière and
Rechberger in [4]. The attack works as follows:

1. Choose two message blocks m0 and m1 arbitrarily, but with correct padding
for a message of length n + 1 blocks. Here we assume that padding does not
fill an entire message block.

2. Compute f(i, mb) for each b ∈ {0, 1} and for every i from 0 to 2n − 1. Store
the outputs in the lists Ub, sorted on the output. Sorting can be done in
linear time by using, e.g., Bucket-Sort or direct addressing [3].
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Table 2. Time complexities of the preimage attack of Section 4.2 compared to the
previous best known preimage attack of Lai and Massey, and to a brute force attack.
For details on the case of DES (n = 54), we refer to Appendix A.2.

n
Preimage attack complexity

Section 4.2 Lai-Massey Brute force
54 255 281 2108

64 265 296 2128

128 2129 2192 2256

256 2257 2384 2512

3. Construct a binary tree with 2n leaves having the target image HT‖H̃T as
root (as above for d = n). The two children of each node in the tree are
found by lookups in U0 and U1, respectively.

4. Given 2n new target images (namely the leaves in the tree), perform a brute
force search starting from the initial value of the hash function.

Step 2 above takes time 2n. Memory requirements for each of the lists Ub are 2n

values of n bits. Step 3 is expected to take a negligible amount of time compared
to Step 2, since the tree is constructed by about 2n table lookups. Step 4 takes
an expected time 2n, since there are 2n target images, and the probability of
reaching each of them is 2−2n. In total, the time complexity of the attack is
about 2n+1, and the memory requirements are about the same.

We note that if padding spans several message blocks, a few initial steps are
required to invert through the padding blocks. This may add a small factor of
2n to the complexity.

Table 2 shows some example complexities of this attack for different sizes of
n, compared to the previous best known preimage attack and the brute force
attack.

5 Multicollisions

The preimage attack described in the previous section can be used to construct
multicollisions for the construction (2). Let the hash function be H , and let its
initial value be Hiv‖H̃iv. Apply the above preimage attack twice with target
hash value Hiv‖H̃iv, yielding two messages M0 and M1. In other words, we find
M0, M1 such that H(M0) = H(M1) = Hiv‖H̃iv. Now we can construct a 2t-
collision for arbitrary t; the messages in the multicollision consist of t copies of
M0 or M1, concatenated together.

The time complexity is twice the complexity of the preimage attack, i.e.,
2n+2. For t > 4 this is more efficient than the previous best known multicollision
attack by Joux [11], which has time complexity t2n, assuming a birthday attack
is used to produce each individual collision; by applying the collision attack of
Section 3, the complexity is reduced to (very roughly) (t log2(n)/n)2n. Still the
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multicollision attack based on the preimage attack is faster when t > 4n/ log2(n).
A drawback of the preimage-based method is memory requirements, which are
about 2n+1 in our attack, whereas by using cycle-finding methods [6, 2], the
memory requirements of Joux’s attack can be reduced to a negligible quantity.

6 Other Non-random Properties

Say M is a message of t blocks, and let H(M) = Ht‖H̃t be the MDC-2 hash of
M . The probability that Ht �= H̃t is (1− 2−n)t, because the two halves must be
different after the processing of every block out of the t blocks, in order for them
to be different at the end. For an ideal 2n-bit hash function, this probability is
1− 2−n, irrespective of the value of t. Hence, when t � 1, the probability of the
two output halves being equal is much higher in MDC-2 than in an ideal hash
function. In fact, if t = 2n, then the probability is around 1 − 1/e ≈ 0.63, since
(1 − 2−n)2

n ≈ 1/e for plausible values of n. The property does not hold for the
construction (2) in general (nor does it hold if some key bits are fixed to ensure
that the two keys in each iteration are different). What is required is that some
n-bit value b exists for every n-bit value a such that g(a‖a) = b‖b.

