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Abstract. In this paper we present the analysis and optimization of
the Semtex CFD application on the basis of trace data obtained with
VampirTrace and visualized by Vampir. In the course of the paper the
evaluation of I/O performance with regard to globally shared 1/O re-
sources and the detection of hidden remote memory accesses with the
help of special hardware performance counters will be highlighted.
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1 Introduction

This paper presents two aspects of the analysis and optimization process of the
parallel CFD (computational fluid dynamics) application Semtex on the SGI
Altix 4700 platform.

Computation and communication are the most prominent targets for per-
formance improvement. Yet, in this paper we investigate two effects related to
remote memory access in a NUMA environment and to extensive I/O activity.

The following Sect. [2 gives an overview of instrumentation and trace collection
with VampirTrace and trace visualization with the Vampir and VampirServer
tools. Section[3 depicts the checkpointing and communication mechanisms of the
Semtex CFD code and presents detailed detection of two interesting performance
flaws as well as the successful optimization of both. The paper ends with a short
conclusion and outlook.

2 Trace Collection and Visualization with Vampir

VampirTrace is a scalable and portable event tracing software for sequential
and parallel applications. It features tracing of applications on UNIX platforms
in C, C++ and Fortran supporting MPI, OpenMP and hybrid parallelism. It
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includes support for automatic code instrumentation and a sophisticated run-
time measurement library. VampirTrace is developed at the Center for Informa-
tion Services and High Performance Computing (ZIH) at Technische Universitét
Dresden in collaboration with the KOJAK project of research center Jiilich [I]
and is available under a BSD open source license.

Vampir is an interactive trace visualization and analysis tool developed at ZIH,
TU Dresden. It allows detailed post-mortem investigation of dynamic parallel
run-time behavior as well as statistical summaries of arbitrary intervals of run-
time [23]. The successor version VampirServer uses a client-server approach with
distributed processing of trace data that allows an interactive work-flow for very
large data sets [4].

2.1 Performance Counter Support

Even though VampirTrace focuses on event tracing and collecting event-specific
information, it utilizes additional statistical information about dynamic run-time
performance. Most notably, it supports the PAPI performance counter library,
that defines a common interface for reading hardware performance counters [5].
On one hand, it makes common performance counters available with standard
names on almost all platforms. This includes the counters for floating point
operations or cache misses/hits for various cache levels. On the other hand,
PAPI allows to query a huge number of platform specific performance counters
that are rarely used. Yet, sometimes such counters allow insight into very special
performance issues, as shown in this paper.

2.2 Application Specific and System Wide I/0 Tracing

Besides the classical targets of performance analysis computation and communi-
cation, another important component of HPC applications is input /output (I/0O)
from/to files on mass storage systems. In particular, with expanding storage sizes
and working sets, the time spent for data accesses on the storage system makes
up more and more of the total application run time. Yet, the speed of storage
systems does not increase accordingly. Like the so called memory wall [6] that
inhibits faster computation because of inadequately slow memory accesses there
is a similar input/output wall for accesses to the storage systems.

This makes the analysis and optimization of the I/O behavior increasingly
important. This is especially true for data-intensive applications that scale well
with the number of processors. Usually, such codes scale with a constant working
set per CPU. Thus the data to be transferred to/from the storage system grows
linearly with the degree of parallelism exceeding the 1/O capacity eventually.

Therefore, the recent development of VampirTrace contains some approaches
for gaining insight into dynamic I/O behavior of parallel applications [7I8]. This
includes instrumentation and tracing of application-level I/O calls as well as
system-wide I/O throughput of the global SAN (Storage Area Network) infras-
tructure. The former is important for detailed examination of user-space 1/0
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requests. The latter is necessary to include the effects from concurrent I/0O ac-
tivities of other applications — the SAN infrastructure cannot be used exclusively
like CPU or (parts of) the communication infrastructure (to some extent).

