
Computing Optimized Representations for

Non-convex Polyhedra by Detection and
Removal of Redundant Linear Constraints

Christoph Scholl, Stefan Disch, Florian Pigorsch, and Stefan Kupferschmid

Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 51, 79110 Freiburg, Germany

Abstract. We present a method which computes optimized representa-
tions for non-convex polyhedra. Our method detects so-called redundant
linear constraints in these representations by using an incremental SMT
(Satisfiability Modulo Theories) solver and then removes the redundant
constraints based on Craig interpolation. The approach is motivated by
applications in the context of model checking for Linear Hybrid Au-
tomata. Basically, it can be seen as an optimization method for formu-
las including arbitrary boolean combinations of linear constraints and
boolean variables. We show that our method provides an essential step
making quantifier elimination for linear arithmetic much more efficient.
Experimental results clearly show the advantages of our approach in
comparison to state-of-the-art solvers.

1 Introduction

In this paper we present an approach which uses SMT (Satisfiability Modulo
Theories) solvers and Craig interpolation [1] for optimizing representations of
non-convex polyhedra. Non-convex polyhedra are formed by arbitrary boolean
combinations (including conjunction, disjunction and negation) of linear con-
straints. Non-convex polyhedra have been used to represent sets of states of
hybrid systems. Whereas approaches like [2,3] consider unions of convex polyhe-
dra (i.e. unions of conjunctions of linear constraints) together with an explicit
representation of discrete states, in [4,5] a data structure called LinAIGs was used
as a single symbolic representation for sets of states of hybrid systems with large
discrete state spaces (in the context of model checking by backward analysis).
LinAIGs in turn represent an extension of non-convex polyhedra by additional
boolean variables, i.e., they represent arbitrary boolean combinations of boolean
variables and linear constraints.

In particular, our optimization methods for non-convex polyhedra remove so-
called redundant linear constraints from our representations. A linear constraint
is called redundant for a non-convex polyhedron if and only if the non-convex
polyhedron can be described without using this linear constraint. Note that an
alternative representation of the polyhedron without using the redundant lin-
ear constraint may require a completely different boolean combination of linear

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 383–397, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



384 C. Scholl et al.

constraints. In that sense our method significantly extends results for eliminat-
ing redundant linear constraints from convex polyhedra used by Frehse [3] and
Wang [6].1 In previous work [5] we already made the observation that a major
obstacle to the application of sequences of quantifier eliminations in the context
of model checking for hybrid systems is formed by the growth of the number of
linear constraints in state set representations during Weispfennig–Loos quanti-
fier elimination [7]. For that reason removing redundant linear constraints from
non-convex polyhedra plays an essential role during model checking of non-trivial
examples.

Our paper makes the following contributions:

– We present an algorithm for detecting a maximal number of linear con-
straints which can be removed simultaneously. The algorithm is based on
sets of don’t cares which result from inconsistent assignments of truth val-
ues to linear constraints. We show how the detection of sets of redundant
constraints can be performed using an SMT solver. In particular we show
how to use incremental SMT solving for detecting larger and larger sets of
redundant constraints until a maximal set is obtained.

– We show how the information needed for removing redundant linear con-
straints can be extracted from the conflict clauses of an SMT solver. Finally,
we present a novel method really performing the removal of redundant lin-
ear constraints based on this information. The method is based on Craig
interpolation [1,8,9].

In a comparison with existing tools we consider formulas consisting of ar-
bitrary boolean combinations of linear constraints and boolean variables, com-
bined with quantifications of real-valued variables. For such formulas we solve
two problems: First, we compute whether the resulting formula is satisfiable by
any assignment of values to the free variables and secondly we do even more, we
also compute a predicate over the free variables which is true for all satisfying as-
signments of the formula. We compare our results to the results of the automata-
based tool LIRA [10], the computer algebra system REDUCE/REDLOG [11,12]
(which also solve both problems mentioned above) and to the results of state-
of-the-art SMT solvers Yices [13] and CVC3 [14] (which solve the first problem
of checking whether the formula is satisfiable). Whereas these solvers are not
restricted to the subclass of formulas we consider in this paper (and are not op-
timized for this subclass in the case of Yices and CVC3), our experiments show
that for the subclass of formulas considered here our method is much more effec-
tive. Our results are obtained by an elaborate scheme combining several methods
for keeping representations of intermediate results compact with redundancy re-
moval as an essential component. Internally, these methods make heavy use of
the results of SMT solvers restricted to quantifier-free satisfiability solving.2 Our

1 For convex polyhedra redundancy of linear constraints reduces to the question
whether the linear constraint can be omitted in the conjunction of linear constraints
without changing the represented set.

2 In our implementation we use Yices [13] and MathSAT [15] for this task.



Computing Optimized Representations 385

results suggest to make use of our approach, if the formula at hand belongs to
the subclass of linear arithmetic with quantification over reals and moreover,
even for more general formulas, one can imagine to use our method as a fast
preprocessor for simplifying subformulas from this subclass.

The paper is organized as follows: In Sect. 2 we give a brief review of our
representations of non-convex polyhedra and Weispfennig-Loos quantifier elimi-
nation. In Sect. 3 we give a definition of redundant linear constraints and present
methods for detecting and removing them from representations of non-convex
polyhedra. After presenting our encouraging experimental results in Sect. 4 we
conclude the paper in Sect. 5.

