Falsification of LTL Safety Properties in Hybrid
Systems

Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi

Dept. of Computer Science, Rice University, Houston TX 77005
{plakue,kavraki,vardi}@cs.rice.edu

Abstract. This paper develops a novel computational method for the
falsification of safety properties specified by syntactically safe linear tem-
poral logic (LTL) formulas ¢ for hybrid systems with general nonlinear
dynamics and input controls. The method is based on an effective combi-
nation of robot motion planning and model checking. Experiments on a
hybrid robotic system benchmark with nonlinear dynamics show signifi-
cant speedup over related work. The experiments also indicate significant
speedup when using minimized DFA instead of non-minimized NFA, as
obtained by standard tools, for representing the violating prefixes of ¢.

1 Introduction

Hybrid systems, which combine discrete and continuous dynamics, provide sophis-
ticated mathematical models being used in robotics, automated highway systems,
air-traffic management, computational biology, and other areas [1]. An important
problem in hybrid systems is the verification of safety properties [1, 2], which as-
sert that nothing “bad” happens, e.g., “the car avoids obstacles.” A hybrid system
is safe if there are no witness trajectories indicating a safety violation. Safety prop-
erties have traditionally been specified in terms of a set of unsafe states and verifi-
cation has been formulated as reachability analysis [1,12,13,4,15,6,/7]. Reachability
analysis in hybrid systems is in general undecidable |2,13]. Moreover, complete al-
gorithms have an exponential dependency on the dimension of the state space and
are limited in practicality to low-dimensional systems |1 |2, 4].

To handle more complex hybrid systems, alternative methods[8, |9, [10, 11, [12]
have been proposed that shift from verification to falsification, which is often the
focus of model checking in industrial applications [13]. Even though they are un-
able to determine that a system is safe, these methods may compute witness tra-
jectories when the system is not safe. Witness trajectories, similar to error traces
in model checking[13], indicate modeling flaws, which designers can then correct.
The falsification methods in 8,19, 10] adapt the Rapidly-exploring Random Tree
(RRT) motion planner [14], which was originally developed for reachability analy-
sis in continuous systems. We recently proposed the Hybrid Discrete Continuous
Exploration (HyDICE) falsification method [11,[12], which also takes advantage of
motion planning, but shows significant speedup over related work [9, [10].

As more complex hybrid systems are considered, limiting safety properties to
a set of unsafe states, as in current methods |1, 12,13, 4, 15, 16, |7, I8, |9, [10, [11, [12],

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 368 2009.
© Springer-Verlag Berlin Heidelberg 2009

Falsification of LTL Safety Properties in Hybrid Systems 369

considerably restricts the ability of designers to adequately express the desired
safe behavior of the system. To allow for more sophisticated properties, re-
searchers have advocated the use of linear temporal logic (LTL), which makes
it possible to express safety properties with respect to time, such as “if the con-
centration level of gene A reaches x, then the concentration level of gene B will
never reach y.” LTL has been widely used in model checking of discrete systems
in software and hardware [15], and timed systems [16]. The work in [17] gener-
ated trajectories that satisfy LTL constraints on the sequence of triangles visited
by a point robot with Newtonian dynamics by using a controller that could drive
the robot between adjacent triangles. The work in [18] used LTL to analyze gene
networks. The work in [19] developed a method to verify LTL safety properties
for robust discrete-time hybrid systems.

Traditional approaches for verification of an LTL property ¢ on a hybrid system
‘H often cast the problem as reachability analysis via model checking. Abstrac-
tions are typically used to obtain a discrete transition model M that simulates H,
so that checking ¢ on M is sufficient to checking ¢ on H [5]. Moreover, with an
exponential blow-up at most, a nondeterministic finite automaton (NFA) A can
be constructed that describes all prefixes violating ¢ [20]. This allows for checking
¢ on H via model checking on M x A. The challenge lies in the computation of
M, which is limited in practicality to low-dimensional hybrid systems due to the
exponential dependency on the state-space dimension [1, |2, 4].

Applying alternative approaches [8,19,10,111,[12] to falsify LTL safety properties
by reachability analysis is also challenging due to intricacies of motion planning.
During the search, motion planning extends a tree 7 in the state space of H by
adding valid trajectories as new branches. Consider a vertex v and the trajectory ¢
from the root of 7 to v. In reachability analysis|8,19,[10,111,[12], a witness trajectory
is found when the state associated with v is unsafe. When considering LTL, such
criteria is not sufficient, since ¢ needs to satisfy —¢. It then becomes necessary to
maintain the propositional assignments satisfied by ¢ and to effectively extend 7°
so that more and more of the propositional assignments of —¢ are satisfied.

To handle LTL, one can consider a naive extension of the work in [& |9, |10,
11, 112] by using A as an external monitor to determine when a tree trajectory
¢ satisfies —¢ by keeping track of the automaton states associated with each
¢. As shown in this work, however, such an approach is computationally very
inefficient.

The main contribution of this work is to extend HyDICE [11, [12] in order to
effectively incorporate LTL safety properties into hybrid-system falsification. The
proposed approach, termed TemporalHyDICE, can be used to compute witness
trajectories for the falsification of properties specified by syntactically safe LTL

formulas for hybrid systems with
— external inputs, which could represent controls, uncertainties; and

— general nonlinear dynamics, where FLow,(x, u, t) is treated as a black

box that outputs a state Tpew obtained by following the hybrid-system

dynamics when at state (¢,) and applying the input u for ¢ time units.
When differential equations describe the dynamics, closed-form solutions (if
available) or numerical integrations can be used for the black-box simulation.

370 E. Plaku, L.E. Kavraki, and M.Y. Vardi

When differential equations become too cumbersome to describe the dynamics,
other computer programs can be used for the simulation.

