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Abstract. Parameterised Boolean Equation Systems (PBESs) can be used to en-
code and solve various types of model checking and equivalence checking prob-
lems. PBESs are typically solved by symbolic approximation or by instantiation
to Boolean Equation Systems (BESs). The latter technique suffers from some-
thing similar to the state space explosion problem and we propose to tackle it by
static analysis techniques, which we tailor for PBESs. We introduce a method to
eliminate redundant parameters and a method to detect constant parameters. Both
lead to a better performance of the instantiation and they can sometimes even re-
duce problems that are intractable due to the infinity of the underlying BES to
tractable ones.

1 Introduction

Model checking and equivalence checking techniques are very sensitive to the size of
the state space. A static analysis can be used to reduce the state space size; most often,
it employs some form of flow analysis to detect what values a given subexpression of
a process description can possibly evaluate to at run-time [9], and this information can
subsequently be used to achieve state space reductions. A further minimisation might
be obtained if the analysis is tailored to the properties to be verified. This constitutes a
major challenge, as it requires analysing both the verification question and the specifi-
cation. One can avoid this by encoding the verification problem in a single high-level
formalism; Parameterised Boolean Equation Systems [11,7] allow to do just that.

Parameterised Boolean Equation Systems (PBESs) have emerged as a versatile
framework for studying and solving verification problems. Prime examples are the
PBES encoding of the first-order modal μ-calculus model checking problem over (pos-
sibly infinite) labelled transition systems [11,7] and equivalence checking of various
bisimulations on (possibly infinite) labelled transition systems [1]. Intuitively, the PBES
encoding of a given verification problem only requires the aspects of the specification
that influence the property that has to be verified.

Problems encoded in the PBES framework can be solved by computing the solution to
the respective PBES. Even though the latter is an undecidable problem, a number of tech-
niques have been developed to obtain solutions in practice, including symbolic approxi-
mation [7], pattern matching [8], invariant techniques [13] and instantiation [11,12,4].
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In this paper, we are concerned with the latter, i.e. instantiation of PBESs to Boolean
Equation Systems (BES); BESs constitute a decidable fragment of PBESs.

We develop two methods, based on static analysis, that allow to automatically reduce
the complexity of a PBES. These methods take inspiration from [6], where comparable
methods are applied to a symbolic state space description. We first investigate, and
prove the correctness of a method that allows to eliminate a class of redundant data
parameters from a PBES; second, we develop an algorithm, and prove its correctness,
that computes a special type of PBES invariant [13], which can subsequently be used to
eliminate data parameters and simplify the right-hand sides of a PBES.

The practical significance of the two complexity reduction methods is assessed by
means of a set of experiments derived from typical model checking problems. These
demonstrate dramatic improvements in the time needed to compute a BES from a PBES,
and the size of these BESs; some intractable problems even reduce to tractable ones.

A third contribution of our paper is the introduction of a normal form for PBESs. The
existence of the normal form has both theoretical and practical implications. On the one
hand, it allows for more concise definitions and a uniform presentation of manipulation
methods, and, on the other hand, it will help to find, e.g., new patterns [8]. Apart from
using the normal form in our definitions of the two mentioned complexity reduction
methods, we also use it to simplify the characterisation of invariants for PBESs, paving
the way for automating the detection and checking of complex invariants.

Related Work. As mentioned, we take inspiration from [6], where similar static analysis
techniques are applied to reduce state spaces. Other forms of static analysis techniques
include abstract interpretation, initiated in [3] and used in, e.g. [10,14], influence anal-
ysis in programming languages [5], and the so-called cone of influence reduction (also
known as slicing or localisation reduction) technique that reduces the size of the state
space for synchronous circuits in specific (see [2]) and systems in general (see [16]).
Compared to these works, our methods deal with a more advanced setting and have the
potential to immediately (and soundly) reduce the complexity of (encoded) verification
problems. As such, we can solve verification questions that cannot readily be answered
by only reducing the state space (see e.g. our Example 1).

Outline. In Section 2 the basic PBES theory is repeated. Section 3 describes a nor-
mal form for PBESs and its implications for invariants. The two complexity reduction
methods are described in Section 4, and an analysis of the impact of these algorithms
on typical model checking problems can be found in Section 5. Section 6 summarises
the main results of this paper and discusses future work.