2 Preliminaries

2.1 Representation of Non-convex Polyhedra

We assume disjoint sets of variables C and B. The elements of C = {c1, . . . , cf}
are continuous variables, which are interpreted over the reals R. The elements
of B = {b1, . . . , bk} are boolean variables and range over the domain B = {0, 1}.
When we consider logic formulas over B ∪ C, we restrict terms over C to the
class of linear terms of the form

∑
αici + α0 with rational constants αi and

ci ∈ C. Predicates are based on the set L(C) of linear constraints, they have
the form t ∼ 0, where ∼ ∈ {=, <,≤} and t is a linear term. P(C) is the set of
all boolean combinations of linear constraints over C, the formulas from P(C)
represent non-convex polyhedra over R

f . In this paper we consider the class of
formulas from P(B, C) which is the set of all boolean combinations of boolean
variables from B and linear constraints over C.

As a underlying data structure for our method we use representations of for-
mulas from P(B, C) by LinAIGs [4,5]. LinAIGs are And-Inverter-Graphs (AIGs)
enriched by linear constraints. The structure of LinAIGs is illustrated in Fig. 1.

q
l1

f
1

b
k

b
1

c
1

c
f

f
m

q
ln

AIG

lin. constraints

boolean domain

variables

continuous domain

variables

mapping between

linear constraints and

boolean variables

Represented predicates

...

...

...

...

Fig. 1. Structure of LinAIGs

The component of LinAIGs representing boolean formulas consists in a vari-
ant of AIGs, the so–called Functionally Reduced AND-Inverter Graphs (FRAIGs)
[16,17]. AIGs enjoy a widespread application in combinational equivalence check-
ing and Bounded Model Checking (BMC). They are basically boolean circuits
consisting only of AND gates and inverters. In [17] FRAIGs were tailored towards



386 C. Scholl et al.

the representation and manipulation of sets of states in symbolic model checking,
replacing BDDs as a compact representation of large discrete state spaces.

In LinAIGs (see Fig. 1) we use a set of new (boolean) constraint variables Q as
encodings for the linear constraints, where each occurring �i ∈ L(C) is encoded
by some q�i ∈ Q. For keeping the representation as compact as possible we use
a multitude of methods; e.g., inserting different nodes representing the same
predicate is avoided using an SMT (SAT modulo theories) solver which combines
DPLL with linear programming as a decision procedure [4,5].

2.2 Quantifier Elimination

In [5] Loos’s and Weispfenning’s test point method [7] was adapted to the LinAIG

data structure described above. The method eliminates universal quantifiers for
real-valued variables by converting them into finite conjunctions and existential
quantifiers by converting them into finite disjunctions. The subformulas to be
combined by conjunction (or disjunction in case of existential quantification)
are obtained from the original formula by replacing real-valued variables by
appropriate ‘test points’ arriving again at formulas in linear arithmetic. The test
point method is well-suited for our LinAIG data structure, since substitutions and
disjunctions / conjunctions can be performed efficiently in the LinAIG package
and the method does not need (potentially costly) conversions of the original
formula into CNF / DNF before applying quantifier elimination as in the Fourier-
Motzkin algorithm, e.g..

The number of test points needed depends linearly on the number of linear
constraints in the original formula. Thus, during elimination of one real-valued
variable, the number of linear constraints may grow quadratically with the num-
ber of linear constraints in the original formula. For sequences of quantifier elim-
inations it is therefore important to keep the number of linear constraints in the
original formula as small as possible. Moreover, after elimination of one quan-
tifier (starting with the innermost), it is also important to remove redundant
linear constraints generated as a result of the test point method. For this reason
we developed an algorithm which computes representations depending on a min-
imal set of linear constraints (see Sect. 3). Experimental results in Sect. 4 show
that the method is indeed essential in order to enable sequences of quantifier
eliminations.

3 Redundant Linear Constraints

In this section we present our methods to detect and remove redundant linear
constraints from non-convex polyhedra. Note that our approach also works for
the generalized case of arbitrary boolean combinations of linear constraints and
additional boolean variables (as represented by LinAIGs, e.g.), but here we confine
ourselves to non-convex polyhedra in order to keep the exposition more compact
and readable.

For illustration of redundant linear constraints see Fig. 2 and 3, which show
a typical example stemming from a model checking application. It represents a



Computing Optimized Representations 387

small state set based on two real variables: Lines in Figures 2 and 3 represent
linear constraints, and the gray shaded area represents the space defined by some
boolean combination of these constraints. Whereas the representation depicted
in Fig. 2 contains 24 linear constraints, a closer analysis shows that an optimized
representation can be found using only 15 linear constraints as depicted in Fig. 3.

Fig. 2. Before redundancy removal Fig. 3. After redundancy removal

3.1 Redundancy Detection and Removal for Convex Polyhedra

The task of detecting and removing redundant constraints in non-convex polyhe-
dra is not as straightforward as for other approaches such as [2,3] which represent
sets of convex polyhedra, i. e., sets of conjunctions �1 ∧ . . . ∧ �n of linear con-
straints. If one is restricted to convex polyhedra, the question whether a linear
constraint �1 is redundant in the representation reduces to the question whether
�2 ∧ . . . ∧ �n represents the same polyhedron as �1 ∧ . . . ∧ �n, or equivalently,
whether �1 ∧ �2 ∧ . . .∧ �n represents the empty set. This question can simply be
answered by a linear program solver.