In its core, TemporalHyDICE draws from research in traditional and alter-
native approaches in hybrid systems to synergistically combine model checking
and motion planning. This combination presents significant challenges, as it re-
quires dealing with important issues, such as state-space search, memory usage,
scalability, and passing of information between model checking and motion plan-
ning. In TemporalHyDICE, model checking guides motion planning by providing
feasible directions along which to extend 7. A feasible direction consists of a se-
quence [7;]™, of propositional assignments that violates ¢, which is computed by
searching on-the-fly a discrete transition model M of H and the automaton 4 of
—¢. By not computing M x A explicitly, TemporalHyDICE considerably reduces
the memory used by model checking. Moreover, unlike traditional approaches,
TemporalHyDICE does not require M to simulate H. In fact, M is based on a
simple partition of the state space of H induced by propositions in ¢. Motion
planning extends 7 along directions [r;]™_; provided by model checking so that
more and more of 79, ..., 7, are satisfied in succession. As motion planning ex-
tends 7, it also gathers information to estimate the progress made in the search
for a witness trajectory. This information is fed back to model checking to select
in future iterations increasingly feasible directions for extending 7. This interac-
tive combination of model checking and motion planning is a crucial component
that allows TemporalHyDICE to effectively search for a witness trajectory.

An initial validation of TemporalHyDICE is provided by falsifying many prop-
erties specified by syntactically safe LTL formulas for a nonlinear hybrid robotic
system. Experiments show significant speedup over related work. This work also
studies the impact of representing —¢ by DFAs or NFAs, as obtained by stan-
dard tools. The motivation comes from the work in [21], which shows significant
speedup when using DFAs instead of NFAs in model checking. Experiments in
this work in the context of falsification of LTL safety properties in hybrid systems
also indicate significant speedup when using DFAs instead of NFAs.

The rest is as follows. Section [2] contains preliminaries. A straightforward ap-
proach of incorporating LTL into related work |89, [10, [11}, [12] by using the au-
tomaton A as an external monitor is described in Section[Bl As demonstrated by
the experiments, such an approach, however, is computationally very inefficient.
The proposed approach, TemporalHyDICE, which effectively incorporates LTL into
hybrid-system falsification, is described in Sectiondl Experiments and results are
described in Section Bl The paper concludes in Section [with a discussion.

2 Preliminaries

This section defines hybrid automata, LTL, the automata for the complement
of LTL formulas, and the problem statement.

Hybrid Systems: Hybrid systems are modeled by hybrid automata [2]. A
hybrid automaton is a tuple H = (5, I,Inv, E, GuarD, JumpP, U, FLow), where
S = @ x X is a product of a discrete and finite set () and continuous spaces X =
{X,:q € Q}; ICS denotes initial states; INv = {INv, : ¢ € @}, where INv, :

Falsification of LTL Safety Properties in Hybrid Systems 371

Xy — {T,1} is the invariant function; E C @) x) denotes discrete transitions;
GUARD = {GUARDg, ; : (¢:,q;) € E} and Jump = {Jumpy, ¢, : (¢i,q;) € E},
where GUARD, ¢, : Xq, — {T,L} and Jumpy, . @ X, — X, denote guard
and jump functions, respectively; U = {U, : ¢ € @}, where an input in U, C
R4imUa) can represent controls, nondeterminism, or uncertainties; and FLow =
{Frow, : ¢ € Q}, where Frow, : X, x U, x RZ% — X, is the flow function.
This work treats the dynamics as a black box, where FLow,(z, u, t) outputs the
state obtained by following the dynamics from x when w is applied for ¢ time
units. This allows for general nonlinear dynamics. In fact, the only requirement
is the ability to simulate the dynamics. INvy : Xy — {T, L}, GUARD, 4, : Xy, —
{T,L}, and Jumpy, 4, : X, — X, are also treated as black boxes to allow
general specifications that do not limit designers to a particular approach, such
as polyhedral or ellipsoidal constraints. A hybrid-system trajectory consists of
continuous trajectories interleaved with discrete transitions.

Continuous Trajectory: s = (¢,z) € S, T > 0, u € U, define a continuous
trajectory Wy .1 : [0,T] — X4, where ¥y ,, 7(t) = FLowy(z,u,t), t € [0,T].

Discrete Transition: For any (¢,z) € S, let x(q,z) = (¢, Jumpy o (z)) if
GUARDg o (z) = T for some (q,q") € E. Otherwise, let x(q,z) = (q, x).

Continuous Trajectory + Discrete Transition: Y5 1 : [0,T] — S, defined as
Ysur(t) = (¢,¥sur(t), 0 <t < T and ¥Vsr(T) = x(¢,¥s,0,7(T)), ensures
that a discrete transition at time T, if it occurs, is followed.

Trajectory Extension: Extending & : [0,T] — S by applying v’ € U to &(T)
for 77 > 0 time units, written as @ o (u/,T"), is a trajectory = : [0,T +T'] — S
Where E(t) = @(t),t S [07 T] and E(t) = T@(T),u',T’ (t — T),t (S (717 T + T/}

Hybrid-System Trajectory: A state s € S, a sequence uq,...,u, of inputs,
and a sequence T1,...,Ty of times define a trajectory ¢ : [0,7] — S, where
T=T1+-+Tand (=Y 4,1y © (u2,T2) 00 (ug, Tk).

In this work, a discrete transition is taken when a guard condition is satisfied.
There is, however, no inherent limitation in dealing with non-urgent discrete tran-
sitions. In such cases, enabled discrete transitions could be taken nondeterminis-
tically or taken only when the invariant is invalid or a combination of both.

LTL: Let IT denote a set of propositional variables.

LTL Syntaz and Semantics |20]: Every m € II is a formula. If ¢ and ¢ are
formulas, then —¢, d A, ¢ V 1, X¢ (next), ¢Up (until), pRY (release), F¢
(future), and G¢ (globally) are also formulas. Let o = 79, 71,... € 27, Let
o' =T, Tix1, ... We write 0 |= ¢ to indicate that o satisfies ¢ and define it as
cET;oct LiokErnifremn;oEgpAYifoE¢and o =
cEXpifol E¢; o= dUp if Tk >0s.t. 0¥ =y and VO <i < k:o' = ¢
GV Y= ~(~p A —); Fo = TUG; Gb = ~F~ ¢ Rep = ~(~pU—).

Syntactically Safe LTL |22]: An LTL formula ¢ that, when written in positive
normal form, uses only the temporals X', R, and G is syntactically safe. Every
syntactically safe formula is a safety formula.