3 Tracing and Analysis of the Semtex Application

Semtex is a parallel CFD code which scales very well over 512 CPUs [9]. It is
very data intensive and is used regularly for highly parallel and long-running
simulations on the HPC infrastructure of ZIH.
Semtex employs an integrated checkpoint /restart mechanism in order to divide
a single simulation into convenient sections that fit well into the batch system pol-
icy and make it robust against system failures. Additionally, multiple checkpoints
retrieved at small intervals can be used to visualize the simulation. This allows for
verification of the correctness and refinement of the simulation, respectively.
The checkpoint mechanism saves the complete parallel working set of a sim-
ulation after a given number of time step iterations. For a visualization of the
simulation checkpoints are written every 200 iterations. If no visualization is
needed, the simulation runs for 5000 time steps (ca. 4h real-time on 128 CPUs)
after which a checkpoint is taken that is used as starting point by the next job.
Most of the simulations running at ZIH use a working set suitable for running
on 128 processors that results in checkpoints of 5 gigabytes in size. The less often
used next larger working set has checkpoints occupying 20 GB of disk space.
As simulations carried out with Semtex account for a large share of the CPU
hours used per year at ZIH, its I/O behavior has been subject to closer perfor-
mance analysis.

3.1 Instrumentation and Tracing of Semtex

For the analysis Semtex was at first instrumented using the automatic compiler
instrumentation offered by VampirTrace. A tracing run on 128 CPUs took 2h
16min for 2000 time steps including 10 checkpoints, and the trace data accu-
mulates to 56 gigabytes — including function calls, MPI specific information and
extensive I/O records for both, per-process I/O calls as well as system-wide I/0
throughput records. This data provides fine-grained information about the appli-
cation. Figure[llshows a section of the overall run-time including two checkpoint
phases which can easily be identified.

Although VampirServer handles such large traces without problems, the over-
whelming details make an analysis cumbersome. The level of detail (and hence
the size of trace files) was reduced by employing VampirTrace’s filter abilities
which allow to record only a given number of calls per function or to skip certain
functions completely.

Nevertheless, the overhead caused by the automatic instrumentation still
was very large — tracing time was about 2.5 times of original runtime[] As a

! This is a known problem when compilers have to decide whether to instrument or
inline a function — the Intel compilers used in this example favor instrumentation
over inlining, therefore much performance is lost.
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Fig. 1. Vampir’s Process Timeline display for a typical execution of Semtex

1h:28m:30 1h:28m: 40
Process O ¥ | fig ] ) | JLd
Process 1
Process 2
Process 3
Process 4
Process &
Process 6
Process 7
Process 8
Process 9
Process 10
Process 11

M fpplication
/0

M HP1

B Domain

M Fields

W Statistics

M Sentex zerial A0

Fig. 2. Timeline display zoomed to a single checkpoint phase

consequence, the code was manually instrumented and afterwards, the tracing
introduced only a marginal overhead.

However, the automatic instrumentation was by no means useless. The avail-
able tracing data delivered invaluable insights into the workflow of Semtex that
were used to quickly identify interesting source code locations where instrumen-
tation calls have been inserted.

3.2 I/0-Related Performance Bottlenecks

For investigation of I/O related performance we looked closer on the checkpoint
phases in between the time step simulation. Figure [2] shows a zoomed time line
for a typical checkpoint phase. Process 0 is dominated by I/O activity shown
in yellow while the remaining processes spend this time in MPI calls. This is a
classic single writer situation, where one process is collecting all data from its
peers via message passing in order to write it to the file system.

This scheme is obviously unfavorable for a massively parallel program and
limits the otherwise good performance. In particular, it inhibits scalability as
checkpoint phases will grow linearly for growing CPU counts.

Further investigating the I/O behavior of Process 0 revealed additional per-
formance problems. All checkpoint phases turned out to follow a very regular
pattern of receiving and writing constant sized blocks of approximately 1.4 MB
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Fig. 3. Regular pattern of MPI receive (red) and write (yellow) activities with notable
variation in throughput. The upper counter shows the process-related write speed while
the lower one shows the global SAN throughput.

as shown in Fig.[Bl Yet, the single write operations show quite differing speed as
shown in the bytes written performance counter, compare Sect.

When inspecting I/O performance of any single process it is important to
consider the current utilization of the SAN infrastructure. Usually, the I/O net-
work is not exclusively used by an application but globally shared. Therefore,
the effect could have been caused from outside, i.e. any other application with
extensive I/O utilization. This is not the case in this example. The comparison
of the local counter bytes written and the global one HPC SAN write in Fig. B3]
shows the same I/O throughput on average. Furthermore, the global 1/0O speed,
which is only available with a resolution of one sample per second (compare
Sect. 222)), is almost constant during all checkpoint phases.

3.3 Optimization of I/0O Performance

Our analysis of I/O behavior revealed two bottlenecks: On one hand, the single
writer problem, and on the other hand the fluctuating local write speed.