3.2 Detection of Redundant Constraints for Non-convex Polyhedra

Definition 1 (Redundancy of linear constraints). Let F be a boolean func-
tion and let �1, . . . , �n be linear constraints over real-valued variables C = {c1,
. . . , cf}. The linear constraints �1, . . . , �r (1 ≤ r ≤ n) are called redundant in the
representation of F (�1, . . . , �n) iff there is a boolean function G with the property
that F (�1, . . . , �n) and G(�r+1, . . . , �n) represent the same predicates.

Our check for redundancy is based on the following theorem [5]:

Theorem 1 (Redundancy check). For all 1 ≤ i ≤ n let �i be a linear con-
straint over real-valued variables {c1, . . . , cf} and �′i exactly the same linear
constraint as �i, but now over a disjoint copy {c′1, . . . , c′f} of the variables. Let
⊕ denote exclusive-or and ≡ denote boolean equivalence. The linear constraints
�1, . . . , �r (1 ≤ r ≤ n) are redundant in the representation of F (�1, . . . , �n) if and
only if the predicate

(F (�1, . . . , �n) ⊕ F (�′1, . . . , �
′
n)) ∧ ∧n

i=r+1(�i ≡ �′i) (1)

is not satisfiable by any assignment of real values to the variables c1, . . . , cf and
c′1, . . . , c

′
f .



388 C. Scholl et al.

Note that the check from Thm. 1 can be performed by a (conventional) SMT

solver.
A sketch of the proof for the ‘only-if-part’ of Thm. 1 was already given in [5].

In this paper (Sect. 3.3) we present a constructive proof for the ‘if-part’ of the
theorem in order to provide an efficient procedure to compute an appropriate
function G whenever formula (1) is unsatisfiable.

Overall algorithm for redundancy detection. First of all, we present our overall
algorithm detecting a maximal set of linear constraints which can be removed
from the representation at the same time. We start with a small example demon-
strating the effect that it is not enough to consider redundancy of single linear
constraints and to construct larger sets of redundant constraints simply as unions
of smaller sets.

Example 1. Consider the predicate F (c1, c2) = (c1 ≥ 0)∧ (c2 ≥ 0)∧¬(c1 + c2 ≤
0) ∧ ¬(2c1 + c2 ≤ 0). It is easy to see that both the third and the forth linear
constraint in the conjunction have the effect of ‘removing the value (c1, c2) =
(0, 0) from the predicate F ′(c1, c2) = (c1 ≥ 0) ∧ (c2 ≥ 0)’. Therefore both �3 =
(c1 + c2 ≤ 0) and �4 = (2c1 + c2 ≤ 0) are obviously redundant linear constraints
in F . However, it is also easy to see that �3 and �4 are not redundant in the
representation of F at the same time, i.e., only ¬(c1 + c2 ≤ 0) or ¬(2c1 + c2 ≤ 0)
can be omitted in the representation for F .

This observation motivates the following overall algorithm to detect a maximal
set of redundant linear constraints:

Input : Predicate F (�1, . . . , �n)
Output: S: Maximal set of redundant linear constraints
begin

S := ∅;
for i := 1 to n do

if redundant(F , S ∪ {�i}) then
S := S ∪ {�i};

return S;
end

redundant(F, S ∪ {li}) implements the check from Thm. 1 by using an SMT

solver. It is important to note that the n SMT problems to be solved in the
above loop share almost all of their clauses. For that reason we make use of an
incremental SMT solver to solve this series of problems. An incremental SMT

solver is able to profit from the similarity of the problems by transferring learned
knowledge from one SMT solver call to the next (by means of learned conflict
clauses). Experimental results in Sect. 4 indeed show the advantage of using an
incremental SMT solver.

3.3 Removal of Redundant Linear Constraints

Suppose that formula (1) of Thm. 1 is unsatisfiable. Now we are looking for an
efficient procedure to compute a boolean function G such that G(�r+1, . . . , �n)



Computing Optimized Representations 389

and F (�1, . . . , �n) represent the same predicates. Obviously, the boolean func-
tions F and G do not need to be identical in order to achieve this objective; they
are allowed to differ for ‘inconsistent’ arguments which can not be produced by
evaluating the linear constraints with real values. The set of these arguments is
described by the following set DC:

Definition 2. The don’t care set DC induced by linear constraints �1, . . . , �n is
defined as DC := {(v�1 , . . . , v�n) | (v�1 , . . . , v�n) ∈ {0, 1}n and ∀(vc1 , . . . , vcf

) ∈
R

f ∃1 ≤ i ≤ n with �i(vc1 , . . . , vcf
) �= v�i}.

As we will see in the following, it is possible to compute a function G as needed
by making use of the don’t care set DC. However, an efficient realization would
certainly need a compact representation of the don’t care set DC. Fortunately,
a closer look at the problem reveals the following two interesting observations
which turn our basic idea into a feasible approach:

1. In general, we do not need the complete set DC for the computation of the
boolean function G.

2. A representation of a sufficient subset DC′ of DC which is needed for re-
moving the redundant constraints �1, . . . , �r is already computed by an SMT

solver when checking the satisfiability of formula (1), if one assumes that the
SMT solver uses the option of minimizing conflict clauses.