If, during the processing of a message, one has obtained two equal halves, a
standard birthday collision attack can be applied in time 2n/2. Hence, a new type
of birthday attack on MDC-2 is as follows. Search for a message block m0 such
that f(H0, m0) = f(H̃0, m0) = H1. Then find a pair (m1, m

′
1) of message blocks

such that f(H1, m1) = f(H1, m
′
1). This attack takes the same amount of time

as a standard birthday attack (it is in fact faster by a factor of two, since f only
has to be called 2n times), but a naive implementation uses only 2n/2 memory
compared to 2n for a (naive) standard birthday attack. By using cycle-finding
methods, memory requirements can be made negligible in both cases.

7 Application to Other Constructions

The construction (2) can be generalised even further. For example, we may define
the following general construction, where f and f̃ are two distinct functions both
mapping as {0, 1}n × {0, 1}n → {0, 1}n, and g : {0, 1}2n → {0, 1}2n is (again)
an invertible mapping:

W = f(Hi−1, mi)‖f̃(H̃i−1, mi)
Hi‖H̃i = g(W ).

(3)

Our attacks also apply to this construction, except that in some cases the com-
plexity is up to twice as high. For instance, finding a pseudo-preimage of HT‖H̃T
now requires 2n evaluations of both f and f̃ , and hence the total time complex-
ity is comparable to 2n compression function evaluations, and not 2n−1 as is the
case when f = f̃ .

Apart from MDC-2 we have not found other constructions in the literature
that fall under the category of (2) or (3). However, a construction that easily
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comes to mind is the dual of MDC-2, meaning that the message block is used as
the key in the block cipher calls, and the chaining value is used as the plaintext
and also in the feed-forward. An advantage of this dual construction is that some
block ciphers accept keys that are larger than the plaintext block, and hence the
message blocks are larger which results in improved performance. However, since
this construction is an instance of (2), it is susceptible to the attacks described
in this paper.

8 Conclusion

In this paper we presented the first collision attack on the MDC-2 construction
having time complexity below that of a birthday attack. The attack applies to
other constructions similar to MDC-2, and does not rely on weaknesses of the
underlying block cipher.

We also described new and improved time/memory trade-offs for preimage
attacks, where almost any trade-off such that the product of time and space
complexities is about 22n, with time complexity between 2n and 22n, is possible.
These new trade-offs mean that, e.g., a second preimage attack on MDC-2 based
on DES (see Appendix A) is not far from being practical.

We showed how to construct multicollisions based on the fastest preimage
attack, and we discussed some other constructions to which our attacks apply.

We believe the attacks have great theoretical and potential practical signifi-
cance. Double-length schemes have been studied intensively in the last two or
three decades, and for many years it was believed that MDC-2 was collision
resistant, assuming the underlying block cipher was secure. In fact, the main
criticism of MDC-2 seems to have been its somewhat poor performance. These
attacks show that we still have a lot to learn about double-length construc-
tions, although the recent shift towards provably secure schemes provides some
consolation.
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A The Special Case of MDC-2 Instantiated with DES

For simplicity, throughout the paper we assumed that the key size k equals the
block size n of the block cipher with which MDC-2 is instantiated. However,
this is not necessarily the case, with DES [24] (n = 64, k = 56) being the
most prominent example. The effective key size for MDC-2 with DES is further
reduced by two bits to k = 54. For the following, it suffices to think of the
mapping from chaining blocks to keys as a truncation from 64 to 54 bits. The
exact details of this mapping are of no concern for the following treatment, hence
we refer to [9] for the full details.

A.1 Collision Attacks

The collision attack as described in Section 3 produces a collision in the last
chaining value of length 2n. However, if an arbitrary message block is appended
to the expected colliding message pair, it suffices to look for a collision in the 2k
bits that will be used as the key input of DES in the following iteration. Hence,
for the collision attack on MDC-2 based on DES having complexity about 251.5,
instead of two, at least three message blocks are needed.

A.2 Preimage Attacks

Also for the preimage attack of Section 4, the target hash is assumed to be of
size 2n. In order to take advantage of a smaller key size k, the last message block
needs to be known by the attacker. In this case the time complexity can be as
low as 255; if no first preimage is given then the attack has a complexity of about
265.
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