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Abstract. Software testing is an essential process to improve software
quality in practice. Researchers have proposed several techniques to au-
tomate parts of this process. In particular, symbolic execution can be
used to automatically generate a set of test inputs that achieves high
code coverage.

However, most state-of-the-art symbolic execution approaches cannot
directly handle programs whose inputs are pointers, as is often the case
for C programs. Automatically generating test inputs for pointer manip-
ulating code such as a linked list or balanced tree implementation re-
mains a challenge. Eagerly enumerating all possible heap shapes forfeits
the advantages of symbolic execution. Alternatively, for a tester, writing
assumptions to express the disjointness of memory regions addressed by
input pointers is a tedious and labor-intensive task.

This paper proposes a novel solution for this problem: by exploiting
type information, disjointness constraints that characterize permissible
configurations of typed pointers in byte-addressable memory can be auto-
matically generated. As a result, the constraint solver can automatically
generate relevant heap shapes for the program under test. We report on
our experience with an implementation of this approach in Pex, a dy-
namic symbolic execution framework for .NET. We examine two different
symbolic representations for typed memory, and we discuss the impact
of various optimizations.
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1 Introduction

Today, testing is still by far the most effective way to improve software quality.
Recently, there is a lot of effort to automate different parts of the testing process.
One aspect is test input generation for an open program, i.e. a program that takes
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inputs. The challenge is to generate a small set of test inputs that maximizes
code coverage.

Symbolic execution[1] is a well known static analysis technique to generate test
inputs, where the program is executed with symbolic inputs instead of concrete
inputs. A constraint solver is used to compute test inputs for particular execu-
tion paths. Since its early introduction, there has been a tremendous increase in
computing power which paved the road for engineering more efficient constraint
solvers and more precise analysis tools. Not surprisingly, symbolic execution
for test input generation has become popular lately (e.g. Java Pathfinder [2],
EXE [3], Cute [4], Sage [5], Pex [6], ...). Most of these tools use a variant of sym-
bolic execution where the program is repeatedly executed with concrete inputs.
During a concrete execution, the program is monitored to build a symbolic repre-
sentation of the executed path; the next test inputs are constructed in such a way
that they will exercise a new execution path. Constraints that are outside of the
scope of the employed constraint solver can be simplified by using observed con-
crete values instead of symbolic values. This variant has been called DART [7],
concolic execution [4], and dynamic symbolic execution[5,6]. The many tools im-
plementing it show its relevance in practice (EXE [3], Cute [4], Sage [5], Pex [6],
Yogi [8], Vigilante [9], Bitscope, ...).

In the context of static analysis tools, reasoning about programs with pointers
has traditionally been challenging. For test input generation this is not different:
Some tools based on dynamic symbolic execution don’t support symbolic pointer
reasoning and use the concrete value for pointers as an under-approximation in-
stead. For instance, EXE [3] uses concrete values whenever it encounters a double
dereference and Sage [5] always uses concrete values. Although this means that
the exploration can sometimes be incomplete, for testing tools this is appro-
priate. If symbolic pointers are supported, simplifying assumptions often make
pointer reasoning incomplete (for example, treating pointers as references instead
of integers with arbitrary arithmetic [4]).

In this work we focus on test input generation for programs manipulating
(complex) data structures with pointers. A common approach is to first assume
that an invariant holds for the data structure; then to apply an operation on the
data structure; and finally to assert that the invariant still holds. Expressing the
invariant for arbitrary pointers is often tedious, as a large portion of the invariant
usually states that different pointers point to different memory regions which do
not overlap in type-incorrect ways. This is a property that is guaranteed by safe
managed languages such as Java and C#, but it is not guaranteed by languages
that allow unsafe memory accesses, such as C and C++.

We studied the problem in the context of Pex [6], a dynamic symbolic execu-
tion tool for the Common Intermediate Language (CIL) of the .NET Framework.
CIL consists of a strongly typed verifiable core, extended with unsafe instruc-
tions (e.g. for unsafe memory accesses through pointers) that are available only
when the program is sufficiently trusted by the user. By using these unsafe in-
structions, C programs can be translated to CIL.
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The contributions of this paper are the following:

– We propose two different symbolic representations for unsafe memory. The
main idea of these representations is to exploit the type information that is
present in the CIL to the fullest extent possible.