In order to explain how an appropriate subset DC′ of DC is computed by the
SMT solver (when checking the satisfiability of formula (1)) we start with a brief
review of the functionality of an SMT solver:3

An SMT solver introduces constraint variables q�i for linear constraints �i

(just as in LinAIGs as shown in Fig. 1). First, the SMT solver looks for satis-
fying assignments to the boolean variables (including the constraint variables).
Whenever the SMT solver detects a satisfying assignment to the boolean vari-
ables, it checks whether the assignment to the constraint variables is consistent,
i. e., whether it can be produced by replacing real-valued variables by reals in
the linear constraints. This task is performed by a linear program solver. If the
assignment is consistent, then the SMT solver has found a satisfying assignment,
otherwise it continues searching for satisfying assignments to the boolean vari-
ables. If some assignment ε1, . . . , εm to constraint variables q�i1

, . . . , q�im
was

found to be inconsistent, then the boolean ‘conflict clause’ (qε1
�i1

+ . . . + qεm

�im
) is

added to the set of clauses in the SMT solver to avoid running into the same
conflict again. The negation of this conflict clause describes a set of don’t cares
due to an inconsistency of linear constraints.

Now consider formula (1) which has to be solved by an SMT solver and suppose
that the solver introduces boolean constraint variables q�i for linear constraints
�i and q�′i for �′i (1 ≤ i ≤ n). Whenever there is some satisfying assignment to
boolean variables (including constraint variables) in the SMT solver, it will be
necessarily shown to be inconsistent, since formula (1) is unsatisfiable.

3 Here we refer to the lazy approach to SMT solving, see [18], e.g., for an overview.



390 C. Scholl et al.

In order to define an appropriate function G we introduce the concept of
so-called orbits: For an arbitrary value (v�r+1 , . . . , v�n) ∈ {0, 1}n−r the corre-
sponding orbit is defined by

orbit(v�r+1 , . . . , v�n) := {(v�1 , . . . , v�r , v�r+1 , . . . , v�n) | (v�1 , . . . , v�r ) ∈ {0, 1}r}.
Now the following essential observations result from the unsatisfiability of

formula (1): If some orbit orbit(v�r+1 , . . . , v�n) contains two different elements
v(1) := (v�1 , . . . , v�r , v�r+1 , . . . , v�n) and v(2) := (v′�1 , . . . , v′�r

, v�r+1 , . . . , v�n) with
F (v(1)) �= F (v(2)), then

(a) v(1) ∈ DC or v(2) ∈ DC and
(b) the SMT solver detects and records this don’t care when solving formula (1).

In order to show fact (a), we consider the following assignment to the boolean
abstraction variables in formula (1): Let q�1 := v�1 , . . . , q�r := v�r , q�′1 := v′�1 , . . . ,
q�′r := v′�r

, q�r+1 := q�′r+1
:= v�r+1 , . . . , q�n := q�′n := v�n . (Thus v(1) is assigned to

the abstraction variables for �1, . . . , �n and v(2) to the abstraction variables for
�′1, . . . , �

′
n.) It is easy to see that this assignment satisfies the boolean abstrac-

tion of formula (1). Since formula (1) is unsatisfiable, the assignment has to be
inconsistent wrt. the interpretation of constraint variables by linear constraints.
So there must be an inconsistency in the truth assignment to some linear con-
straints �1, . . . , �n, �′1, . . . , �

′
n. Since the linear constraints �i and �′i are based on

disjoint sets of real variables C = {c1, . . . , cf} and C′ = {c′1, . . . , c′f}, already the
partial assignment to �1, . . . , �n or the partial assignment to �′1, . . . , �

′
n has to be

inconsistent, i.e., v(1) ∈ DC or v(2) ∈ DC.
Fact (b) follows from the simple observation that the SMT solver has to detect

and record the inconsistency of the assignment mentioned above in order to prove
unsatisfiability of formula (1) and with minimization of conflict clauses it detects
only conflicts which are confined either to �1, . . . , �n or to �′1, . . . , �

′
n.4

Altogether this means that the elements of some orbit(v�r+1 , . . . , v�n) which
are not in the subset DC′ of DC computed by the SMT solver are either all
mapped by F to 0 or are all mapped by F to 1. Thus, we can define an appro-
priate function G by don’t care assignment as follows:

1. If orbit(v�r+1 , . . . , v�n) ⊆ DC′, then G(v�r+1 , . . . , v�n) is chosen arbitrarily.
2. Otherwise G(v�r+1 , . . . , v�n) = δ with F (orbit(v�r+1 , . . . , v�n) \ DC′) = {δ},

δ ∈ {0, 1}.
It is easy to see that G does not depend on variables q�1 , . . . , q�r and that G is
well-defined (this follows from |F (orbit(v�r+1 , . . . , v�n) \ DC′)| = 1), i.e., G is a
possible solution according to Def. 1. This consideration also provides a proof
for the ‘if-part’ of Thm. 1.
4 For our purposes, it does not matter whether the inconsistency is given in terms of

linear constraints �1, . . . , �n or �′1, . . . , �
′
n. We are only interested in assignments of

boolean values to linear constraints leading to inconsistencies; of course, the same
inconsistencies will hold both for �1, . . . , �n and their copies �′1, . . . , �

′
n.