NFA for Syntactically Safe LTL [20]: With an exponential blow-up at most,
an NFA can be constructed that describes all prefixes violating a syntactically
safe LTL formula. The NFA is a tuple A = (Z, X, §, vg, Acc), where Z is a finite

372 E. Plaku, L.E. Kavraki, and M.Y. Vardi

set of states; X = 2/ is the input alphabet; 6 : Z x ¥ — 27 is the transition
function; zy € Z is the initial state; and Acc C Z is the set of accepting states.
The set of states on which [r;]}_,, 7; € 2/, ends up when run on A is defined as

0(z0,71), n=1

UzeA([T_]::,:—l) 0(z,mn),n>1.

ili=1

A([Ti}?_l):{ Aaccepts [1;]1, iff A([r;]}_;)NAcc # 0.
LTL over Hybrid-System Trajectories: Let IT = {m; : ¢ € HQ N1 <
i < ng}, where ng is the number of propositional variables associated with g.
The truth-value of each m;; is determined by a black-box function Propy; :
H.X, — {T,L1}. The map 7 : H.S — 2 maps (¢,z) € H.S to truth proposi-
tions: 7((q,x)) = {mq, : mq,s € II and Prop,,;(x) = T}. When interpreted over
a hybrid-system trajectory ¢, the notation 7({) denotes the sequence of propo-
sitional assignments [r;];_, (7; € 27, 7, # 7;41) in the order satisfied by ¢, i.e.,
7, = 7({(T3)) where 0 < Ty < --- < T}, < [¢] such that n is as large as possible
and 7; # Ti41, 1 <4 < n. Then, (satisfies ¢, written ¢ | ¢, iff 7(¢) E ¢.
Problem Statement: Let P = (H, A, 7), where H is a hybrid automaton; .4
is an automaton for the complement of a syntactically safe LTL formula ¢ over
propositions I7; and 7 is a propositional map interpreted both over hybrid-system
states and trajectories. Given P, compute a valid trajectory ¢ : [0, 7] —H.S that
satisfies —¢, i.e., (Vt€[0,T] :INvy, (z,) =T, where (q,2,)=¢(¢)) and ¢ = —¢.

3 Incorporating LTL into Motion-Planning Approaches

Motion planning has been widely used in reachability analysis for continuous
robotic systems with dynamics [23,[24]. These methods rely on a common frame-
work that iteratively extends a tree in the state space of the system by adding
valid trajectories as branches. Recently, the work in [, |9, [10] adapted the tree-
search framework for reachability analysis in hybrid systems.

There have been no discussions in the literature on how to augment the tree-
search framework with LTL trajectory properties, cf. [§, |9, [10]. This section
describes a minimal extension of the tree-search framework to handle LTL. The
idea is to use A (DFA or NFA) to keep track of the automaton states associated
with each tree trajectory and to determine when a tree trajectory is a witness. In
this way, similar to model checking, the tree-search framework searches on-the-
fly H and A. With these modifications, the tree-search framework can be used
to falsify LTL safety properties in hybrid systems, and, thus, provide a basis
for the experimental comparisons. As demonstrated by the experiments, such an
approach, however, is computationally very inefficient. Section [, which describes
TemporalHyDICE, then shows how to effectively combine the LTL tree-search
framework with model checking on M and A, where M is a discrete transition
model of H, in order to significantly increase its computational efficiency.

Incorporating LTL into the Tree-Search Framework: The tree is main-
tained as a graph 7 = (V, E). Each vertex v € 7.V is associated with a state
s € H.S, written as v.s. An edge (v',v”) € T.E indicates that a valid trajec-
tory connects v’.s to v”.s. As the search proceeds iteratively, 7 is extended by

Falsification of LTL Safety Properties in Hybrid Systems 373

Algorithm 3.1. LTL-TSF: Incorporating LTL into the Tree-Search Framework

Input: P: problem specification; tmax € R”°: upper bound on computation time
Output: A solution trajectory if one is found or 1 otherwise

(a) 7 < INITALIZETREE(P)
while ELAPSEDTIME < tmax do
(b) v «+ SELECTVERTEXFROMTREE(P, T) & wvaries from method to method
(c) [u, T, snew, Onew| < EXTENDTREE(P, T, v)
(d) if T > OA|anew| > 0 then vpew «— ADDBRANCHTOTREE(T, v, [u, T, Snew, Qnew])
(e) if P.A.Acc N anew # 0 then return TRAJ(7, vnew)
return L
EXTENDTREE(P,7,v) :=
1: e € R®Y — time step; Nsteps € N «— number of steps
2: s =(q,x) «— v.8; @ — v.q;; To — T; g — ; To — P.7(s)
3: u « sample control from P.H.U,
4: for i =1,2,..., ngeps do $simulate the continuous and discrete dynamics of P.H

5z «— PHFLOWg(Ti—1,u,€); 5 — P.7((q,2:))

6: if 7,1 = 7; then a; — a;—1 else a; — Uzeq, ,P.A5(z,75)

7. if P’H.INVg(x;) = L then return [u, (i — 1) *¢€, (g, xi—1), ai—1]

8: if P.H.GUARDg ¢uen (i) = T, (¢, gnew) € P.H.E then

9: (Z10c, T') < localize discrete event in ((i — 1) * €,4 * €]; Tioc < P.7((q, T10c))
10: if Ti_1 = Tioc then auee — ai—1 €else aioc — Uzca, , P-A.0(2, Tioc)

11: Tnew «— P.H.JUMPg g.o (T10c); Taew «— P.T((qnew; Tnew))

12: if Tioc = Thew then anew «— aioc €lse anew — Uzcay,, P-A.0(2, Thew)

13: return [u, T, (qnew, Tnew), Cnew]

14: return [u, nNsteps * € (¢; Tnareps)s Oneceps]

adding new vertices and edges. Consider the trajectory TraJ(7,v) from the root
of T tov € T.V. If TRAJNT,v) |= ¢, then TrAI(T,v) is a witness. To deter-
mine TraJ(7,v) = —¢, v is associated with the automaton states corresponding
to TrRaJ(7 ,v), written as v.a and defined as v.a = A(7(TrAJ(7,v))). Then,
TraI(7,v) | —¢ iff A(v.a) N A.Acc # 0. Pseudocode is given in Algo. [311

(a) InitializeTree(P) associates the root vertex vini; with the initial hybrid-
system state and adds wvipit to 7, i.e., Uinit-8 = H.Sinit, 2.V = {Vmit}, and
7.E = (). The automaton states are computed by running A on the propositional
assignment satisfied by vinit.$, 1.e., Vinit.a0 = A.I(A.Zinit, T(Vinit-S))-

(b) SelectVertexFromTree(P,7) selects a vertex v € 7.V from which to
extend 7. Over the years, numerous strategies have been proposed that rely on
distances, nearest neighbors, probability distributions, and much more |23, [24].