– We present a number of axioms that characterize that pointers only overlap
in type-correct ways.

– We introduce a two-phase solving scheme to improve the efficiency of the
solving process by performing multiple incremental queries to the solver.

– We report on an experimental evaluation based on an implementation in
Pex.

The remainder of this paper is structured as follows: Section 2 explains more
details about dynamic symbolic execution. Section 3 motivates why automatic
test input generation for programs with pointers is challenging. Next, we shortly
introduce our type system (Section 4) before explaining how we model memory
(Section 5) and how we enforce disjointness of input data accessed through typed
pointers (Section 6). In Section 7 we discuss how we can improve the performance
of the resulting system. Section 8 contains an evaluation of our approach using
red-black trees and linked lists as data structure. Finally, we treat related work
in Section 9 and conclude.

2 Background: Dynamic Symbolic Execution

Symbolic execution [1] is a technique to explore the behavior of a program under
all possible inputs. Instead of using concrete inputs, the program is executed with
symbols representing arbitrary values. As a result, the inputs are partitioned into
equivalence classes that follow the same execution path. This path is represented
by the path-condition, a conjunction of constraints on the symbolic inputs. At
each branch during the execution of the program, the inputs are split into two
equivalence classes by conjoining the (negated) branch condition with the path-
condition. A satisfiability modulo theory (SMT) solver is used to check whether
the resulting path-conditions are feasible and to compute a set of inputs that
represents that particular execution path.

Theoretically, given a correct (sound and complete) constraint solver and a
correct symbolic execution engine, symbolic execution of programs with a fi-
nite number of finite paths is equivalent to program verification. In reality, the
symbolic execution engine will often be limited in its completeness due to in-
structions with complex behavior such as floating point operations or code that
is outside the scope of the symbolic execution engine such as operating system
calls.

Dynamic symbolic execution (also named DART [7] or concolic execution [4])
is a variant of symbolic execution in which the symbolic constraints are gath-
ered by monitoring the program during a concrete execution and maintaining
a symbolic representation on the side. First the program is executed with ar-
bitrary inputs. Then, a constraint solver is used to find inputs that drive the
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Set J := false intuitively, J is the set of already...
loop ...analyzed program inputs

Choose program input i such that ¬J(i) stop if no such i can be found
Output i
Execute P (i); record path condition C in particular, C(i) holds
Set J := J ∨ C

end loop

Algorithm 1. Dynamic symbolic execution

execution along new execution paths. The advantage of this approach is that
even in the context of an imprecise representation, there will never be false pos-
itives. When the concrete execution diverges from the intended execution path
it can be detected and reported. Furthermore, when precise symbolic execution
is impossible, concrete values can be used to simplify the constraints. In that
case, the set of covered execution paths is an underapproximation of the feasible
execution paths, which is appropriate for testing.

Algorithm 1 shows the general dynamic symbolic execution algorithm.
For symbolic execution, the constraint solver needs to support a variety of dif-

ferent theories, such as bit-vectors with all common integer arithmetic operations
to model machine integers, the theory of arrays with read and write-functions for
arrays, and tuples to represent structs. Often, uninterpreted functions are used
(e.g. for typing constraints); their possible interpretations are restricted, or fully
determined, by introducing background axioms (potentially with quantifiers).
Satisfiability modulo theory (SMT) checkers are efficient to reason about such a
combination of theories. They handle quantified background axioms by instan-
tiating them when a designated pattern occurs in the formula that is checked
for satisfiability. This approach is only complete when the patterns are carefully
chosen. Since modern SMT checkers can generate models, i.e. satisfying assign-
ments, they can be used as constraint solvers for symbolic execution. In this
work, we use Z3 [10] as the constraint solver.

3 Motivating Example

In the following, we will illustrate the problem of test input generation for pro-
grams whose inputs are pointers. Consider the program in Figure 1. The function
test tests the method enqueueTail, a part of the enqueue operation of linked
lists. It takes the tail pointer p, a pointer to a freshly initialized node q and a new
value val as input and adds the value as last element of the list. In the beginning
of the test, we assume that p and q are not null and different. Furthermore, the
next field of both p and q must be null. After the enqueueTail operation, the
value of the next node of p must equal the new value.