Computing Optimized Representations 391

A predicate dc which describes the don’t cares in DC′ may be extracted
from the SMT solver as a disjunction of negated conflict clauses which record
inconsistencies between linear constraints.

Note that according to case 1. of the definition above there may be several
possible choices fulfilling the definition of G.

Redundancy Removal by Existential Quantification. A straightforward way of
computing an appropriate function G relies on existential quantification:

– At first by G′ = F ∧ dc all don’t cares represented by dc are mapped to the
function value 0.

– Secondly, we perform an existential quantification of the variables q�1 , . . . , q�r

in G′: G = ∃q�1 , . . . , q�rG
′. This existential quantification maps all elements

of an orbit orbit(v�r+1 , . . . , v�n) to 1, whenever the orbit contains an element
ε with dc(ε) = 0 and F (ε) = 1. Since due to the argumentation above there
is no other element δ in such an orbit with dc(δ) = 0 and F (δ) = 0, G even-
tually differs from F only for don’t cares defined by dc and it certainly does
not depend on variables q�1 , . . . , q�r , i.e., existential quantification computes
one possible solution for G according to Def. 1 (more precisely it computes
exactly the solution for G which maps a minimum number of elements of
{0, 1}n−r to 1).

Redundancy Removal with Craig Interpolants. Although our implementation
of LinAIGs supports quantification of boolean variables by a series of meth-
ods like avoiding the insertion of equivalent nodes, quantifier scheduling, BDD

sweeping and node selection heuristics (see [17]), there remains the risk of dou-
bling the representation size by quantifying a single boolean variable.5 Therefore
the computation of G by G = ∃q�1 , . . . , q�rG

′ as shown above may potentially
lead to large LinAIG representations (although it reduces the number of linear
constraints).

On the other hand, this choice for G is only one of many other possible choices.
Motivated by these facts we looked for an alternative solution. Here we present a
solution which needs only one application of Craig interpolation [1,8,9,19] instead
of a series of existential quantifications of boolean variables. Note that in this
context Craig interpolation leads to an exact result (as one of several possible
choices) and not to an approximation as in [9].

Don’t cares can be assigned arbitrarily in order to make G independent from
q�1 , . . . , q�r , thus our task is to find a boolean function G(q�r+1 , . . . , q�n) with

(F ∧ dc)(q�1 , . . . , q�n) =⇒ G(q�r+1 , . . . , q�n), (2)

G(q�r+1 , . . . , q�n) =⇒ (F ∨ dc)(q�1 , . . . , q�n). (3)

Now let A(q�1 , . . . , q�r , q�r+1 , . . . , q�n , h1, . . . , hl) represent the CNF for a Tsei-
tin transformation [20] of (F ∧dc)(q�1 , . . . , q�r , q�r+1 , . . . , q�n) (with new auxiliary

5 Basically, existential quantification of a boolean variable is reduced to a disjunction
of both cofactors wrt. 0 and wrt. 1.



392 C. Scholl et al.

variables h1, . . . , hl). Likewise, let B(q′�1 , . . . , q
′
�r

, q�r+1 , . . . , q�n , h′
1, . . . , h

′
l′) be the

CNF for a Tseitin transformation of (F ∧ dc)(q′�1 , . . . , q
′
�r

, q�r+1 , . . . , q�n) (with
new auxiliary variables h′

1, . . . , h
′
l′ and new copies q′�1 , . . . , q′�r

of the variables
q�1 , . . . , q�r).

Then A and B fulfill the precondition ‘A∧B = 0’ for Craig interpolation [1,8]:
Suppose that there is a satisfying assignment to A ∧ B given by q�1 :=

v�1 , . . . , q�r := v�r , q
′
�1

:= v′�1 , . . . , q
′
�r

:= v′�r
, q�r+1 := v�r+1 , . . . , q�n := v�n , and

the corresponding assignments to auxiliary variables h1, . . . , hl and h′
1, . . . , h

′
l′

which are implied by these assignments. According to the definition of A and B
this would mean that the set orbit(v�r+1 , . . . , v�n) would contain two elements
(v�1 , . . . , v�r , v�r+1 , . . . , v�n) and (v′�1 , . . . , v

′
�r

, v�r+1 , . . . , v�n) which do not belong
to the don’t care set DC′ and which fulfill F (v�1 , . . . , v�r , v�r+1 , . . . , v�n) = 1 and
F (v′�1 , . . . , v′�r

, v�r+1 , . . . , v�n) = 0. This is a contradiction to the property shown
above that the elements of orbit(v�r+1 , . . . , v�n) which are not in DC′ are either
all mapped by F to 0 or are all mapped by F to 1.

A Craig interpolant G computed for A and B has the following properties [1,8]:

– It depends only on common variables q�r+1 , . . . , q�n of A and B,
– A =⇒ G, i.e., G fulfills equation (2), and
– G ∧ B is unsatisfiable, or equivalently, G =⇒ B, i.e., G fulfills equation (3).

This shows that a Craig interpolant for (A, B) is exactly one of the possible
solutions for G which we were looking for. According to [8,9] a Craig interpolant
can be computed in linear time based on a proof by resolution that a formula in
CNF (in our case A ∧ B as defined above) is unsatisfiable. Such proofs can be
computed by any modern SAT solver with proof logging turned on.