(c) ExtendTree(P,7,v) extends 7 from v by computing a trajectory (:
R>% — .S that starts at v.s and satisfies the invariant. A common strategy is to
apply some input v € H.U to v.s and follow the dynamics of H until the invariant
is not satisfied or a maximum number of steps is exceeded [&,19,110,111, 12,23, [24].
The input u is generally selected pseudo-uniformly at random to allow subse-
quent calls to extend 7 along new directions. EXTENDTREE(P, 7, v) returns a
tuple [u, T, Snew; Onew], Which defines ¢ = 1 5,17 (Section B)), where spew =
Yosur(T) and onew = A(T(TrAI(T,v) o ()). Note that any hybrid-system

374 E. Plaku, L.E. Kavraki, and M.Y. Vardi

simulation method can be used to compute ¢ = 7 s, 7. For completeness, we
describe a simple iterative procedure. Let ngieps denote the number of steps
and let ¢ > 0 denote the step size (Algo. BIlc):1). Initially, zg = x and
ap = v.a, where v.s = (g,z) (Algo. BIlc):2). At the i-th iteration, z; =
H.FLowy(z;—1,u,€) (Algo. Blc):5). The automaton states «; associated with
(¢, x;) are updated only if 7((q,z;)) # 7((¢,z;—1)). The update is computed by
running A on 7((g, z;)) starting from a;—1 (Algo. Blc):6). If H.INnvg(x;) = L,
then EXTENDTREE returns [u, (¢ — 1) x €, (g, 2;—1), a;—1] (Algo. BIc):7). When
H.INvg(x;) = T, EXTENDTREE checks if a guard is satisfied, which would indicate
a discrete event (Algo.[BIc):8). Event detection is followed by event localization,
which localizes the earliest time T' € ((i — 1) % €, i % €] where the guard is satisfied
(Algo. BKc):9). Bisection or bracketing algorithms are typically used for event
localization [25]. The discrete transition is then triggered to obtain the new state
(Algo. BIic):11). The automaton states are also updated (Algo. BIc):12).

Numerical errors in simulation, invariant checking, event detection and local-
ization could in certain cases cause EXTENDTREE to miss an invariant violation,
miss a guard, or trigger a different discrete transition. To minimize such er-
rors, a practical approach is to choose a small e¢. This approach is the norm in
hybrid-system falsification methods based on motion planning |8, (9, [10, [11, [12].
For hybrid systems with linear guards, it is also possible to use more accurate
event detection and localization algorithms, which come asymptotically close to
the guard boundary|[25]. In many practical cases, hybrid systems exhibit a de-
gree of robustness [19, 26] that minimizes the impact of numerical errors, e.g.,
small perturbations do not change the mode-switching behavior. As noted, the
simple implementation of EXTENDTREE, presented here for completeness, can be
replaced by more sophisticated hybrid-system simulation methods.

(d) AddBranchToTree(7,v, [u, T, Snew; Onew)) adds Unew and (v, vnew) to 7.
Tt also associates Spew and apew With vpew and uw and T with (v, Vpew)-

(€) Traj(7,vnew) computes the trajectory from vipit.s t0 Vnew.s by concate-
nating the trajectories associated with the tree edges connecting vinit t0 Vnew-

Incorporating LTL into RRT: The work in |8, 19, [10] relies on RRT[14]. To
incorporate LTL into RRT, it suffices to use LTL-TSF (Algo. B1]) and implement
SELECTVERTEXFROMTREE(P, T) as described in [8, 19, [10, 14], e.g., sample s €
‘H.S pseudo-uniformly at random and select v € 7.V whose v.s is the closest to
s according to a distance metric. This is referred to as RRT[LTL-TSF].

Incorporating LTL into HyDICE[NoGuide|: Similarly to RRT, HyDICE|1L, [12]
also falls into the broad category of tree-search algorithms. Distinctly from RRT,
HyDICE |11, 112] introduced discrete search over (H.Q,H.E) to guide the tree
search in the context of reachability analysis to a set of unsafe states. At each
iteration, the discrete search computed a sequence of discrete transitions from
an initial to an unsafe mode. The tree-search framework then extended 7" along
the direction provided by the discrete search. Experiments showed significant
speedup of one to two orders of magnitude over RRT-based falsification |9, [10].

Incorporating LTL into HyDICE is more involved than in the case of RRT, since
the discrete search over (H.Q,H.E) does not take LTL into account. When

Falsification of LTL Safety Properties in Hybrid Systems 375

considering LTL, a safety violation is not indicated by an unsafe state, but by
an unsafe trajectory that satisfies —¢. Therefore, when considering LTL, unsafe
states and unsafe modes are not defined. This means that the discrete search
over (H.Q), H.E) from an initial to an unsafe mode is also not defined. The next
section shows how to effectively incorporate LTL into HyDICE.

The version of HyDICE |11, [12] that does not use the discrete search is re-
ferred to in |11, 12] as HyDICE[NoGuide]. Experiments in [11, [12] showed that
HyDICE[NoGuide] was significantly slower than HyDICE, but still faster than RRT-
based falsification |9, [10]. As described in [11,[12], HyDICE[NoGuide] corresponds
to the tree-search framework, where SELECTVERTEXFROMTREE(P,T) is imple-
mented by selecting v € 7.V according to a probability distribution over 7.V.
This makes it possible to incorporate LTL into HyDICE[NoGuide], referred to as
HyDICE[NoGuide, LTL-TSF|, by using LTL-TSF (Algo B1I).

4 TemporalHyDICE

The computational efficiency of LTL-TSF (Algo.[3]) depends on the ability of the
approach to quickly extend 7 along those directions that lead to the computation
of witness trajectories. Motivated by [11, [12], TemporalHyDICE uses a discrete
transition model M of ‘H and effectively combines LTL-TSF with model checking
over M and A to identify and extend 7 along such useful directions.