To cover this program, a dynamic test generation tool must generate values
for pointers, i.e. memory addresses, and assign values to the memory locations
at these addresses. In the first execution, arbitrary values can be assigned to
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void enqueue(Queue∗ q, int val) {
Node∗ newNode = malloc(sizeof (Node));
enqueueTail(q −> tail ,newNode , val);
q −> tail = newNode; }

void enqueueTail (Node∗ p, Node∗ q, int val) {
q −> value = val ; p −> next = q; }

void test(Node∗ p, Node∗ q, int val) {
Assume(p ! = 0 && q ! = 0 && p ! = q);
Assume(p −>next == 0 && q −>next == 0);
enqueueTail(p, q, val);
Assert(p −> next −> value == val); }

struct Node {
int value ;
Node∗ next ;

}
struct Queue {

Node∗ head ;
Node∗ tail ;

}

Fig. 1. A motivating example based on linked lists

the inputs; we choose the value 0 for pointers, and 0 for integers. During the
execution, a symbolic representation is maintained, in which the pointers are
treated as regular integers. (We use this representation of pointers as it reflects
the encoding of pointer operations at the level of the execution machine, where
all high-level type information has been erased.) In the first execution, p is null,
so the path-condition will be p == 0. To explore new behavior, we need to find
a value for p such that p! = 0. The constraints will be solved incrementally, and
the final constraint to pass the first assumption is p != 0 && q != 0 && p != q.
The constraint solver might find a solution such as p = 1, q = 2, where 1 and
2 are integers that represent the addresses of the second and third byte of the
addressable memory. During the next execution, this will likely result in an
access violation when trying to read the value of the next field of p, since the
program does not have access to these locations when it is executed within a
regular process of a typical operating system. Of course, this technical issue can
be solved by allocating a big chunk of memory before any test is executed, and
adding additional constraints on p and q to express that these pointers must be
in that memory region.

Next, in order to pass the second assumption, we again send a set of con-
straints to the constraint solver. This time, the solver will not only give a model
for the inputs, but also for some values in memory. Our tool parses this model
and initializes the memory with the supplied values before executing the test.
For example, in this case it would assign null to the next fields of p and q. Al-
though this is not really challenging, integration testing tools (like Sage [5] and
EXE [3]) often don’t support this. For unit testing tools, dealing with pointers
as input is essential.

Besides these technical issues, the dynamic symbolic execution process will
report an assertion violation. This is because the program fails to specify the
assumption that the memory regions, to which p and q point, do not overlap
(are disjoint). Indeed, if for instance q = p + 4 then the next field of p has the
same address as the value field of q. Since the next field of p is updated after the
value of q is set to val, the value of q is destroyed. Therefore, the value of the
next node of p is not equal to val.
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In practice, it is surprisingly tedious to express all disjointness assumptions.
Especially for complicated data structures, like trees or graphs, where the num-
ber of disjointness constraints is quadratic in the number of nodes. Forgetting one
assumption can lead to a test case that is particularly hard to debug. Further-
more, our experience shows that developers are likely to forget such assumptions
as they are often taken for granted.

In this paper, we seek to exploit the information present in the type system,
and the signature of the test function. We restrict input generation for pointers
in such a way that pointers are always used in a type-correct way. As a result, it is
no longer necessary to encode this quadratic amount of disjointness constraints
manually. Instead, the type information is encoded in the constraints for the
constraint solver.

4 Types

In this section, we give a short sketch of the type system that we considered –
a small subset of the type system of full CIL that we found relevant for unsafe
memory operations. Figure 2 shows the syntax of types in our system. A type
can either be a primitive type or a struct type. I1 is a byte, I2 a two-byte
entity, and so on. R4 represents a four-byte float, and so on. Struct types are
essentially a list of types with labels. In this way, types are basically trees where
the leaves are primitive types and the nodes are struct types. Depending on the
architecture of the machine, pointers would be represented as I4, or I8. We will
use I8 in the following.

Type := PrimitiveType | StructType
PrimitiveType := I1 | I2 | I4 | I8 | R4 | R8 | . . .
StructType := Type Label; StructType | Type Label

Fig. 2. Syntax types

We do not consider empty structs. We assume the presence of the function
sizeof that returns the size of a type in memory in bytes, and the function
nextOffset that gives the offset of the second label of a struct in bytes. The
label represents a named field of a struct. The functions nestedIn and unnested
can be used to test whether one type is nested in another type or not.

