Benchmarking of Integrated OGSA-BES with
the Grid Middleware

Fredrik Hedman!, Morris Riedel?, Phillip Mucci®, Gilbert Netzer®,
Ali Gholami'!, M. Shahbaz Memon?, A. Shiraz Memon?, and Zeeshan A. Shah!

! Center for Parallel Computers (PDC), Kungliga Tekniska Hogskolan (KTH),
SE-100 44 Stockholm, Sweden
2 Jiilich Supercomputing Centre, Forschungszentrum Jiilich (FZJ),
Leo-Brandt-Str. 1, Jiilich, 52425, Germany

Abstract. This paper evaluates the performance of the emerging OGF
standard OGSA - Basic Execution Service (BES) on three fundamentally
different Grid middleware platforms: UNICORE 5/6, Globus Toolkit 4
and gLite. The particular focus within this paper is on the OGSA-BES
implementation of UNICORE 6. A comparison is made with baseline
measurements, for UNICORE 6 and Globus Toolkit 4, using the legacy
job submission interfaces. Our results show that the BES components are
comparable in performance to existing legacy interfaces. We also have a
strong indication that other factors, attributable to the supporting infras-
tructure, have a bigger impact on performance than BES components.

Keywords: Performance analysis, Grid middleware, UNICORE, gLite,
Globus Toolkit, OGSA-BES.

1 Introduction

Today’s large-scale scientific research is supported by Grid and e-science infras-
tructures. Grids are composed of a set of heterogeneous resources that are man-
aged by several interacting software components accessible as Grid services [IJ.
These infrastructures are increasingly often accessed via different flavors of Grid
middleware technologies. Several different Grid infrastructures exist today. Some
are primarily focused on maximized throughput, like EGEE, 0SG and NGS; oth-
ers are primarily driven by high-performance computing (HPC) needs, like DEISA
and TeraGrid. With emerging Grid infrastructure interoperability, it is now be-
coming possible and realistic to combine these different types of resources for
major scientific research areas that demand both high throughput and HPC to
make progress [2]. In these scenarios, Grid middleware performance becomes
important to measure and understand.

Recently, many Grid middleware technologies have been augmented with im-
plementations of proposed recommendations from the Open Grid Forum (OGF).
An example is the OGSA Basic Execution Service (BES) [3] for job management
and submission. Adding BES to a middleware is motivated by the gain in inter-
operability between different Grids [4], and by the increase in performance and
handling of jobs between these middleware technologies.

E. César et al. (Eds.): Buro-Par 2008 Workshops, LNCS 5415, pp. 113}122,/2009.
© Springer-Verlag Berlin Heidelberg 2009

114 F. Hedman et al.

Performance analysis and benchmarking of Grid technologies in general, and
Grid middleware in particular, is still an emerging area. Some results covering
different approaches and tools can be found in [56[7].

In contrast to these approaches, we presented in [8] a “black-box” approach for
analyzing Grid middleware, using a straightforward and non-invasive platform
independent method. In this paper, we build on our previous work to assess the
performance of the recently finalized BES implementations for thred] different
Grid middleware stacks: glite, Globus Toolkit 4 and UNICORE 6. Performance
analysis of the UNICORE implementation [9] becomes specifically important since
it has been deployed on several DEISA sites for evaluations.

This paper is structured as follows. Section [2] gives a background and illus-
trates the design of our approach for BES. Section [B] provides implementation
details of the benchmarked BES implementations. We present results from our
performance measurements and provide insights by evaluating them with respect
to the core technologies and job management handling within the different Grid
middlewares in Section @ Finally a conclusion is presented in Section [l

2 Black-Box Benchmarks of Grid Middleware

From a user perspective Grid middleware adds a certain overhead compared to
local execution. Independent of the size of the submitted job, fixed costs con-
tribute to the overhead of the Grid system. It is important to be able to diagnose
and address this overhead early in the design cycle of a new component. Grid
developers can use this information for evaluating design and implementation
trade-offs while Grid users can try to amortize the overhead by submitting fewer
longer running jobs.