2 Preliminaries

2.1 Data

We work in the setting of abstract data types, i.e., we assume that there are nonempty
data sorts and operations on these sorts. We typically use letters D1, D2, . . . to denote
data sorts. Furthermore, we assume to have a set D of sorted data variables, with typ-
ical elements d, d1, . . ., etcetera. We write d, which stands for a vector of variables
(d1, . . . , dn); this notation extends to vectors of terms e, vectors of sorts D and vectors
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of values v in the semantic domain. A vector of sort declarations d:D should be read
as (d1:D1, . . . , dn:Dn). The i-th element of d is denoted d[i].

With every syntactic sort D we associate a semantic set D such that every syntactic
term of type D and all the operations on the sort D can be mapped to the elements and
operations of D they represent. For the interpretation of closed data terms, we assume
an interpretation function [[ ]] that maps every term t of sort D to the data element [[t]] of
D it represents. For open terms we use an environment ε that maps each variable from
D to a data element of the associated type. The interpretation [[t]] ε of an open term t is
given by ε(t), where ε is extended to terms in the standard way.

For arbitrary environment θ, we write θ[v/d] to represent the environment that is
defined as (θ[v/d])(d′) = θ(d′) for d �= d′ and (θ[v/d])(d) = v. For substitution on
vectors we define θ[v/d] to be equivalent to the simultaneous substitution θ[v[1]/d[1],
. . . ,v[n]/d[n]].

For convenience, we assume the existence of a sort B = {�,⊥} representing the
Booleans B. For this sort, we assume the usual operators are available and we do not
write constants or operators in the syntactic domain any different from their semantic
counterparts. For example, we have B = {�,⊥} and the syntactic operator ∧ :B ×
B → B corresponds to the usual, semantic conjunction ∧ :B × B → B.

2.2 Parameterised Boolean Equation Systems

Parameterised Boolean Equation Systems (PBESs, or equation systems for short) are
empty (denoted ε) or finite sequences of fixed point equations, where each equation is
of form

�
μX(d:D) = φ

�
or
�
νX(d:D) = φ

�
. The left-hand side of each equation

consists of a fixed point symbol, where μ indicates a least and ν a greatest fixed point,
and a sorted predicate variable X of sort D → B, taken from some countable domain
of sorted predicate variables X . The right-hand side of each equation is a predicate
formula as defined below.

Definition 1. Predicate formulae φ are defined by the following grammar:

φ ::= b |X(e) | φ⊕ φ | Qd:D. φ
where ⊕ ∈ {∧,∨}, Q ∈ {∀, ∃}, b is a data term of sort B, X is a predicate variable,
d is a data variable of sort D and e is a vector of data terms. The interpretation of
φ in the context of environments η for predicate variables and ε for data variables is
denoted [[φ]] ηε, where:

[[b]] ηε =def ε(b)
[[X(e)]] ηε =def η(X)(ε(e))

[[φ1 ⊕ φ2]] ηε =def [[φ1]] ηε⊕ [[φ2]] ηε
[[Qd:D. φ]] ηε =def Qv ∈ D. [[φ]] ηε[v/d]

We denote the freely occurring data variables in a formula φ by FV(φ). In line with
[13], predicate formulae that do not contain predicate variables are called simple pred-
icate formulae; Pred is the set of simple formulae. A simple predicate formula φ satis-
fies the property [[φ]] ηε = [[φ]] η′ε, for arbitrary η, η′. As a convention, we denote simple
predicate formulae using letters g, h, etcetera. Observe that negation does not occur
in predicate formulae, except as an operator in Boolean terms. We frequently write
h =⇒ φ instead of ¬h ∨ φ.
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The set of predicate variables that occur in a predicate formula φ, denoted by occ(φ), is
defined recursively as follows, for any formulae φ1, φ2:

occ(b) =def ∅ occ(X(e)) =def {X}
occ(φ1 ⊕ φ2) =def occ(φ1) ∪ occ(φ2) occ(Qd:D. φ1) =def occ(φ1).

Extended to equation systems, occ(E) is the union of all variables occurring at the right-
hand side of equations in E . For any equation system E , the set of binding predicate
variables, bnd(E), is the set of variables occurring at the left-hand side of some equation
in E . Formally, we define:

bnd(ε) =def ∅ bnd((σX(d:D) = φ) E) =def bnd(E) ∪ {X}
occ(ε) =def ∅ occ((σX(d:D) = φ) E) =def occ(E) ∪ occ(φ).