5 Memory Representations

This section describes how memory is modeled to support precise test input
generation for unsafe pointers. From the point of view of the concrete execution
engine, memory is just one big byte array. Whenever a value at a particular
offset is read, the execution engine reads a number of consecutive bytes from
memory and converts them to a value of the requested type.
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The most precise way to model memory symbolically is to stay as close to
the concrete semantics as possible. Logically, pointers can be encoded as regular
integers, and memory can be represented as a map from integers to bytes. Reads
and writes are represented as selecting from this map or updating it at a number
of consecutive indices. This precision comes with a cost for every memory access
with a type bigger than a byte. To reduce this cost, we exploit the typing in-
formation to simplify the memory representation. Since well-typed pointers can
not overlap, we can split the memory into different maps according to the type.
We explored two different variants of this scheme:

map per type. For each type T , we keep a map MMT from integers to values
of type T . For struct types, this means that the value of the field can be
retrieved in two ways. For example, assume we have a struct T with a field
of type S: First, we can select the entire struct of type T from the MMT

and get the value of its field. Alternatively, we can compute the address of
the field and select the value directly from MMS.

To keep the different maps consistent, we introduce an axiom over the
maps that relates the initial memory maps. Whenever we write a complete
struct to a pointer, we update both the memory map of the struct and the
memory maps of its fields recursively. Furthermore, we use typing informa-
tion that is present in CIL to reverse engineer when an assignment to a
pointer is an assignment to a field of a struct. In that case, we do not only
update the field, but also the struct. Unfortunately, when complex pointer
manipulation operations are performed, it might not always be statically
known that a pointer points to a field of a struct. In this case, the symbolic
representation is imprecise with respect to the real representation.

map per primitive type. We only maintain maps for primitive types. Read-
ing or writing complete structs is done recursively over all fields. This rep-
resentation is no longer imprecise since the constraint solver now reasons
about the relation between different pointers.

6 Enforcing Disjointness

As mentioned before, the memory representations introduced in Section 5 are
only precise under the assumption that pointers separate memory into disjoints
memory regions that are only accessed according to one particular type (or
compatible types in the case of nested structs). In this section we explain how
we use the typing information to enforce this assumption.

To encode the typing information for the constraint solver, we want to express
that a pointer p has type T (e.g. typeOf(p) == T ). Because our type system
contains structs, it is possible though that one pointer has multiple types. Con-
sider a pointer to a struct T whose first field has type S. This pointer has both T
and S as type. To this end, we could introduce a relation typed(T, p) to express
that a pointer p has type T .

However, using such a relation as a basic block of our definitions would be
inefficient: We would have to create constraints to forbid all illegal combinations
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of types, e.g. to indicate that a typed(byte, p) and typed(int, p) is mutually ex-
clusive. To achieve better performance, we stratify types according to their type
level Essentially, the type level is the largest nesting depth. If we conceptually
think of a type as a tree, the type level is the height of the tree.

For each type level, we define an uninterpreted function typeOftypeLevel that
takes a pointer as input and returns a value representing the type of the pointer.
Now we can define typed(T, p) as syntactic sugar for typeOftypeLevel(T )(p) ==
typeConstant(T ). Since the typeOf symbols are functions, the theory of equal-
ity over uninterpreted function symbols can infer that typeOfl(p)! = typeOfl(q)
implies that p and q are different. Using only the predicate typed, these implica-
tions would have to be encoded as quantifiers, which is potentially less efficient.

The semantics of these uninterpreted functions is given by the axioms defined
in Figure 3. Whenever a pointer to a struct type is typed, then the pointers
to the fields of this struct are also typed according to their type. Furthermore,
pointers that are typed must always be in a predefined region of memory that
we allocated for this purpose. The constants vmbase and vmsize represent the
base address and size of this region.

∀ (T : Type, t : label, S : StructType, p : I8), typed((T t; S), p)

=> typed(T, p) && typed(S, (p + nextOffset(T t; S)))
∀ (T : Type, t : label, p : I8), typed((T t), p) => typed(T, p)

∀ (T : Type, p : I8), typed(T, p)

=> p ≥ vmbase && p + sizeof(T ) ≤ vmbase + vmsize && p + sizeof(T ) > p

Fig. 3. Axioms over typed function

Figure 4 shows the disjointness axioms that apply to pointers and Figure 5
introduces a number of helper functions.