To analyze the performance of Grid middleware rather than just measuring
the time an application spends on a resource, we have demonstrated a method
to measure the time spent on the “grid work” per job in []. In this paper we
build on our previous work and investigate the performance of recently developed
alternative job submission components in different Grid middlewares. We assume
that a component can be treated as a black box into which jobs are submitted
and from which results are returned. The results obtained can be compared with
our baseline measurements for consistency and rough estimates of the overhead
introduced by the new components.

Features and capabilities provided by the investigated job submission inter-
faces vary. Thus we implemented three different variants of our basic benchmark.
For the ws-GRAM baseline measurements we used the globusrun-ws command
line client. It can submit and monitor one job at a time. Our implementation
uses 10 parallel threads that first submit the required number of jobs and poll for
their completion in a round-robin fashion. CondorG and cLIQ offer bulk submis-
sion capability: a single job submission followed by local polling is used. Finally

1 Our work was done in the context of the OMII-Europe project which focused on
these three Grid middleware platforms.

Benchmarking of Integrated OGSA-BES with the Grid Middleware 115

for the new BES and UNICORE 6 mechanisms we use a serial implementation,
submitting and monitoring one job at a time.

To provide a basis for reproducible and repeatable results, it is necessary to
create identical conditions when performing comparisons of Grid middleware.
Our experience is that this can be very timeconsuming and in some cases not
feasible. We claim a best effort approach can still give some comparable perfor-
mance measurements across different Grid middleware.

3 OGSA-BES Implementations

BES provides easy, intuitive and standardized access to computational resources.
The OMII-Europe project provided BES implementations for the three middle-
ware stacks which we benchmarked.

The BES specification [3] defines two mandatory (BESFactory and BESManage-
ment) and one optional (BESActivity) interface. The management interface al-
lows to control the service itself. The factory interface provides job submission
and bulk monitoring capabilities while the activity interface allows monitoring
of a single job. Jobs submitted to the BES interface have to be described in the
Job Submission and Description Language (3spL) [10].

3.1 OGSA-BES Implementation of UNICORE 6

At the time of writing, UNICORE 6 offers two ws-based interfaces for job sub-
mission and management: BES and UNICORE Atomic Service (UAs) [9]. Both
interfaces allow for job management and control functions using WS messages.
Both interfaces are adopted within the middleware and deployed on top of re-
source management systems (RMs) (e.g. Torque, LoadLeveler) that in turn deal
with job scheduling on computational resources.

Since BES allows for a flexible implementation strategy, the UNICORE devel-
opers have been able to directly use the interfaces of the execution back-end
of UNICORE 6, which is the enhanced Network Job Supervisor (xNJs) [II]. The
implementation consists of the mandatory BESFactory and BESManagement in-
terfaces as well as the optional BESActivity. In comparison to BES, the UAS is
a suite that additionally provides storage management and file transfer mech-
anisms that have been leveraged by the BES implementation. UAS also accepts
jobs described in JSDL.

3.2 OGSA-BES Implementation of gLite

The integration of the BES interface into the gLite middleware was accomplished
by extending the CREAM computing element which provides both the back-end
core and the legacy interface. The new interface is implemented as a separate
plugin on top of CREAM core. Both interfaces can share the same core so that
jobs can be submitted to the same resource via both interfaces.

116 F. Hedman et al.

3.3 OGSA-BES Implementation of Globus

The BES service for the Globus toolkit is implemented as a thin wrapper layer
in front of the Ws-GRAM job submission service. The legacy WS-GRAM interface
is also available to support the existing Globus infrastructure.