The set of freely occurring predicate variables in E , denoted free(E) is defined as
occ(E) \ bnd(E). An equation system E is said to be well-formed iff every binding
predicate variable occurs at the left-hand side of precisely one equation of E . We only
consider well-formed equation systems in this paper.

An equation system E is called closed if free(E) = ∅ and open otherwise. An equa-
tion (σX(d:D) = φ), where σ denotes either the fixed point sign μ or ν, is called
data-closed if the set of data variables that occur freely in φ is contained in the set of
variables induced by the vector of variables d. An equation system is called data-closed
iff each of its equations is data-closed.

An equation (σX(d:D) = φ) gives rise to a fixed point over the set of functions with
domain D and co-domain B. We introduce the notation φ〈d〉, which lifts the predicate
formula φ to the (syntactic) functional (λd:D. φ). The interpretation of φ〈d〉, denoted
[[φ〈d〉]] ηε, is given by the functional (λv∈D. [[φ]] ηε[v/d]). The set of (total) functions
f :D → B, denoted by B

D, equipped with the point-wise ordering � leads to a complete
lattice. Assuming that the domain of the predicate variableX is of sort D, the functional
[[φ〈d〉]] ηε yields the monotone predicate formula transformer λg∈B

D. ( [[φ〈d〉]] η[g/X ]ε).
The existence of the least and greatest fixed points of such transformers is guaranteed
by Tarski’s fixed point Theorem [15].

Definition 2. The solution of an equation system in the context of a predicate environ-
ment η and a data environment ε is inductively defined as follows, for any E:

[[ε]] ηε =def η
[[(σX(d:D) = φ)E ]] ηε =def [[E ]] (η[σf ∈ B

D. [[φ〈d〉]] ( [[E ]] η[f/X ]ε)ε/X ])ε.

The solution of an equation system prioritises the fixed point signs of equations that
come first over the signs of equations that follow, while respecting the equivalences of
the equations. It follows that the solution is sensitive to the order of equations in an
equation system. We illustrate the use of equation systems by means of an academic
example using the encoding of [7] of the first-order modal μ-calculus model checking
problem.

Example 1. Consider an infinite-state process that can perform an arbitrary number of
a actions, then performs a b action and then performs as many c actions as a actions
that were performed. A partial visualisation of this process, and a process algebraic
description using condition-action-effect rules is given below:
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P (n:N, d:B)
= d −→ a · P (n+ 1, d)
+ d −→ b · P (n,¬d)
+ ¬d ∧ n > 0 −→ c · P (n− 1, d)

P (0,�)

· · ·

· · ·

a

b

a

b

a

b

a

b

c c c c

Given this process, we might wish to verify whether it is possible to perform an infinite
number of a actions (νX.〈a〉X), or, whether along every a path, always a b action is
attainable (νV. ([a]V ∧μW. (〈a〉W ∨〈b〉�))). The first verification problem is encoded
by (1); the second by (2), given below:
�
νX(n:N, d:B) = d ∧X(n+ 1, d)

�
(1)

�
νV (n:N, d:B) = (d =⇒ V (n+ 1, d)) ∧W (n, d)

�
�
μW (n:N, d:B) = d ∨ (d ∧W (n+ 1, d))

� (2)

Currently, instantiation of the above equation systems leads to two infinite BESs. We
will use Eqn. (2) as a running example in Section 4. ��

3 Predicate Formula Normal Form

Manipulations and comparisons of formal objects typically benefit from the use (and
existence) of a normal form for such objects. For this reason, we introduce a normal
form for predicate formulae, which immediately implies a normal form for equation
systems. Throughout this paper, we will then assume equation systems in normal form.

Definition 3. A predicate formula is said to be in Predicate Formula Normal Form
(PFNF) if it has the following form:

Q1v1:V1. · · ·Qnvn:Vn. h ∧
�
i∈I

�
gi =⇒

�
j∈Ji

Xj(ej)
�

where Xj ∈ X , Qi ∈ {∀, ∃}, I is a (possibly empty) finite index set, each Ji is a
non-empty finite index set, and h and every gi are simple formulae.

Note that here Ji is used to index a set of occurrences of not necessarily different vari-
ables. For instance, (n > 0 =⇒ X(3) ∨X(5) ∨ Y (6)) is a formula complying to the
definition of PFNF. As long as it does not lead to confusion, we stick to the convention
to drop the typing of the quantified variables vi.

Proposition 1. Every predicate formula can be rewritten to an equivalent predicate
formula in PFNF.