First, two pointers with same type must either be equal or they do not overlap.
Second, two pointers with different types where neither of the types is nested inside
the other type never overlap. Finally, when one type is nested in another type, a
pointer to the nested type can either be correctly embedded with respect to the
pointer of the other type or both pointers do not overlap. Correctly embedded
means that if the nested type is equal to a field type, then the embedded pointer
can be equal to this pointer. Alternatively, if the nested type is nested inside a
field type, then the embedded pointer can be embedded in the pointer to the field.
Together with the axiom to propagate type information to the fields of a struct,
these three axioms precisely define how pointers can relate to each other.

In Section 2, we mentioned that SMT solvers need a carefully designed (set
of) patterns to instantiate quantifiers. In Figure 3 and 4, these patterns are illus-
trated by underlining them. We do not provide patterns for the first quantifier
in the last two disjointness axioms because they are statically expanded. Two
patterns in one quantifier represent one multi-pattern rather than two patterns.
The patterns in our axioms only occur on the left hand side of an implication,
and the right hand side will only generate the same pattern with terms that
are structurally smaller. This corresponds to defining a function by recursion
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∀ (T : Type, p1 : I8, p2 : I8), typed(T, p1) && typed(T, p2) =>

p1 == p2 ‖ noOverlap(T, T, p1, p2)
∀ (T1 : Type, T2 : Type), unnested(T1, T2) =>

∀ (p1 : I8, p2 : I8), typed(T1, p1) && typed(T2, p2) =>

noOverlap(T1, T2, p1, p2)
∀ (T1 : Type, T2 : Type), nestedIn(T1, T2) =>

∀ (p1 : I8, p2 : I8), typed(T1, p1) && typed(T2, p2) =>

noOverlap(T1, T2, p1, p2) ‖ correctlyEmbedded(T1, T2, p1, p2)

Fig. 4. Disjointness axioms

noOverlap(T1 : Type, T2 : Type, p1 : I8, p2 : I8) :=
p1 ≥ p2 + sizeof(T2) ‖ p2 ≥ p1 + sizeof(T1)

embedded(T2 : Type, p1 : I8, p2 : I8) := p1 ≥ p2 && p1 < p2 + sizeof(T2)
correctlyEmbedded(T1 : Type, T2 : Type, p1 : I8, p2 : I8) :=

match T2 with
| PrimitiveType => T1 == T2 && p1 == p2
| StructType =>

match StructType with
| T t; StructType′ => embeddedInF ield(T1,T, p1, p2) ‖

correctlyEmbedded(T1, StructType′, p1, p2 + nextOffset(StructType))
| T t => embeddedInF ield(T1,T, p1, p2)
end

end
embeddedInF ield(T1 : Type, T2 : Type, p1 : I8, p2 : I8) :=

match T2 with
| PrimitiveType => T1 == T2 && p1 == p2
| StructType =>

nestedIn(T1, StructType) && embedded(StructType,p1, p2)
end

Fig. 5. Helper functions for disjointness axioms

over the structure of arguments. Therefore, there will only be a finite number
of instantiations, and the use of pattern based instantiation is complete for our
axioms.

Together with the disjointness axiom, the memory representations of Section 5
are precise for all well-typed programs. Furhtermore, incorrect pointer arithmetic
can be detected by automatically checking whether a pointer has a compatible
type prior to every memory access.

7 Optimizations

7.1 Two-Phase Solving

After initial experiments, we observed that some of the constraint systems gen-
erated during our symbolic execution are particularly hard for the constraint
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solver. Furthermore, we noticed that the solver mainly had a hard time when
the constraints are unsatisfiable. When they are satisfiable, the constraint solver
usually gives a solution fairly quickly.

This can be explained by analyzing the disjointness axioms. First of all, the
axioms cause a quadratic number of disjointness constraints in the amount of
pointers. Furthermore, each disjointness constraint is actually a disjunction of
two inequalities. To make matters even worse, pointers are represented as bitvec-
tors, therefore an inequality causes the creation of a circuit, i.e. a representation
of the inequality by logical gates operating at the bit-level. Not surprisingly, the
constraint systems give rise to a large number of case splits, especially when all,
or at least many, cases have to be enumerated which often happens when the
constraints are unsatisfiable.