The BES service itself is stateless with the exception of a single flag that allows
to stop job submission via the management interface. Each incoming request is
translated into corresponding WS-GRAM requests, which involves a translation
of the jobs description from JSDL to RSL needed by the ws-GRAM. This adds some
overhead to each BES call but allows for a transparent deployment of BES interfaces
into existing Globus infrastructures, since the BES service simply behaves like a
WS-GRAM client and can even be in a completely different organizational domain.

4 Benchmark Results

Using the “black-box” approach described in [8] we have collected baseline per-
formance data for a number of Grid middlewares. We use the baseline data to
assess the performance of the new BES components.

4.1 Baseline Results

The computer platform used consisted of nodes with a 2.8 GHz Intel Pentium
D cpu and 2 GB RAM connected through gigabit Ethernet and running Sci-
entific GNU/Linux version 4 operating system. Even though the test-bed was a
controlled environment with only local network traffic and consistent operating
system and middleware installations, big variations between different runs were
detected. This underlines the importance of a carefully controlled environment
to arrive at repeatable and comparable experiments for quantitative analysis.

Figures [l and [2] show a selection of our results from a number of benchmark
runs for Globus Toolkit 4 and UNICORE 5/6 in our test-bed. Keeping the large
variation in mind a number of qualitative conclusions can be drawn. For Globus
Toolkit middleware we conclude:

— Submission via the condorG interface yields best results for the workload
of the benchmark. This is also the mechanism that is recommended by the
Globus Alliance for the case of submitting a large number of jobs.

— Data staging has by far the biggest influence on job submission performance.
The fastest runs occur for all tested submission mechanisms when staging of
input and output is not used.

— The results for the Ws-GRAM submission tests show that considerable stress
is put on both the middleware and the submission script. For instance, the
two runs with the longest run time in Fig. Il show that about half of the jobs
finished almost simultaneously which is most likely an artifact of the polling
method used by the benchmark driver to detect job completion. The polling
attempts load both the middleware and the benchmark driver and this load
is highest in the beginning of the run when there are many unfinished jobs
that need to be checked.

Benchmarking of Integrated OGSA-BES with the Grid Middleware 117

800
‘ CondorGwnh Torque 2008) ——
N rque (2008),
Y driue 2007) ---*
700 | 4 % th+Torque (2007) -
2 £0.5 (2007)
2 4,0.5 (2007}
2 |thout staging (2007) -- -e
600 -t 2 without staging (2007) — = — -
A ork 2008) -
Py
2 500 |i g
L
o
2
2 400 | -
£ 2
8 3
5 3
300+ & b
200 + & E
100 &) B
e
?F(5] -

0 1000 2000 3000 4000 5000 6000 7000
Time from start [s]

Fig. 1. Selected system level performance runs for the Globus job submission com-
ponents. The data sets show that different job submission mechanisms (WS-GRAM,
condorG, BES) show different characteristics, but also that staging effort dominates
over all other issues. BES does not do any staging and is shown for reference.

Fig. 2l shows the results from the evaluation of the system level performance
for the UNICORE 6 middleware stack, including comparisons with UNICORE 5:

— The UNICORE 5 results show consistent behavior for both Torque and Fork
local resource management. In this cases we used the batch submission ca-
pability provided by the CLIQ client.

— The results show also that the scheduling policy of the local resource man-
ager (batch system) can have an impact on the total performance. This is
exemplified by the results obtained when using the MAUI scheduler for the
Torque batch system.

— The UNICORE 6 system level performance shows considerable spread in con-
trast to the UNICORE 5 results. Part of this could be attributed to the fact
that different versions of the middleware were used to make the measure-
ments. However the large spread between the Fork and Torque performance
points more to the sensitivity of the UNICORE 6 benchmarks towards small
changes in the benchmarking environment. This is probably caused by the
fact that the current benchmark tools are restricted to serial submission
when targeting UNICORE 6 which puts more emphasis on the latency of a
single submission.