Consider a discrete witness [Ti]?:l, i.e., a sequence of propositional assign-
ments accepted by A. Let I'(r;) = {s € H.S : 7(s) = 7z}. If T can be extended
so that a trajectory Trai(7,v) starts at I'(m1) and enters I'(72),...,I'(1,) in
succession, then TrAJ(7,v) would be a witness trajectory. In this way, the
discrete witness provides a feasible direction along which motion planning in
TemporalHyDICE can attempt to extend 7 in the search for a witness trajectory.

Model checking can be effectively employed for the computation of discrete
witnesses. A discrete transition model is constructed as a graph M = (V, E) in
order to capture the partition of H.S induced by 7, where a vertex v(r;) € M.V
corresponds to I'(7;) and an edge (v(7;),v(7;)) € M.E indicates that it may be
possible to enter directly from I'(7;) to I'(7;). Model checking can then compute
discrete witnesses by simultaneously searching A and M.

An issue that arises is which discrete witnesses motion planning can actu-
ally follow. Since it is not known a priori which discrete witnesses are feasible,
TemporalHyDICE maintains a running weight estimate w([r;]!,) on the feasibil-
ity of [ri]i—;. A high weight indicates significant progress is made in extending
7T toward I'(11),...,I(7,), while a low weight indicates little or no progress.

The core loop consists of using model checking to select at each iteration a
discrete witness [7;];_; based on w([r;];—;) and then using motion planning to
extend 7T toward I'(71),...,I(7,) in succession.

Combining Model Checking and Motion Planning: A crucial property
of TemporalHyDICE, distinctive from earlier work [17], is that model checking and
motion planning work in tandem. Information gathered by motion planning (such
as coverage, I'(7;)’s that have been reached, and time spent) is used to update

376 E. Plaku, L.E. Kavraki, and M.Y. Vardi

Algorithm 4.1. TemporalHyDICE

Input: P: problem specification; tmax € R”°: upper bound on computation time
Output: A witness trajectory if one is found or L otherwise

(a) 7 «— INITIALIZETREE(P)
(b) M = (V, E) « DISCRETETRANSITIONMODEL(P)
(¢) INITIALIZEFEASIBILITY ESTIMATE(P, M, w)
while ELAPSEDTIME < tyax do
(d) o def [(zi,7i)]i=1 < DISCRETEWITNESS(P, M, w)
(e) ¢ < EXTENDTREEALONGDISCRETEWITNESS(P, 7, M, w, o)
(f) if ¢ # NIL return ¢
return |
(e) EXTENDTREEALONGDISCRETEWITNESS(P, T, M, w,0) :=
1: Cavail — {(2i,7i) € 0 : (2i,73).vertices # 0}
2: for several times do
3: (zi,7i) < SELECTAVAILABLEPAIR(wW, Oavail)
4: v < SELECTVERTEXFROMAVAILABLEPAIR(w, (2;, 7;).vertices)
5. [u, T, Snew, Onew| < EXTENDTREE(P, T, v)
6: if T > OA|@new| > 0 then vnew < ADDBRANCHTOTREE(T, v, [u, T, Snew, Onew])
7: if P.A.Acc N anew # 0 then return TRAI(T, Vnew)
8: UPDATEFEASIBILITYESTIMATES(P, 7, M, w, (2, T:))
9: Tnew < P.7(Vnew.s)
10: for znew € Qmew do

11: Oavail < {(Znewy Tnew)} U Gavail
12: (Znew, Tnew).vertices < {Unew } U (Znew, Tnew).vertices
13: UPDATEFEASIBILITY ESTIMATES(P, 7, M, w, (Znew, Tnew))

14: return NIL

the feasibility estimates w([7;];,). As a result, a new discrete witness, associated
with a high weight, could be selected in the next iteration by model checking.
In turn, by using highly feasible discrete witnesses [7;];_; as guides, motion
planning is able to make progress and extend 7 toward I'(7y), ..., I'(7,) until it
successfully computes a witness trajectory. Pseudocode is given in Algo. 111
Algo. @.Il(b) DiscreteTransitionModel(P): As discussed, M captures the
partition of H.S induced by 7 and serves to eliminate from consideration certain
infeasible discrete witnesses. Region I'(7;) is considered unable to directly reach
I'(1y), written I'(r;) 4 I'(7x), if I'(7;) and I'(7;) do not share a boundary and
there is no discrete transition from some s’ € I'(7;) to some s” € I'(1). A
discrete witness [r;];_; is indeed infeasible if I'(13) # I'(Tk41) for some 1 <
k < n, since no trajectory can enter I'(y), ..., I'(7,) in succession. To eliminate
such infeasible discrete witnesses from consideration, M is constructed as a
graph M = (V,E). A vertex v(7;) is added to M.V for each I'(r;). An edge
(v(1:),v(7;)) is added to M.E if it cannot be determined that I'(7;) 4 I'(7;).
Note that the computation of M is problem specific and depends on the
black-box definitions of propositional, guards, and reset functions (Section [Z).
For this reason, DISCRETETRANSITIONMODEL(P) is an external function supplied
by the user. Since there is no requirement that M should simulate H, it is

Falsification of LTL Safety Properties in Hybrid Systems 377

generally a straightforward process for the user to obtain M from P. This is the
case for the experiments in this work. Moreover, the definition of M allows for
spurious edges, i.e., (v(7;),v(7k)) € M.E even when I'(7;) # I'(7x). This further
facilitates the computation of M since the user can add spurious edges when it is
computationally difficult to determine that I'(7;) /4 I'(1). A spurious edge may
cause model checking to compute at some iterations infeasible discrete witnesses,
since it is impossible to enter directly from I'(7;) to I'(7x). The interplay between
model checking and motion planning will cause feasibility estimates associated
with spurious edges to decrease rapidly, since motion planning will fail to extend
T from I'(7;) to I'(14). As a result, model checking will reduce the likelihood of
including spurious edges in future computations of discrete witnesses.