To improve the performance, we split constraint solving in two phases:

– First, we perform a satisfiability check for a simplified set of constraints. In
particular, all disjointness constraints are replaced by a single disequality
between the two pointers (E.g. noOverlap(T 1, T 2, p1, p2) → p1 != p2).
The resulting constraint system is weaker than the original one. If the sat-
isfiability check fails, there will not be a solution for the original constraint
system and we can skip the second phase.

– Then, we exploit the incremental nature of the constraint solver and add
the full disjointness axioms to the simplified constraint system. In principle,
checking the full constraints first and only adding them when necessary is
possible, but we did not implement such a scheme. In any case, the full
constraints are necessary to remain precise.

7.2 Alignment

Data is said to be aligned when its address is divisible by certain powers of two.
For example, on the X86 architecture, a 4-byte (8-byte) entity is aligned when
its address is divisible by four (eight). Accessing misaligned data often imposes
a performance penalty; it may even be forbidden. As a result, most compilers
automatically align data structures according to their type by inserting padding
bytes.

With alignment, two pointers with a primitive type will always be equal or
not overlapping. For primitive types, we can exploit alignment by replacing the
disjointness axiom for pointers of the same type by an alignment constraint
(which states that the lower bits are equal to zero). The advantage is that the
alignment constraint does not cause a quadratic number of pointer inequalities.

8 Evaluation

Since our approach aims at generating inputs for pointers as well, we evaluate
it in the context of data structures where pointer reasoning is essential.

First, we test an implementation of red-black trees, a self-balancing binary
search tree, taken from the Windows source code base. This is a challenging test
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case because red black trees have complicated constraints over a data structure
with pointers. For example, the sum of all black nodes on a path from the root
to any leaf node is always the same. Furthermore, in this performance-optimized
implementation the leafs of the red-black tree are represented by a sentinel node
which is nested inside the tree itself. This was an excellent test to see if nested
types are working correctly.

We have tested the red-black tree with both memory representations described
in Section 5. To evaluate the overhead of the enforcement of the disjointness con-
ditions, we manually created a version of the test case with the extra constraints
that all pointers are aligned modulo 1024, which can be expressed efficiently
by operations at the bit-level. As a consequence, different pointers never over-
lap. This trick was much more convenient to enforce the disjointness of the
pointers than manually walking over the entire data structure and enforcing the
disjointness constraints. Furthermore, these logical conditions are slightly more
efficient than encoding the disjointnesses manually. Therefore, comparing the
performance of the disjointness with this system is not completely fair, but it
already gives a good idea whether our system is much slower because of the dis-
jointness axioms or not. This technique has limited potential for automatisation
because pointers to nested structs are not necessarily aligned.

When changing the constraint systems, the order in which execution paths
are explored usually changes, since the next execution path depends on the test
inputs computed by the constraint solver. In order to compare the performance
of the different memory representations, we inserted a subtle bug in the fixup
routine of the red-black trees. We stop the test input generation as soon as the
first two test cases that trigger the bug have been reported.

The results can be seen in Figure 6. On the Y-axis, we report the number of
tests that has been generated. The memory representation with a map per type
clearly outperforms the representation with a map per primitive type. In Sec-
tion 5, we mentioned that the first representation is potentially imprecise when
it is impossible to statically know if an assignment to a pointer is an assignment
to a field of a struct. In practice, this imprecision never occured while execut-
ing the red-black tree benchmark. A second observation is that the disjointness
constraints do not have a big impact in the first memory representation (16s
vs 28s). For the second representation though, it deteriorates the performance
severely.

To test our optimizations, we have executed the red-black tree again using the
first memory representation and all combinations of the optimizations. We again
stopped the input generation when we found the first two failing test cases. The
result can be seen in Figure 7. With two-phase solving, the test input generation
is clearly faster. In combination with two-phase solving, alignment does not seem
to offer too much improvement. Without two phase solving, alignment seems to
deteriorate the performance, although this is hard to explain. In addition, we
computed the average time for the constraint solver to handle a query. Without
two-phase solving, the average is .13s. With two-phase solving, the averages for
the first and the second phase are .02s and .05s respectively. These number
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Fig. 6. Red black tree: Memory representations (BaseZero uses alignment modulo 1024
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confirm our hypothesis that we can improve the performance by doing a fast
satisfiability check first.