Both of these problems were solved by modifications to the checkpoint code.
From the trace analysis we learnt the following facts:

— The speed of single write calls of constant size is heavily fluctuating. Even
though most calls are fast, the regularly occuring very slow calls destroy the
over-all I/O performance — compare peaks in bytes written counter in Fig.

— The speed of SAN I/O is the same during all checkpoint phases and near
zero just before and after these phases which confirms the reliability of the
application’s I/O measurements.
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— The time step iteration is interrupted by checkpoint phases from time to
time. Therefore, every I/O phase is followed by a computation phase without
I/0 activity — see Fig. [l

This led to the following hypothesis: The delays in I/O API calls on the ap-
plication level are caused by the caching I/O subsystem of the operating system.
Two different solutions are available to eliminate this problem. The first is using
direct I/O which bypasses the operating system’s file cache. Yet, it is rather
difficult to implement as special alignments and request sizes have to be used.
The second solution does not suffer from those restrictions. Since the write-only
scheme of checkpointing does not require instant write to disk, asynchronous I/O
can be used. This has the advantage of decoupling the I/O calls, that happen
during the checkpoint phases, and the actual I/O operations issued by the oper-
ating system, that may be performed concurrent to the following computation
phase. Furthermore, with modifying the checkpoint routine so that each process
writes its data on its own to the checkpoint file, the single writer problem is
addressed as well.

Table 1. Comparison of original and optimized Semtex checkpoint phases

# CPUs Checkpointing Time (% of total runtime) Improvement
Original version O ptimized version

8 12.1s  (1.3%) 6.3s (0.9%) 47.9%

128 106.8s  (8.4%) 35.55 (3.9%) 66.8%

256 381.7s (12.8%) 107.7s (5.1%) 71.8%

Table 2. Comparison of checkpoint times, intermediate checkpoint phases only

# CPUs Checkpointing Time (% of total runtime) Improvement
Original version O ptimized version

8 758  (0.8%) 3.1s (0.4%) 58.7%

128 64.7s  (5.1%) 15.8s (1.8%) 75.6%

256 249.3s  (8.4%) 37.0s (1.7%) 85.2%

Based on this hypothesis the checkpoint code of the Semtex application was
modified to use asynchronous MPI I/O functions. This yielded an improvement
in checkpointing speed of up to 85%, compare Tables [l and 2

Table[lshows the times spent for checkpointing including the final checkpoint.
There the gain from asynchronous I/0 is not as large as within intermediate
checkpoints (see Table [2). This comes from the fact that the application must
wait for completion of the I/O within the last checkpoint whereas this is not
necessary for intermediate checkpoints.

Table 2] further shows that the proportionate time needed for intermediate
checkpoints does not grow when increasing the number of processes from 128 to
256 (1.8% to 1.7%) which underlines the potential of asynchronous I/0O.
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3.4 Performance Problems in Memory Copy Operations

In the course of the performance evaluation of Semtex’s I/O activities, an excep-
tional high fraction of almost 40% was observed to be spent for communication
during time step iterations. Figure [ shows the profile of one such iteration. One
time step needs 1.5 seconds to complete from which 0.59 seconds are used for
data exchange. A look into the source code revealed that besides MPI functions,
the only other time-consuming calls could be those to memcpy which were then
enclosed by tracing calls for making them available for analysis (already included

in Fig. ).
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Fig.4. A major part of one simulation step is spent on data exchange, which memcpy
is responsible for, besides MPI

Further investigation showed that the speed of memcpy calls is not constant.
On Process 0 the first call is faster than the remaining ones, compare Fig.
The same happens for Process 1 whereas on Processes 2 and 3, the third call is
faster.

Apart from the difference in speed the copy operations themselves are sur-
prisingly slow. Each memcpy call copies 22kBytes of data in 35us (fast case)
or in 165 us (slow case) resulting in transfer rates of 640 MB/s and 130 MB/s,
respectively — the underlying architecture would allow for much more.

We found a combination of three phenomena responsible for these effects:

1. Glibc’s memcpy is not tuned for the Itanium architecture which causes the
copy operations to be rather slow.

2. Single-copy transfers of SGI's Message Passing Toolkit (MPT, the MPT li-
brary in use) introduce hidden remote memory accesses.

3. The different speeds of memory copy operations arise from characteristics of
the Altix 4700 architecture in conjunction with the second phenomenon.