— In contrast to the Globus Toolkit, no surge of jobs completing can be seen.
This leads to the conclusion that the selected benchmark method is well

118 F. Hedman et al.

800

UNICORES with Torque, serial submission (2008) —+—
UNICORES® with Fork, serial submission
¥ UNICORES yiith Torque and MAUI

)

3
UNICORES5 with Fork(2007; e

)

)

N
o
o
@

UNICORES with Torque (2007,
UN ith Fork, serial submission<(2007
ICORESG6 BES with Fork, FZd Hardware, serial submission (2008) -- -e-- -

of completed jobs

i Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time from start [s]

Fig. 2. System level performances for the UNICORE middleware stack. The data-sets
shown are both for version 5 and 6 of UNICORE. As a reference the results for the BES
submission are also given.

adopted towards the UNICORE middleware stack thus not exhibiting the
polling problems of the Globus tools.

4.2 BES Components Performance

With the availability of the BES enhanced job submission components from the
omil-Europe [12] project, we have performed a first evaluation of the perfor-
mance of these components. Since these components are handling job submission
we compare them against the system level performance evaluations. It is however
essential to bear in mind that no firm comparisons can be made because of dif-
ferences in the platforms and setups that were used. A number of adoptions had
to be made in order to conduct the performance evaluation at this early stage
of deployment of the BES components. In particular the following differences to
the system level evaluation are present:

— Because of the limited time we used the test services provided by developers
of the respective BES components. This means that the hardware and soft-
ware setup differs significantly. This is most apparent in the case of the gLite
test service which uses a complete batch system and computing element (the
CREAM-CE) for its backend compared to the simple process forking backends
used by the Globus Toolkit and UNICORE services. The specification of hard-
ware and software for BES endpoints used are:

Benchmarking of Integrated OGSA-BES with the Grid Middleware 119

CREAM/BES. The omiivm03.cnaf.infn.it host is deployed as a vir-
tual machine on the omii005 host. This machine has 2 Intel(R) Xeon(R)
2.00GHz cpus and 4 GB RAM. The machine hosts four virtual machines
each with an equal share of the available resources of which omiivm03
is one.

GT/BES. The GT/BES server is hosted on romana.pdc.kth.se and has
a Intel Dual Core 2.13 GHz cpU with 1 GB memory running Gentoo
GNU/Linux 2.6.

UNICORE/BES. The BES server hosted on zam461.zam.kfa-juelich.
de has a Intel Dual Xeon 3 GHz cpPU with 2 GB memory running SuSE
GNU/Linux 9.3.

Benchmark client. An Intel Dual Core cpU 2.13 GHz running Gentoo 2.6
machine targeting different endpoint. The cost of a ping to the endpoints
were approximately 30 ms.

— No attempts at handling input or output data (data staging) for the job
were made.

— The current BES benchmark does not submit jobs in parallel but processes
them in a serial fashion.

In total, the BES benchmark is considerably simpler in nature than the earlier
system level benchmarks. Despite this fact, we found it helpful in uncovering a few
interesting facts about the behavior of the oMiI-Europe BES implementations:

800
‘ ‘ Globus 4.1 BES —+—
Globus 4.0 WS-GRAM without staging 5
P UNICORE 6 BES (FZJ Hardware) -#%---
700 | P UNICORE 6 UAS (FZJ Hardwarggu‘:' B o
if e
7 # e
600 - Ea Nech -
/F -
f’ =g
* DD
2 500 |- = i
g /7
o f; f Ba}
k) =
3 400 | =g .
£ " ol
S DDDD
o X DD
= 300 [f e i
it Il Il Il Il
0 100 200 300 400 500 600 700 800

Time from start [s]

Fig. 3. Performance of Globus and UNICORE 6 BES implementations compared to the
UNICORE 6 component performance for the legacy interface and the system level perfor-
mance of Globus legacy WS-GRAM without any staging. The figure shows the number
of jobs that have been completed versus the time from the start of the experiment.