The proof is constructive, by means of a structural induction; this immediately provides
the basis for a normalisation algorithm. We should remark that transforming the dis-
junction of two PFNF formulae into a PFNF formula leads to an undesirable blow-up
of the formula size. However, when used, as here, in the context of equation systems,
this blow-up can be reduced to a linear blow-up by introducing new equations.
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A static invariance check. PBES invariants [13] are simple predicates characterising a
closed set of attainable values of the data parameters in an equation system. They are
very useful for simplifying and solving complex equation systems, as demonstrated in
several case studies [13,8]. However, finding the right invariants is not easy, partly be-
cause the invariance condition quantifies over arbitrary predicate variable environments.
Using PFNF, however, the invariance condition of [13] can be recast to one that can be
checked statically. For completeness’ sake, we first repeat the definition of an invariant.

Definition 4. The simple function f :V → Pred is said to be a global invariant for an
equation system E iff X ⊇ V ⊇ bnd(E) and for each (σX(dX :DX) = φ) occurring
in E , we have:

f(X) ∧ φ ↔ (f(X) ∧ φ)
�
Xi∈V

(f(Xi) ∧Xi(dXi))〈dXi
〉/Xi

�
.

Note that ψ
�
Xi∈V

φ(Xi)/Xi

�
stands for a simultaneous syntactic subtitution of φ(Xi)

for every Xi from V in ψ. The invariance condition basically states that the right-
hand sides of all equations should be insensitive to strengthening all predicate variable
occurrences with their corresponding simple formula. The following theorem provides
an easy to check criterion implying the invariance condition.

Theorem 1. Let E be an equation system where every equation k is in PFNF:�
σkXk(dXk

:Dk) = Qk
1v1. · · ·Qk

nk
vnk

. (hk ∧
�

i∈Ik

(gk
i =⇒

�
j∈Ji

Xj(ej)))
�
.

Then the simple function f :V → Pred is a global invariant for E if for each k:�
i∈Ik

�
j∈Ji

�
(f(Xk) ∧ hk ∧ gk

i ) → f(Xj)[ej/dXj ]
�

(ιk)

��
The proof is a tedious and semantically rather involved exercise leading to f satisfying
Definition 4 under all data and predicate environments. It makes essential use of the fact
that condition (ιk) implicitly converts all quantifiers Qk

1 . . .Q
k
nk

into universal quanti-
fiers. Note that (ιk) is not a necessary condition for f to be an invariant, as demonstrated
by the following example which makes use of the fact that all existential quantifiers are
converted to universal quantifiers.

Example 2. Consider the equation system E given below:

E :≡
�
μX(n:N) = ∃m:N. (m > 5 =⇒ Y (n))

� �
νY (n:N) = Y (n+ 1)

�
.

Let us define the simple function f as f(X) = �, f(Y ) = ⊥. Condition (ιk) in this
case requires ∀m:N. (�∧m > 5 =⇒ ⊥), which does not hold. Still, f is an invariant
for E , since it satisfies the invariant condition: (� ∧ ∃m:N. (m > 5 =⇒ Y (n))) ↔
(� ∧ ∃m:N. (m > 5 =⇒ (⊥ ∧ Y (n)))). ��
It can be proven (not trivially) that the condition above is actually necessary in the
case of quantifier-free equation systems, but we pose it as an interesting open problem
whether condition (ιk) can be modified (or some other condition can be thought up) to
serve as a sufficient and necessary condition without employing a quantification over
predicate environments.
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4 Redundant and Constant Parameter Detection and Elimination

A part of the complexity of an equation system stems from the arity of the involved
predicate variables and the types of these. Reducing an equation system’s complexity
can thus be achieved by minimising the complexity of the formal data parameters, either
by removing them or by (implicitly) reducing their types. However, such operations are
not always sound. In Sections 4.1 and 4.2, we develop algorithms that achieve these
types of reductions without compromising soundness.

4.1 Parameter Elimination

The type of a predicate variable X is said to contain redundancy with respect to an
environment if it relies on one or more values that do not manifest themselves in the
truth of X using this environment.

Definition 5. Given an environment η and a predicate variableX with signatureD1×
· · · × Dn → B, then a sort Di (1 ≤ i ≤ n) is redundant with respect to η if for all
values v, w ∈ Di, and vj ∈ Dj for j �= i, we have

η(X)(v1, . . . , v, . . . , vn) = η(X)(v1, . . . , w, . . . , vn)

A semantic analysis of redundancy is neither feasible, nor desirable for most complex
equation systems, so the best that can be achieved is to approximate the set of redundant
sorts. We start by formalising the concept of influence.