Algo. A.7)(d) DiscreteWitness(P, M, w) uses model checking to compute
discrete witnesses by searching on-the-fly A and M. The search produces a
sequence [(z;,7;)]l_;, where (2;,7;) € AZ x 2" and 2z, € AAcc. A criti-
cal issue is which discrete witness to select from combinatorially many possi-
bilities. To address this issue, TemporalHyDICE associates a running estimate
w(z;, ;) on the feasibility of including (z;,7;) in the current discrete witness.
Let (z;,7;).vertices = {v € T.V : z; € v.a A 1; = 7(v.5)}, l.e., v is associated
with (z;,7;) iff v.s satisfies 7; and z; is included in the automaton states v.«
obtained by running 7(Tra3(7,v)) on A. Then,

w(zi, 7i) = cov® (zi, i) * vol**(I'(7;)) /time(z;, 72), (1)

where cov(z;, 7;) estimates the coverage of I'(7;) by the states associated with
(2, 7i).vertices; vol(I'(7;)) is the volume of I'(7;); time(z;, 7;) is the time motion
planning has spent extending 7 from (z;, 7;).vertices; and a1, as are normaliza-
tion constants. The combination of coverage, volume, and computational time
is motivated by motion planners for continuous and hybrid systems [&, 19, [10, [11,
12, 127). As in [11, [12], cov(z;, 7;) is computed by imposing an implicit uniform
grid on a low-dimensional projection of H.S and counting the number of grid
cells that have at least one state from the states associated with (z;, 7;).vertices.
The volume vol(I'(7;)) is a user-supplied value, since it depends on the black-box
definitions of the proposition functions Prop,; (Section [). In the experiments
in this work, Prop,; define polygons and vol(I'(7;)) is computed as the cor-
responding polygonal area. TemporalHyDICE associates a high weight w(z;, ;)
with (z;,7;) if motion planning has extended 7 toward a region I'(7;) with a
large volume, and states associated with (z;, 7;).vertices quickly cover I'(t;).
The discrete witness is computed as the shortest path from initial to accepting
states by using Dijkstra’s algorithm, where an edge ((z;, 7:), (5, 7)) is assigned
the weight 1/(w(z;, 1) * w(z;,7;)). This allows to select highly feasible discrete
witnesses. With small probability, the discrete witness is also computed as a
random path using a variation of the depth-first-search, where the frontier nodes
are visited in a random order. This randomness provides a way to correct for
errors inherent with the weight estimates by ensuring that each discrete witness
that is not determined as infeasible is selected with non-zero probability.
TemporalHyDICE does not explicitly construct A x M. During the search
for a discrete witness, the outgoing edges of (z;,7;) are computed implicitly

378 E. Plaku, L.E. Kavraki, and M.Y. Vardi

as Epaes(z;, i) = {(2;,7) : (v(m),v(1;)) € M.EAz; € Ad(z,7;)}. This al-
lows TemporalHyDICE to considerably reduce the memory requirements of model
checking. Note that the largest memory requirements in A are imposed by A.9,
which can be viewed as a ternary relation, subset of A.Z x X x A.Z, where
X = 27, On the other hand, M can be viewed as a binary relation, subset of
X x X. Explicitly constructing A4 x M would produce a 4-ary relation, subset
of A.Z x X2 x A.Z. For this reason, TemporalHyDICE does not compute A x M
explicitly. In addition, the data structure that stores information about a pair
(zi,7i) is created only when a vertex v is added to 7.V such that z; € v.a and
7; = 7(v.s). Reducing memory requirements is important for TemporalHyDICE,
since it allows motion planning to extend 7 by adding more vertices and edges.

Algo. @.Il(e) ExtendTreeAlongDiscreteWitness(P,7, M, w,c): Let 0 =
[(2i,7i)];, denote the current discrete witness. The objective is to extend 7°
so that it reaches I'(71), ..., '(7,) in succession. To achieve this objective, the
method proceeds by extending 7 from vertices associated with pairs (z;,7;).

(Algo.[-1)(e):1) Only pairs (z;, ;) € o reached by 7, i.e., (z;, 7;).vertices # 0,
can be considered for selecting a vertex v from which to extend 7.

(Algo. [{1|(e):3) SELECTAVAILABLEPAIR(W, Oavail) selects a pair (z;,7;) from
Oavail With probability w(z;, 7;)/ Z(Zj B w(zj,7;), where w(z;, 7;) is defined
in Eqn. [l This selection, thus, favors highly feasible pairs.

(Algo.[Z1)(e):4) SELECTVERTEXFROMAVAILABLEPAIR(w, (25, T;).vertices) selects
a vertex v from (z;, 7;).vertices with probability nsehv) [D€ (zi i) vertices nsell(v,) ,
where nsel(v) is one plus the number of times v has been selected in the past from
(23, 7i).vertices. This is based on well-established strategies in motion planning
that favor those vertices selected less frequently in the past |23, 124].

(Algo[{|(e):5-7) As described in Section B, ExTENDTREE(P, 7T ,v) and
ADDBRANCHTOTREE(P, 7T, v, [4, T, Snew, Omew]) extend 7 from v by computing
and adding to 7 a valid trajectory that starts at v.s. If any of the automaton
states apew is an accepting state, then TRAJ(7, vpew) is a witness trajectory.

(Algo[{1|(e):8-13) The feasibility estimate associated with (z;, 7;) is updated to
reflect theextension of 7 fromv. The vertex vpew isassociated with each (2new, Thew)s
where znew € Qnew and Thew = T(Unew-S). The feasibility estimate w(znew, Thew) 1S
alsoupdated toreflect the addition of Unew t0 (Znew; Thew). vertices. Each (znew, Thew)
is also added to oayail, so that it becomes available for selection in the next iteration.
Theupdated weights better estimate the feasibility of each discrete witness, and thus
improve the selection of discrete witnesses for the next iteration. This in turn allows
motion planning to make more progressin extending 7 toward I'(71), . .., I'(7,,) and
eventually compute a witness trajectory.

5 Experiments and Results

The experiments provide an initial validation of TemporalHyDICE for the falsifica-
tion of safety properties expressed by syntactically safe LTL formulas for hybrid
systems with nonlinear dynamics. TemporalHyDICE is shown to be significantly
more efficient than the straightforward extensions of related work [8, 19, 110, [11,
12], which use the automaton .4 as an external monitor (see Section B]). The ex-
periments also demonstrate the importance of model checking and the discrete

Falsification of LTL Safety Properties in Hybrid Systems 379

transition model in the computational efficiency of TemporalHyDICE. This paper
also studies the impact of A (NFA or DFA) on the efficiency of TemporalHyDICE.