Finally, we tested all combinations of the different options (memory represen-
tation, two-phase solving and alignment) on a linked list data structure. We used
a fixed timeout of 600s, and we report the size of the largest queue that has been
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found over time. Figure 8 shows the results. Two-phase solving has the biggest
impact on the size of the linked lists that are being generated. With two phase
solving, the first memory representation seems to perform better. Without two
phase solving, the second memory representation seems better. Also, alignment
seems to improve the performance in three out of four cases.
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Fig. 8. Linked list: Optimizations (SS for SplitStructs, TP for two-phase solving, A for
alignment and N for their negated counterparts)

9 Related Work

Recently, a broad range of test input generation tools have been developed based
on symbolic execution [5,11,3,12,4,2]. We compare our work with them based on
two dimensions:

Generating pointers as input. As we discussed in Section 3, most tools
[5,11,3,12] focus on integration testing and do not support pointers as sym-
bolic input for test methods (e.g. Sage [5] only focuses on files as input, and
KLEE [12] on command-line arguments and files). For unit testing complex
data structures this support is essential.

Some argue that a test that requires complex test inputs can be wrapped
in another test that only takes (an array of) inputs with primitive types;
the wrapping test first parses the complex data from the primitive data, and
then calls the original test; this approach complicates the exploration of the
code under test by requiring the exploration of the parser in addition, and it
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also does not take into account possibly legal configurations of the complex
data which are not generated by the parser.

An alternative solution is test sequence generation, the process of creating
the data structure iteratively by starting with a constructor call followed
with a list of methods with symbolic inputs. Unfortunately, test sequence
generation is far from scalable in practice.

In this paper, we use a designated function to validate the data structure
(also known as repOk methods). This function is similar to the concept of
invariant in deductive software verification. For a valid test input, we assume
that the data structure is valid, then we apply the function we want to test.
Finally, we assert that the resulting data-structure is still valid.

Reasoning about pointers. There is much diversity in the way different tools
handle pointers: e.g. Java Pathfinder [2] only supports object references.

Cute [4] does support pointers, they collect only (dis)equality constraints
over these pointers. Although one might argue that using complicated oper-
ations on pointers is bad practice, it is used in rare but intricate cases. For
example, we frequently encountered alignment-checks on pointers, where the
lower bits of the pointer are inspected by the program. Our approach treats
pointers as regular integers supporting all integer arithmetic operations.

SimC [13] is another tool to generate test inputs that support pointer
reasoning. Unlike us, they model memory as one large array. SimC implicitly
assumes that pointers do not overlap in incorrect ways.

Most tools perform concretization at some level to support pointer rea-
soning [3,5,4], i.e. they use the concrete value of a pointer as observed during
concrete execution. Cute does not use the theory of arrays for representing
memory but concretizes indices of array accesses. This leads to the inabil-
ity to generate test inputs where i == j in the following program: a[i]=0;
a[j]=1; if (a[i]==0) ERROR. EXE concretizes pointers when there are dou-
ble dereferences. Finally, Sage uses concretization to handle symbolic index-
ing into an array. We do not perform concretization to deal with pointers.

For program verification (of low level code), dealing with pointers is chal-
lenging as well. Most verification tools are incomplete with respect to pointers.
For example, in VCC [14], pointers are treated as logical references instead of
integers. Havoc [15] also treats pointers as integers. Havoc also has an encoding
of the type system for SMT solvers [16], but our encoding is more precise. In
particular, in Havoc, two different structs with fields of the same type can not
be differentiated. Furthermore, they don’t encode disjointness constraints at the
byte level. Finally, separation logic [17] is a promising alternative way to reason
about heap manipulating programs.

10 Conclusion

In this paper, we proposed a novel solution for generating test inputs for pro-
grams with pointers. We exploited the type information to encode disjointness
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assumptions that characterize acceptable configurations of typed pointers in
byte-addressable memory as constraints for the solver. As a result, the constraint
solver only computes relevant heap shapes for the program under test.

We have implemented our approach in Pex, and evaluated it on red black
trees and linked lists. From the two memory representations we created, the
representation with a map per type was much faster than the representation
where we only maintained a map per primitive type. Thanks to the two-phase
solving optimization, the disjointness axioms have only minimal impact on the
performance.
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