Definition 6. Let ρ be a predicate function in PFNF:

Q1v1. · · ·Qnvn. h ∧
�
i∈I

�
gi =⇒

�
j∈Ji

Xj(ej)
�

We define the dependence set dep(ρ) and the significance set sig(ρ) as follows:

1. dep(ρ) =def
�
i∈I

{Xj(ej) | j ∈ Ji}
2. sig(ρ) =def

�
i∈I

FV(Q1v1. · · ·Qnvn. h ∧ gi)

The influence of a set of predicate functions on predicate variables is modelled by means
of an influence graph. Recall that the i-th element of a vector d is denoted d[i].

Definition 7. Let E = (σ1X1(dX1 :DX1) = φX1 ) · · · (σnXn(dXn :DXn) = φXn) be
an equation system. The marked influence graphG(E) = (V,−→,M) of E is a directed
graph where:

– V = {(Xi, j) | 1 ≤ i ≤ n and 1 ≤ j ≤ arity(DXi)};
– −→⊆ V × V is the transition relation, defined by

(Xi, k) −→ (Xj , l) iff Xj(e) ∈ dep(φXi ) and dXi [k] ∈ FV(e[l])

– M ⊆ V is the initial marking, defined by

M = {(Xi, j) | 1 ≤ i ≤ n and dXi [j] ∈ sig(φXi )}
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Intuitively, in a marked influence graph G(E), the initial marking M is the set of vari-
ables that influences the truth of the simple formulae that occur in the predicate formulae
of the equation system E . The transition relation −→ formalises the direct and indirect
influence that formal parameters can have on the value of other formal parameters.

Example 3. Consider the equation system from Eqn. (2)
(Example 1), first brought into PFNF. The marked influ-
ence graph is depicted on the right, where the marked
states are black and non-marked states are white.

(V, 1) (V, 2)

(W, 1) (W, 2) ��

Next, we define the set of positive redundant variables as follows:

R = {dXi [j] | (Xi, j) �−→∗ (Xk, l) and (Xk, l) ∈M} (3)

Computing the set R requires O(| −→ |) steps at most using, e.g., a standard least fixed
point computation, depth-first or breadth-first search. We refrain from spelling out such
an algorithm.

Definition 8. Let E = (σ1X1(dX1 :DX1) = φX1) · · · (σnXn(dXn :DXn) = φXn),
where each φXk

is of the form:

Qk
1v1. · · ·Qk

nk
vnk

. hk ∧
�

i∈Ik

�
gk

i =⇒
�

j∈Jk
i

Xj(ej)
�

The reduction of E , denoted �E is the equation system

(σ1
	X1(
dX1 :
DX1) =
φX1 ) · · · (σn

�Xn(
dXn :�DXn) = 
φXn)

where for every k (1 ≤ k ≤ n), we define the following:

1. 
dXk
is the vector dXk

from which the parameters dXk
[i] ∈ R have been removed;

2. �DXk
is the vector DXk

from which the types of dXk
[i] have been removed;

3. 
φXk
:≡ Qk

1v1. · · ·Qk
nk
vnk

. hk ∧ 

i∈Ik

�
gk

i =⇒ �
j∈Jk

i

�Xj(	ej)
�

, where 	ej is the

vector ej from which expressions ej [i] with dXj [i] ∈ R have been removed.

The reduction of an equation system basically consists of a syntactic manipulation of
predicate variable typings and predicate variable occurrences. It introduces a new set
of predicate variables that are linked to the original predicate variables in the equation
system. The typing of these newly introduced predicate variables is of lesser complexity
than the typing of the original predicate variables. In particular, if the original equation
system contains a predicate variableXi of type DXi , then the associated predicate vari-

able �Xi is of type
DXi , which is based on 
DXi . For elements w of type DXi , we denote
the corresponding reduced element by 	w. We have the following two properties:

Lemma 1. If E is data-closed, then so is �E .
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Proof. From the observation that �E can only contain a free data variable if this is a
formal parameter dXk

[j] for some equation for �Xk that does not occur in the param-
eter list of this equation. This leads to a contradiction, based on the definition of R
and �E . ��
Lemma 2. Let E be a data-closed equation system. Let (σkXk(dXk

:DXk
) = φXk

) be
an arbitrary equation in E . Let η be an environment for which η(X)(v) = η(	X)(�v) for
all v and X ∈ occ(φXk

). Then:

∀ε : [[φk]] ηε = [[�φk]] ηε

Proof. Without loss of generality, φXk
is in PFNF. The proof then follows from a re-

peated application of the semantics. ��
The following theorem demonstrates that the elimination of positively redundant formal
parameters from an equation system does not affect the solution of the equation system.