The hybrid system H models an autonomous vehicle driving over different ter-
rains, similar to the navigation benchmark proposed in [28] and used in [11,[12].
Each terrain corresponds to a mode ¢ € H.Q. The dynamics, velocity, and ac-
celeration vary from one terrain to another. Second-order dynamics (with 5 di-
mensions) for modeling cars, differential drives, and unicycles (see [11, 23, 124] for
model details) are associated with each mode. In each terrain, several polygons are
marked as propositions PrRoP, 1, and guards GUARDy, ;. A state s = (¢, z) € H.S
satisfies PROPg, r (resp., GUARDy, 4,) iff ¢ = ¢; and the position-component of x is
inside PROPg, 1 (resp., GUARDg, 4,). When GUARDy, 4, is satisfied, a discrete tran-
sition occurs. The mode is then set to ¢; and velocity is set to zero.

The choice of this specific system is to provide a concrete benchmark that
is easily scalable to test TemporalHyDICE as the complexity of LTL formulas is
increased. For the experiments, 12 safety properties and 100 instances of the
benchmark were created. Syntactically safe LTL formulas were manually de-
signed in order to provide meaningful properties. Benchmark instances were
generated at random in order to test TemporalHyDICE over many problems and
obtain statistically significant results. Experimental data is publicly available[]

Problem Instances: In each problem instance, number of modes is ng =
10, number of propositions per mode is np = 15, and number of guards per
mode is ng = 5. A random problem instance is generated as follows. First, the
second-order dynamics associated with each mode is selected pseudo-uniformly
at random from those of a car, unicycle, or differential drive. Second, velocity
is bounded by vmax, Where vy is selected pseudo-uniformly at random from
[3,6]m/s. Third, for each mode, np propositions and ng guards are generated
as random polygons. Let 71, ..., mT150 denote the generated propositions.

Syntactically-Safe LTL Formulas: Let Gy = —(m V - -+ V 7150)-

— sequencing (n = 3,4, 5, 6): Witness trajectory will reach 71, ..., m, in order:
o1 = = (Bold (m1 A (il (w2 A (mald (... 1 A (Tl (BoldTn))))))));
— counting (n = 1,2,3,4): Witness trajectory will reach ma, 73, m4 n-times in

order, and then it will reach m5: ¢§ = = (qU (71 A Z1(Z2 - - (En(a1ilTs))))),

Z50) Y Gt (w2 A (ol (3 A (s (ma A (mald (1 A)))); i 2 Bo v s

—coverage (n = 4,5,6,7): Witness trajectory reacheas each m;: ¢ = \/1, G(—;).

Results: Experiments were run on Rice Cray XD1 ADA and PBC clusters.
Each run uses a single processor (2.2Ghz, 8GB RAM), i.e., no parallelism. The
automata for each —¢ are computed by standard tools (scheck [29]). Comparisons
of TemporalHyDICE to RRT[LTL-TSF] in Table[Ila) provide a basis for the results.
While TemporalHyDICE solved all problem instances, RRT[LTL-TSF] timed out
in almost every instance. RRT[LTL-TSF] relies on distance metrics and nearest
neighbors to guide the search. By relying on such limited information, as shown
in |11, [12] in the context of reachability analysis, it quickly becomes difficult to
find feasible directions to extend 7, causing a rapid decline in the growth of 7.
The results in Table [[{a) confirm this observation also in the case of applying

! http://www.kavrakilab.org/data/TACAS2009/

380 E. Plaku, L.E. Kavraki, and M.Y. Vardi

Table 1. Reported is the average time in seconds to solve 100 problem instances for
each of the LTL formulas. Times for TemporalHyDICE include the construction of M,
which took < 1s. Entries marked with X indicate a timeout (set to 400s).

(a) Comparison of different methods.
LTL safety formula o1 91 91 ¢ by B3 d3 o2 o5 ¢ 4§ &f
nr. states minimized DFA 10 21 46 105 23 76 164 287 16 32 64 128
TemporalHyDICE 18.6 25.527.2 40.4 22.2 40.4 63.3 88.3 14.6 40.9 127.9 293.2
RRT[LTL-TSF] 2672 X X X X X X X X X X X
HyDICE[NoGuide, LTL-TSF] 2453 X X X X X X X X X X X
TemporalHyDICE[no M] 19.2 55.7 X X 2038 X X X 76.23675 X X

(b) Comparison of TemporalHyDICE when using a minimal DFA, a minimal NFA
constructed by hand, or an NFA constructed by standard tools for ¢35, n = 1,2, 3, 4.
Minimized DFA Minimized NFA Standard NFA
LTL safety formula ¢} ¢3 ¢3 ¢4 o5 ¢3 o3 o3 ob o3 o3 of
nr. states in automaton 23 76 164 287 7 11 15 19 27 176 912 4099
TemporalHyDICE 22.2 40.4 63.3 88.323.537.6525744862 X X X

RRT[LTL-TSF| to falsify LTL safety properties in hybrid systems. By combining
model checking and motion planning, TemporalHyDICE effectively guides the
tree search. We also observe that the running time of TemporalHyDICE increases
sub-linearly (¢7 and ¢%) or sub-quadratically (¢%) with the number of states in
the minimized DFA. These results provide promising initial validation.

Comparisons of TemporalHyDICE to HyDICE[NoGuide, LTL-TSF| in Table [[(a)
demonstrate the importance of combining model checking and motion planning.
Without model checking to guide motion planning, HyDICE[NoGuide, LTL-TSF],
similar to RRT[LTL-TSF], times out in almost all instances.

Comparisons of TemporalHyDICE to TemporalHyDICE[no M] in Table[I(a) in-
dicate the importance of computing discrete witnesses by searching M and A
(as in TemporalHyDICE) and not just A (as in TemporalHyDICE[no M]). When
searching just A, a discrete witness may contain propositional assignments 7;
and 7,11 that cannot be satisfied consecutively, i.e., I'(7;) 4 I'(7i41). As dis-
cussed in Section @ M serves to eliminate from consideration many of these
infeasible discrete witnesses. This in turn speeds up the search for a witness
trajectory since 7 is extended far more frequently toward feasible directions. It
is also important to note that, even though the discrete witnesses obtained by
searching just A are not as beneficial as those obtained by searching M and
A, TemporalHyDICE[no M] is still considerably faster than methods that do not
guide the tree search, cf. RRT[LTL-TSF] and HyDICE[NoGuide, LTL-TSF].