To understand the latter, both the workflow of the data exchange code and
the architecture of the Altix 4700 have to be taken into account. The Semtex
application uses a special data exchange scheme between all processes, which is
performed multiple times during every time step iteration of the simulation. It
is implemented as follows:
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Fig. 5. The Itanium’s hardware performance counter indicates unoptimized memory
accesses from remote processors

1. Allocate a temporary buffer for data exchange.
2. For each of the other processes do the following:
— Send own buffer to partner via MPI Isend.
— Receive data from partner via MPI Irecv into the temporary buffer.
— Wait for completion of the communication via MPT Waitall.
— Copy contents of temporary buffer to own buffer.

Therefore, Process 0 exchanges data with Process 1 first, then with Process 2, 3,
etc. The sequence is analogous for Process 1. Process 2 communicates first with
Process 0, then with Process 1, 3, 4, etc.

Figure Bl shows the details of one complete exchange on Process 0 for a small
run with 8 CPUs. The send-receive-copy pattern is executed for every peer pro-
cess, i.e. seven times in this example.

From this algorithm and the architecture of the Altix 4700, which consists of
dual-core Intel Itanium 2 processoraﬁ, we can conclude that the faster memcpy
calls belong to the data exchange happening between the cores of one CPU.

The findings so far suggest that the memcpy calls after communication with
processes located on other CPUs access remote memory and are therefore slower.
This is somewhat counter-intuitive because the code looks as if the copy routine
would access two local buffers — the temporary one and the permanent one.

Yet, the behavior can be explained considering the second phenomenon. For
saving memory bandwidth, MPT maps the communication buffers into the peer’s
address space and then uses a single copy operation to transfer the contents to
the destination buffer [10]. Unfortunately, the memory pages of the receiver’s
temporary buffer seem to be located at the remote party after this operation.

Evidence for this hypothesis is given by a special hardware performance
counter of the Itanium 2 processor. Below the time line, Fig. Bl shows the rate
of BUS MEMORY LT 128BYTE 10, which counts the number of less than full cache
lindd transactions from remote parties. The counter shows a high rate indicat-
ing excessive remote memory accesses that transfer less than 128 bytes. Those

2 At ZIH, in particular, there is one CPU per system board.
3 L2 and L3 cache line size is 128 bytes on the Itanium 2 processor.
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Fig. 6. Comparison of the original data exchange pattern (top) with the optimized
counterpart (bottom) for Process 0 for the 20’th time step iteration. Note the much
smaller duration of the optimized version (1.4s vs. 1.8s) and the significantly reduced
value of the counter showing small-sized remote memory accesses.

have double negative effects on transfer speed. Firstly, smaller transfer sizes
mean more remote accesses are needed for copying the same amount of data,
and secondly, each remote access suffers from higher latencies compared to local
memory accesses. This in turn leads to the poor performance of memcpy when it
eventually accesses remote memory.

For Process 0, the counter is low for the first memcpy belonging to the data
exchange with Process 1, and rises afterwards indicating ineffective accesses to
remote memory caused by memcpy. Looking at Process 2 (not shown here), the
third memcpy shows no peak, and this scheme continues to the last process.

3.5 Optimization of Communication Scheme

The performance of the data exchange code could be dramatically improved by
replacing the memcpy calls with the highly optimized fastbcopy call available
from MPT. This routine achieves copying speeds of 4500 MB/s for local memory
and 1300 MB/s when remote memory is involved.

A comparison of the original version with the optimized one is shown in
Fig. Bl The architectural optimization of the fastbcopy routine is depicted by
the BUS MEMORY LT 128BYTE I0 counter which shows very low rates in the opti-
mized version (lower picture). Usage of this routine doubled the speed of data
exchange which allowed for more than 20% improvement in run-time per time
step iteration. Together with the I/O optimization, the total runtime of Semtex
was reduced by 25%.
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4 Conclusion and Outlook

This paper presented two interesting aspects of the performance analysis process
for the Semtex application. The proposed optimization steps were confirmed with
notable performance improvements for this application. Since this code is used
for long-term simulations with large degree of parallelism on the HPC resources
of ZTH, TU Dresden, the optimization accounts for a substantial number of CPU
hours saved!

Further work will focus on the I/O tracing components of VampirTrace, in
particular the availability of system-wide I/O monitoring in a platform indepen-
dent manner.
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