Theorem 2. Let E be a data-closed equation system. Let η, ε be arbitrary environ-
ments. If for all X ∈ free(E) we have η(X)(v) = η(	X)(�v) for all v, then for all
Xk ∈ bnd(E) and all v:

[[E ]] ηε(Xk(v)) = [[�E ]] ηε(�Xk(�v))

Proof. By means of an induction on |E|. The base case follows immediately. The induc-
tion requires a case distinction, a transfinite approximation and Lemmas 1 and 2. ��
Corollary 1. In case E is data-closed and closed, we obtain the following result:

∀η, ε : ∀Xl ∈ bnd(E) : [[E ]] ηε(Xl(v)) = [[�E ]] ηε(�Xl(�v)))

Example 3. Consider the equation system from Eqn. (2) from Example 1, brought into
PFNF, and name it E . From its marked influence graph, we find R = {(V, 2), (W, 2)}.
This means that equation system (2) can be reduced to the equation system �E , where:

�E :≡
�
ν	V (d:B) = (d =⇒ 	V (d)) ∧�W (d)

� �
μ�W (d:B) = d∧ (¬d =⇒ �W (d))

�

We find that for all j ∈ N and b ∈ B, we have [[E ]] ηε(X(j, b)) = [[�E ]] ηε(	X(b)) for
X ∈ {V,W} and all η, ε. Moreover, a full instantiation of �E (see [4]) leads to a BES
consisting of four equations:

(ν	V� = 	V� ∧�W�) (ν	V⊥ = �W⊥) (μ�W� = �) (μ�W⊥ = ⊥)

where variable 	Xd encodes 	X(d) for d ∈ B and X = V,W . The above BES immedi-
ately leads to the answer true for variables 	V�,�W� and false for the variables	V⊥,�W⊥.
Hence, using redundant parameter elimination, instantiation allows for solving equa-
tion systems that could not be solved before using this technique, solving verification
problems that we could not solve before. ��
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4.2 Detection of Constants

As in the previous section, let E be an equation system, where every equation l (1 ≤
l ≤ N ) is in PFNF, and let κ be a target predicate formula (i.e., a formula whose
truth we wish to assess in the context of E), without any free data variables, in PFNF.
In this section, we develop an algorithm that automatically computes an invariant that
associates constants to the formal parameters of predicate variables. To this end, we will
be using a special type of simple functions called ground functions.

Definition 9. A predicate formula p ∈ Pred is a ground predicate for a variable X of
an equation system E if p ≡ ⊥ or p ≡ (dX = c), where c is a partially instantiated
list, i.e. for all indices j, c[j] ∈ DX [j]∪ {dX [j]}. A simple function g:occ(E) → Pred
is a ground function if, for all variablesX , g(X) is a ground predicate.

Here dX = c is a shortcut for



1≤i≤arity(X)(dX [i] = c[i]). Ground predicates for-
malise assertions about the values associated to the data parameters. To each parameter
i, either a constant from its value domain, or its name dX [i] is associated. In the latter
case, the corresponding assertion is thus dX [i] = dX [i], evaluating to �.

The set of ground predicates forX in E is GPredE,X and the set of ground functions
for E is GFuncE . The binary operator SUP takes two ground predicates of the same
variable and yields the supremum of these ground predicates; it remains undefined for
ground predicates of different variables.

SUP((dX = c), (dX = c′)) =def (dX = c′′)),where for all 1 ≤ i ≤ n:

c′′[i] =
�c[i], if c[i] = c′[i]

dX [i], otherwise
(4)

For instance, if X has arity 3, then SUP((dX = 〈2, 0,dX [3]〉), (dX = 〈2, 5,dX [3]〉))
yields (dX = 〈2,dX [2],dX [3]〉). The operator SUP extends naturally to sets of ground
predicates of the same variable; as a convention, we set SUP(∅) =def ⊥.