4 Experimental Results

We implemented redundancy detection by incremental SMT solving and redun-
dancy removal by Craig interpolation in the framework of LinAIGs. The imple-
mentation uses two SMT solvers via API calls. Yices [13] is used for all SMT

solver calls except the generation of the don’t care set. This means that Yices

performs all equivalence checks needed for LinAIG compaction ([4,5], Sect. 2.1)
and moreover, it is also used for the redundancy detection algorithm described in
Sect. 3 in an incremental way. For the computation of the don’t care set required
for redundancy removal we use MathSAT [15], since it provides a method for ex-
tracting conflict clauses due to inconsistent assignments to linear constraints.
The computation of the Craig interpolants is done with MiniSAT [21], where we
made an extension to the proof logging version. All experiments were performed
on an AMD Opteron with 2.6 GHz and 16 GB RAM under Linux.

Comparison of the LinAIG evolution with and without redundancy removal. In
Fig. 4 we present a comparison of two typical runs of the model checker from
[5]. The left diagram shows the evolution of the linear constraints over time
and the right diagram shows the evolution of node counts. When we do not use



Computing Optimized Representations 393

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

ac
tiv

e 
LC

s

intermediate model checking steps

active linear constraints

redundancy removal
no redundancy removal

 0

 20

 40

 60

 80

 100

 120

 140

 160

ac
tiv

e 
no

de
s 

(x
10

00
)

intermediate model checking steps

active LinAIG nodes

redundancy removal
no redundancy removal

Fig. 4. Comparison of the LinAIG evolution with and without redundancy removal

redundancy removal, the number of linear constraint is quickly increasing up to
1000 and more, and the number of LinAIG nodes is exploding up to a value of
150,000. On the other hand, when using redundancy removal the number of linear
constraints and the number of AIG nodes show only a moderate growth rate. This
behavior has an immediate effect on the run times of the model checker: Whereas
model checking finished within 15 minutes with redundancy removal, the version
without redundancy removal did not finish within a timeout of 24 hours. This
gives a strong evidence that redundancy removal is absolutely necessary when
using quantifier elimination to keep the data structure compact in our model
checking environment.

Existential quantification vs. Craig interpolation. Here we evaluate the two differ-
ent approaches to removal of redundant constraints as presented in Sect. 3.3. The
first approach uses existential quantification to eliminate redundant constraints,
the second one uses our approach based on Craig interpolation. The benchmarks
represent state sets extracted from the model checker from [5] during three runs
with different model checking problems (the first group of runs was taken from an
industrial case study considering a flap controller of an aircraft [5], the following
two groups from the verification of collision avoidance protocols for train applica-
tions [22]). All these problems also contain boolean variables.

The results are given in Table 1. The numbers of AIG nodes and linear con-
straints before redundancy removal are shown in columns 2 and 3. In column 4
the detected number of redundant linear constraints is given. The times for the
detection of redundancy and the don’t care set generation are given in columns
5 and 6. Note that these values are the same for both approaches, because the
difference lies only in the way linear constraints are actually removed. In the
last four columns the results of the two algorithms are shown, where ‘Δ nodes’
denotes the difference between the number of AIG nodes before and after the
removal step and ‘time’ is the CPU time needed for this step. We used a timeout
of 7200 seconds and a memory limit of 4 GB.

The results clearly show that wrt. runtime the redundancy removal based on
Craig interpolation outperforms the approach with existential quantification by
far. Especially when the benchmarks are more complex and show a large number
of redundant linear constraints, the difference between the two methods is sub-
stantial. Moreover, also the resulting AIG is often much smaller. It is interesting



394 C. Scholl et al.

Table 1. Comparison of redundancy removal: existential quantification vs. Craig
interpolants

Benchmark # AIG # linear # redundant redundancy dc set RR exist. quant. RR Craig interp.
nodes constr. lin. constr. detection (s) creation (s) Δ nodes time (s) Δ nodes time (s)

stateset 1-1 1459 41 22 0.22 0.35 -541 7.19 -814 0.74
stateset 1-2 1716 74 27 0.51 0.71 -313 13.14 -1047 0.68
stateset 1-3 2340 105 22 1.89 2.41 459 25.35 -515 2.32
stateset 1-4 3500 142 28 8.02 5.53 1642 75.49 1062 10.08
stateset 1-5 2837 123 13 4.61 4.54 -230 12.34 1595 23.10
stateset 2-1 824 29 8 0.12 0.19 747 2.55 -142 0.43
stateset 2-2 1424 37 10 0.36 0.53 1104 3.45 233 1.19
stateset 2-3 3048 52 11 2.45 2.50 1996 10.13 171 4.22
stateset 2-4 1848 37 14 0.57 0.90 852 4.03 -149 1.34
stateset 3-1 495 74 44 0.10 0.14 656 4.55 -365 0.13
stateset 3-2 1775 297 228 1.86 1.74 >7200 -1453 1.60
stateset 3-3 6703 1281 1143 105.69 23.70 >7200 -5805 14.12
stateset 3-4 32021 5943 5706 2774.10 1012.78 >7200 -24633 126.19

to see that using incremental SMT solving techniques it was in many cases pos-
sible to detect large sets of redundant linear constraints in very short times. As
shown in the previous experiment this pays off also in subsequent steps of model
checking when quantifier elimination works on a representation with a smaller
number of linear constraints. Considering column 6 we observe that run times
for the generation of don’t care sets by MathSAT are comparable to the run times
of redundancy detection.6

Comparison of the LinAIG based quantifier elimination with other solvers. In a
last experiment we compared our approach to quantifier elimination with sev-
eral existing tools: REDLOG [12] is an extension to the computer algebra sys-
tem REDUCE [11] and uses the quantifier elimination algorithm of Loos and
Weispfenning [7], too, LIRA 1.1.2 [10] is an automata-based tool capable of rep-
resenting sets of states over real, integer, and boolean variables, and CVC3 1.2.1
[14] as well as Yices 1.0.11 [13] are state-of-the-art SMT solvers.