120 F. Hedman et al.

— We were able to make a close comparison between the UNICORE 6 BES
adoption and the legacy interface (i.e. UAS) using the same method. The
legacy system seemed to exhibit 3 times higher latencies than the BES sys-
tem (Fig. B)). The benchmark that we used however emphasizes the latency
component because of the serial nature of the submission. Preliminary inves-
tigations show that this was caused by a polling rate limitation in the UAS
client.

— Despite the differences in hardware and web services implementation, the
performance of the UNICORE and Globus Toolkit implementations is about
the same and comparable to the performance of the legacy Globus Ws-GRAM
when no data staging is done. This can be seen in Fig[3l The increased delay
until completion of the first job in the system level script is caused by the
concurrent submission of all 750 jobs in the beginning of the benchmark run.

— The impact of staging and logging is far bigger than any overhead introduced
by the BES services. This becomes apparent in Fig] where the gLite BES im-
plementation is compared to the legacy Globus WS-GRAM performance with
and without staging. The inclusion of input/output staging into the ws-
GRAM submission increased total execution times by a factor of roughly 6.
Also the job completion rate in the early stages of the Ws-GRAM experi-
ment match the rate from the gLite BES. This is a strong indication that the
performance of the gLite service is comparable to the other BES implemen-
tations with a more realistic backend and job setup where input and output

800

T T T T
gLite CREAM BES (INFN Hardware) —+—
Globus 4.1 BES
- Globus 4.0 WS-GRAM without staging ---%*-
700 = = Globus 4.0 WS-GRAM with staging +"&-

500 -

of completed jobs
N
o
o
¥

300 ¢

200 [+

100

0 i Il Il Il Il Il Il Il Il
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time from start [s]

Fig. 4. Performance of the glLite BES implementation compared to the Globus BES im-
plementation and Globus legacy Ws-GRAM system level performance with and without
staging. It is important to notice that the glite CREAM BES uses a full batch system
backend.

Benchmarking of Integrated OGSA-BES with the Grid Middleware 121

would be transferred to the user and/or permanent storage. Also, the lack
of concurrency may slow down the glite BES since logging phases cannot
overlap with execution of the next job.

To sum up, the simple evaluation of the performance of the BES services does
show that the performance of the BES services should be acceptable compared
to the performance of the legacy job submission mechanisms. However, further
targeted investigation in carefully controlled environments would be necessary
to conclusively asses the performance of these new mechanisms.

5 Conclusion

A necessary prerequisite to benchmark a piece of software is the ability to exe-
cute this software under controlled and well known conditions. In fact, the BES
components are dependent on local resource management systems to perform
the actual job execution. As the presented “black-box” results suggest, configu-
ration and services, for example handling of input and output data or logging,
carried out by these “back-end” infrastructure have a large impact on the mea-
sured performance of the component. We tried to resolve this issue by estimating
the effect of the back-end system onto the component performance by using al-
ternate legacy components that utilized the same back-end infrastructure and
use them as a baseline for relative comparison. We used this approach for the
BES job submission benchmark provided in this paper.

In summary, our results show that the performance of the BES components
that were evaluated are comparable to existing legacy solutions. Different se-
curity setups of the components may also lead to different performance, but in
this paper we clearly consider them out-of-scope. The “black-box” experiments
strongly indicate that other factors attributable to the supporting infrastructure
have a bigger impact on performance than the use of BES components.

Acknowledgment

This work is supported by the European Commission through the OMII-Europe
project-INFSO-RI-031844. Further information see [12].

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Elsevier, Amsterdam (2004)

2. Riedel, M., et al.: Improving e-Science with Interoperability of the e-Infrastructure
EGEE and DEISA. In: 31st International Convention MIPRO, Conference on Grid
and Visualization Systems (GVS), Opatija, Croatia (May 2008) (accepted)

3. Foster, 1., Grimshaw, A., Lane, P., Lee, W., Morgan, M., Newhouse, S., Pickles,
S., Pulsipher, D., Smith, C., Theimer, M.: OGSA Basic Execution Service Version
1.0. Technical report, Open Grid Forum (2007),
http://www.ogf.org/documents/GFD.108.pdf

http://www.ogf.org/documents/GFD.108.pdf

122

10.