Table [[{b) compares TemporalHyDICE when using NFAs computed by stan-
dard tools (scheck |29]), minimal NFAs constructed by hand, or minimal DFAs.
These experiments are motivated by the work in [21], which shows significant
speedup when using DFAs instead of NFAs in model checking. As Table [(b)
shows, TemporalHyDICE is only slightly faster when using minimal NFAs instead
of minimal DFAs, even though minimal NFAs had significantly fewer states. As
concluded in [21], DFA search has a significantly smaller branching factor than
NFA search, which allows it to offset the drawbacks of a possibly exponential
increase in the size of DFA. This observation is also supported by comparisons of

Falsification of LTL Safety Properties in Hybrid Systems 381

minimal DFAs to standard NFAs, since in such cases there is significant speedup
when using minimal DFAs. Therefore, the non-minimized NFA should be deter-
minized and minimized.

6 Discussion

This work developed a novel method, TemporalHyDICE, for the falsification of
safety properties specified by syntactically safe LTL formulas for hybrid sys-
tems with general nonlinear dynamics. By effectively combining model checking
and motion planning, when a hybrid system is unsafe, TemporalHyDICE may
compute a witness trajectory that indicates a violation of the safety property.
Experiments show significant speedup over related work. As we consider more
complex safety properties and high-dimensional continuous systems, it becomes
important to further improve the synergistic combination of model checking and
motion planning. Another direction is to extend the theory developed in [30] to
show probabilistic completeness for TemporalHyDICE.

Acknowledgment

This work is supported by NSF CNS 0615328 (EP, LK, MV), a Sloan Fellowship
(LK), and NSFCCF 0613889 (MV). Equipment is supported by NSFCNS0454333
and NSF CNS 0421109 in partnership with Rice University, AMD, and Cray.

References

1. Tomlin, C.J., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the
verification and control of hybrid systems. Proc. of IEEE 91(7), 986-1001 (2003)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3-34 (1995)

3. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.. What’s decidable about hybrid
automata? In: ACM Symp. on Theory of Computing, pp. 373-382 (1995)

4. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety
analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS,
vol. 4416, pp. 428-443. Springer, Heidelberg (2007)

5. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.: Discrete abstractions of
hybrid systems. Proc. of IEEE 88(7), 971-984 (2000)

6. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,
M.: Abstraction and Counterexample-guided Refinement in Model Checking of
Hybrid Systems. Intl. J. of Foundations of Computer Science 14(4), 583-604 (2003)

7. Giorgetti, N., Pappas, G.J., Bemporad, A.: Bounded model checking for hybrid dy-
namical systems. In: Conf. on Decision & Control, Seville, Spain, pp. 672-677 (2005)

8. Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis of
continuous and hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004.
LNCS, vol. 2993, pp. 142-156. Springer, Heidelberg (2004)

9. Kim, J., Esposito, J.M., Kumar, V.: An RRT-based algorithm for testing and
validating multi-robot controllers. In: Robotics: Science & Systems, Boston, MA,
pp. 249-256 (2005)

10. Nahhal, T., Dang, T.: Test coverage for continuous and hybrid systems. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 449-462. Springer, Hei-
delberg (2007)

382

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

E. Plaku, L.E. Kavraki, and M.Y. Vardi

Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: From verification to fal-
sification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
463-476. Springer, Heidelberg (2007)

Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: From verification to fal-
sification by combining motion planning and discrete search. Formal Methods in
System Design (2008)

Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi,
M.Y.: Benefits of bounded model checking at an industrial setting. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 436-453. Springer,
Heidelberg (2001)

LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Intl. J. of
Robotics Research 20(5), 378-400 (2001)

Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
Behrmann, G., David, A., Larsen, K.G., Moller, O., Pettersson, P., Yi, W.: UPPAAL
present and future. In: Conf. on Decision & Control, Orlando, FL, pp. 2881-2886
(2001)

Fainekos, G.E., Kress-Gazit, H., Pappas, G.: Temporal logic motion planning for
mobile robots. In: IEEE Intl. Conf. on Robotics & Automation, Barcelona, Spain,
pp. 2020-2025 (2005)

Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under
parameter uncertainty. IEEE Trans. of Automatic Control 53, 215-229 (2008)
Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification
of LTL properties of non-linear robust discrete time hybrid systems. Intl. J. of
Foundations of Computer Science 18(1), 63-86 (2007)

Kupferman, O., Vardi, M.: Model checking of safety properties. Formal methods
in System Design 19(3), 291-314 (2001)

Armoni, R., Egorov, S., Fraer, R., Korchemny, D., Vardi, M.: Efficient LTL com-
pilation for SAT-based model checking. In: Intl. Conf. on Computer-Aided Design,
San Jose, CA, pp. 877-884 (2005)

Sistla, A.: Safety, liveness and fairness in temporal logic. Formal Aspects of Com-
puting 6, 495-511 (1994)

Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E.,
Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Cambridge (2005)

LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
Esposito, J., Kumar, V., Pappas, G.: Accurate event detection for simulation of
hybrid systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC
2001. LNCS, vol. 2034, pp. 204-217. Springer, Heidelberg (2001)

Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test gener-
ation and coverage for hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G.
(eds.) HSCC 2007. LNCS, vol. 4416, pp. 329-342. Springer, Heidelberg (2007)
Plaku, E., Kavraki, L.E., Vardi, M.Y.: Discrete search leading continuous exploration
for kinodynamic motion planning. In: Robotics: Science & Systems, Atlanta, GA
(2007)

Fehnker, A., Ivancié¢, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326-341. Springer, Heidel-
berg (2004)

Latvala, T.: Efficient model checking of safety properties. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 74-88. Springer, Heidelberg (2003)
Ladd, A.M.: Motion Planning for Physical Simulation. PhD thesis, Rice University,
Houston, TX (2006)

	Falsification of LTL Safety Properties in Hybrid Systems
	Introduction
	Preliminaries
	Incorporating LTL into Motion-Planning Approaches
	TemporalHyDICE
	Experiments and Results
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