The benchmarks formulas used in this experiment contain linear constraints
and boolean variables, together with AND operators, negations, and quantifiers
over real-valued variables. The formulas were extracted from the model checker
[5] and represent continuous pre-image computations for state sets. All formulas
contain two quantified variables, one is existentially quantified and the other one
is universally quantified. All formulas are given in the SMT-LIB format [23] and
are publicly available.7 Since the SMT-LIB format only supports flat formulas
(instead of shared graph structures), we had to confine ourselves to state set
representations with moderate sizes.

For the SMT solverswe interpret free variables as implicitly existentially quanti-
fied and decide satisfiability, since they do not compute predicates representing all
6 As already mentioned above, for technical reasons in our implementation we have to

repeat the last step of redundancy detection (which actually was already performed
by Yices) using MathSAT in order to be able to extract conflict clauses.

7 http://abs.informatik.uni-freiburg.de/tacas09bench/

http://abs.informatik.uni-freiburg.de/tacas09bench/


Computing Optimized Representations 395

Table 2. Comparison of Solvers

Benchmark LinAIG REDUCE/REDLOG LIRA Yices CVC3
Name AND LC B R N AND LC B Time AND LC B Time Res. Time Res. Time Res. Time

pre1 1K 22 5 4 27 30 12 5 1.48 830 26 5 0.14 SAT 27.71 ? 0.03 ? 0.22
pre2 2K 20 5 4 15 15 2 4 1.23 1133 35 5 0.21 SAT 67.98 ? 0.05 ? 0.25
pre3 5K 26 5 4 55 71 16 5 2.03 1918 39 5 0.43 SAT 443.66 ? 0.15 ? 0.40
pre4 160K 52 4 4 33 35 12 3 4.48 196483 224 4 38.06 timeout ? 3.94 ? 4.65
pre5 188K 27 20 5 31 59 13 4 4.52 35356 42 16 14.67 memout ? 4.41 ? 4.84
pre6 1396K 31 20 5 21 29 9 3 15.15 396887 68 20 98.89 timeout ? 32.88 ? 22.81
pre7 3894K 30 20 5 32 111 8 4 46.58 memout memout ? 148.47 ? 90.97
pre8 6730K 44 20 5 186 545 14 12 68.95 memout memout ? 239.20 ? 111.56
pre9 9931K 52 8 4 555 8034 20 8 96.19 memout memout ? 191.67 ? 132.06

satisfying assignments. Our LinAIG based tool, REDLOG/REDUCE and LIRA
additionally compute representations for predicates representing all satisfying as-
signments. Again, we used a time limit of 7200 CPU seconds and a memory limit
of 4 GB for our experiments.

Table 2 shows the results. The first section ‘Benchmark’ shows details on the
input formulas. The column ‘AND’ lists the number of AND operators in the
formula, ‘LC’ lists the number of linear constraints, ‘B’ the number of boolean
variables, and ‘R’ the number of real variables. The LinAIG section shows for the
resulting predicates the numbers of AIG nodes (‘N’), the numbers of AND opera-
tors in the corresponding flat formula (‘AND’), the numbers of linear constraints
(‘LC’), boolean variables (‘B’), and run times (‘Time’). The run times include all
CPU times necessary for reading the formulas, constructing LinAIGs, eliminat-
ing quantifiers, and removing redundant linear constraints. For the REDLOG
tool we report the number of AND operators, linear constraints, and boolean
variables in the resulting formula, as well as the run times needed for the compu-
tation. For LIRA, Yices and CVC3 run times are given together with the result
whether the formula is proven to be satisfiable (‘SAT’) or unsatisfiable (‘UN-
SAT’). The two SMT solvers Yices and CVC3 are not using a complete method
and therefore may also report ‘unknown’ which is marked by ‘?’.

Our LinAIG based approach is able to eliminate the quantifiers of all formulas
within a short runtime and moreover, returns formulas which are much more
compact than the formulas produced by REDLOG/REDUCE, both in terms of
AND operators and in terms of linear constraints. For mid-size examples the run
times of REDUCE/REDLOG are outperformed by our tool, whereas the larger
examples could not be solved by REDUCE/REDLOG. LIRA was able to solve
only 3 out of 9 instances within the time or memory limit and it needs much
more run time. The SMT solvers Yices and CVC3 were not able to solve any of
the examples. Note however that these solvers are not restricted to the subclass
of formulas we consider in this paper. They are able to handle the more general
AUFLIRA class of formulas [24] and for handling formulas with quantifiers they
make use of heuristics based on E-matching [25] which are not tuned to problems
that contain only linear arithmetic.