11.

12.

F. Hedman et al.

Marzolla, M., Andreetto, P., Venturi, V., Ferraro, A., Memon, A., Memon, M.,
Twedell, B., Riedel, M., Mallmann, D., Streit, A., van de Berghe, S., Li, V.,
Snelling, D., Stamou, K., Shah, Z., Hedman, F.: Open Standards-based Interoper-
ability of Job Submission and Management Interfaces across the Grid Middleware
Platforms glLite and UNICORE. In: Proceedings of International Interoperability
and Interoperation Workshop (IGIIW) 2007 at 3rd IEEE International Conference
on e-Science and Grid Computing, Bangalore, India, pp. 592-599. IEEE Computer
Society, Los Alamitos (2007)

Dikaiakos, M.: Grid benchmarking: Vision, challenges, and current status. Concur-
rency and Computation: Practice and Experience 19(1), 89-105 (2007)

Nemeth, Z., Gombas, G., Balaton, Z.: Performance evaluation on grids: Directions,
issues and open problems. In: 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP 2004), p. 290 (2004)

Snavely, A., Chun, G., Casanova, H., der Wijngaart, R.F.V., Frumkin, M.A.:
Benchmarks for grid computing: a review of ongoing efforts and future directions.
SIGMETRICS Perform. Eval. Rev. 30(4), 27-32 (2003)

Alexius, P., Elahi, B.M., Hedman, F., Mucci, P., Netzer, G., Shah, Z.A.: A Black-
Box Approach to Performance Analysis of Grid Middleware. In: Bougé, L., Forsell,
M., Traff, J.L., Streit, A., Ziegler, W., Alexander, M., Childs, S. (eds.) Euro-
Par Workshops 2007. LNCS, vol. 4854, pp. 62-71. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-78474-6_10

Riedel, M., Schuller, B., Mallmann, D., Menday, R., Streit, A., Tweddell, B.,
Memon, M., Memon, A., Demuth, B., Lippert, T., Snelling, D., van den Berghe,
S., Li, V., Drescher, M., Geiger, A., Ohme, G., Benedyczak, K., Bala, P., Rater-
ing, R., Lukichev, A.: Web Services Interfaces and Open Standards Integration
into the European UNICORE 6 Grid Middleware. In: Proceedings of 2007 Middle-
ware for Web Services (MWS 2007) Workshop at 11th International IEEE EDOC
Conference The Enterprise Computing Conference. IEEE Computer Society, Los
Alamitos (2007)

Anjomshoaa, A., et al.: Job Submission Description Language (JSDL) - Specifica-
tion Version 1.0. Technical report, Open Grid Forum (2005),
http://www.ogf.org/documents/GFD.56.pdf

Schuller, B., Menday, R., Streit, A.: A versatile execution management system
for next-generation UNICORE grids. In: Lehner, W., Meyer, N., Streit, A., Stew-
art, C. (eds.) Euro-Par Workshops 2006. LNCS, vol. 4375, pp. 195-204. Springer,
Heidelberg (2007)

Open Middleware Infrastructure Institute for Europe. Project no: R1031844-OMII-
Europe, http://omii-europe.org

http://dx.doi.org/10.1007/978-3-540-78474-6_10
http://www.ogf.org/documents/GFD.56.pdf
http://omii-europe.org

	Benchmarking of Integrated OGSA-BES with the Grid Middleware
	Introduction
	Black-Box Benchmarks of Grid Middleware
	OGSA-BES Implementations
	OGSA-BES Implementation of UNICORE 6
	OGSA-BES Implementation of gLite
	OGSA-BES Implementation of Globus

	Benchmark Results
	Baseline Results
	BES Components Performance

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