In summary, the experiments clearly demonstrate that for the subclass of
formulas considered in this paper we were able to provide an efficient method
both wrt. run times and wrt. the sizes of the resulting formulas.



396 C. Scholl et al.

5 Conclusions and Future Work

We presented an approach for optimizing non-convex polyhedra based on the
removal of redundant constraints. Our experimental results show that our ap-
proach can be successfully applied to solving quantified formulas including lin-
ear real arithmetic and boolean formulas. The method is based on an elaborate
scheme for keeping graph-based representations of intermediate results as com-
pact as possible, with redundancy removal as an essential component. Since our
method does not only solve satisfiability of formulas, but constructs predicates
of all satisfying assignments to the free variables in the formula, our results may
suggest to use the presented method in the future also as a fast preprocessor for
more general formulas by simplifying subformulas from the subclass considered
in this paper. Moreover, it will be interesting to apply the methods to underlying
theories different from linear real arithmetic, too.

Acknowledgements

The results presented in this paper were developed in the context of the Tran-
sregional Collaborative Research Center ‘Automatic Verification and Analysis
of Complex Systems’ (SFB/TR 14 AVACS) supported by the German Research
Council (DFG). We worked in close cooperation with our colleagues from the
‘First Order Model Checking team’ within subproject H3 and we would like to
thank W. Damm, H. Hungar, J. Pang, and B. Wirtz from the University of
Oldenburg, and S. Jacobs and U. Waldmann from the Max Planck Institute for
Computer Science at Saarbrücken for numerous ideas and helpful discussions.
Moreover, we would like to thank J. Eisinger from the University of Freiburg
for providing the formula parser used in our experiments and A. Griggio from
University of Trento for his support enabling the integration of MathSAT into
our tool.

References

1. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. Journal on Symbolic Logic 22(3), 269–285 (1957)

2. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer 1(1–2), 110–122 (1997)

3. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

4. Damm, W., Disch, S., Hungar, H., Pang, J., Pigorsch, F., Scholl, C., Waldmann,
U., Wirtz, B.: Automatic verification of hybrid systems with large discrete state
space. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 276–291.
Springer, Heidelberg (2006)

5. Damm, W., Disch, S., Hungar, H., Jacobs, S., Pang, J., Pigorsch, F., Scholl, C.,
Waldmann, U., Wirtz, B.: Exact state set representations in the verification of
linear hybrid systems with large discrete state space. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 425–440.
Springer, Heidelberg (2007)



Computing Optimized Representations 397

6. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-
like data-structures. IEEE Trans. on Software Engineering 31(1), 38–52 (2005)

7. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993)

8. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal on Symbolic Logic 62(3), 981–998 (1997)

9. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

10. Eisinger, J., Klaedtke, F.: Don’t care words with an application to the automata-
based approach for real addition. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 67–80. Springer, Heidelberg (2006)

11. Griss, M.L.: The reduce system for computer algebra. In: ACM 1975: Proceedings
of the 1975 annual conference, pp. 261–262. ACM Press, New York (1975)

12. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic.
SIGSAM Bull. 31(2), 2–9 (1997)

13. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

14. Stump, A., Barrett, C.W., Dill, D.L.: CVC: A cooperating validity checker. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504.
Springer, Heidelberg (2002)

15. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The math-
SAT 4 SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 299–303. Springer, Heidelberg (2008)

16. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: A unifying
representation for logic synthesis and verification. Technical report, EECS Dept.,
UC Berkeley (2005)

17. Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking by using
AIGs, BDD sweeping and quantifier scheduling. In: FMCAD, pp. 89–96 (2006)

18. Sebastiani, R.: Lazy satisability modulo theories. JSAT 3, 141–224 (2007)
19. Lee, C.C., Jiang, J.H.R., Huang, C.Y., Mishchenko, A.: Scalable exploration of

functional dependency by interpolation and incremental SAT solving. In: ICCAD,
pp. 227–233 (2007)

20. Tseitin, G.: On the complexity of derivations in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logics (1968)

21. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 541–638. Springer, Heidelberg (2004)

22. Damm, W., Mikschl, A., Oehlerking, J., Olderog, E.-R., Pang, J., Platzer, A.,
Segelken, M., Wirtz, B.: Automating verification of cooperation, control, and de-
sign in traffic applications. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal
Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 115–169. Springer,
Heidelberg (2007)

23. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2 (2006), http://

combination.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf

24. Barrett, C., Deters, M., Oliveras, A., Stump, A.: Satisfiability Modulo Theories
Competition (SMT-COMP) 2008: Rules and Precedures (2008), http://smtcomp.
org/rules08.pdf

25. Detlefs, D., Nelson, G., Saxe, J.: Simplify: A theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

http://combination.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf
http://combination.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf
http://smtcomp.org/rules08.pdf
http://smtcomp.org/rules08.pdf

	Computing Optimized Representations for Non-convex Polyhedra by Detection and Removal of Redundant Linear Constraints
	Introduction
	Preliminaries
	Representation of Non-convex Polyhedra
	Quantifier Elimination

	Redundant Linear Constraints
	Redundancy Detection and Removal for Convex Polyhedra
	Detection of Redundant Constraints for Non-convex Polyhedra
	Removal of Redundant Linear Constraints

	Experimental Results
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