We call X(e), with e a list of data expressions, an instantiated occurrence of X and
we denote the set of all instantiated occurrences of predicate variables in φ by iocc(φ).
From any such occurrence X(e), we can extract a ground predicate by retaining only
those data expressions which are constants:

gpred(X(e)) =def (dX = c), with c[i] =
� c, if e[i] ↔ c and c ∈ DX [i]

dX [i], otherwise.
(5)

Finally, let φ be a formula in PFNF: Q1v1 . . .Qnvn.h ∧
i∈I gi =⇒ �
j∈Ji

Xj(ej).
Then the guard of an instantiation Xj(ej) in φ, written guard(Xj(ej), φ) is defined
as h ∧ gi.

A constant detection algorithm. The recursive function ga generates successive ground
functions that approximate the parameter lists of E’s predicate variables reached when
starting instantiation of E from target predicate formula κ.
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ConstElm(E , κ))

for X ∈ occ(E),
ga0(X) := SUP({gpred(X(e))| X(e) ∈ iocc(κ) ∧ guard(X(e), κ) �↔ ⊥})

for X ∈ occ(E),
gan+1(X) := SUP({gan(X)} ∪ �

gan(Y )≡(dY =e)

{gpred(X(e′))|
X(e′) ∈ iocc(φY [e/dY ]) ∧ guard(X(e′), φY [e/dY ]) �↔ ⊥})

Output : gi ≡ �
n≥0

gan

Both in the definition of GPred and in the algorithm, the existence of a sound deci-
sion method for φ ↔ ψ is assumed. Usually a very simple one, like syntactic equiva-
lence, will produce meaningful enough invariants.

Correctness. We next give a formal argument for the correctness of the constant detec-
tion algorithm; that is, we show that the output of the algorithm yields an invariant of
the original PBES which preserves the truth of κ.

The function gan captures the information gathered from the arguments of the pred-
icate variables after n substitution steps. gan(Xk) = ⊥ has the intuitive meaning that
Xk is unreachable from κ within n substitution steps and gan(Xk) = � holds when
none of Xk’s arguments remain constant. We have the following simple observation:

Lemma 3. For all n ≥ 0 and all X ∈ occ(E), gan(X) → gan+1(X).

Proof (sketch). It is easy to prove that p→ SUP(S) for all p ∈ S with S a set of ground
predicates for X . Then, from the way gan+1 is constructed, namely gan+1(X) =
SUP({gan(X)} ∪ S), we immediately conclude that gan(X) → gan+1(X). ��
Lemma 4. ConstElm(E , κ) terminates for every E and κ.

Proof (sketch). In the ConstElm(E , κ) computation, an index N is reached for which
gaN ≡ gaN+1 (for every predicate variable X , gaN (X) ≡ gaN+1(X)); for this N , we
have gaN = gaN+k for every k (i.e., ga is stable). The first part of this claim follows
from the finiteness of bnd(E) and the observation that there is a decreasing measure
that can be associated to the ga0 . . . gan . . . sequence (viz., the number of constants
occurring in gan). The second part follows by induction. The output of the algorithm is
then

�
0≤i≤N gaN ; following Lemma 3, this is equivalent to gaN . ��

The theorem below states that the algorithm indeed yields valid invariants.

Theorem 3. The output of the algorithm ConstElm(E , κ) is a global invariant for E .

Proof (sketch). Lemma 4 shows that gi is in fact gaN for some sufficiently largeN . We
prove by contradiction that gaN satisfies the sufficient condition from Theorem 1. The
argument essentially uses Lemma 3. Consequently, gaN is a global invariant. ��
Using the invariant gi computed by ConstElm, we can now strengthen the original
PBES. The strengthened system is, according to the definition from [13]:

red(ε) = ε
red((σX(dX :DX) = φ) E ′) = (σX(dX :DX) = gi(X) ∧ φ) red(E ′)
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Note that if gi(X) ≡ (dX = c) then gi(X) ∧ φ is in fact logically equivalent to
φ[c/dX ], meaning that the number of free variables in φ decreases. Using the redundant
parameter elimination technique of the previous section, the equation system can then
be reduced. So, red indeed reduces the complexity of equation systems. It suffices to
show that this strengthening preserves the truth for κ:

Theorem 4. Let η and ε be arbitrary predicate and data environments, respectively.
Then [[κ]] ( [[E ]] ηε)ε = [[κ]] ( [[red(E)]] ηε)ε. ��
Proof (sketch). The preservation of κ’s solution follows from Corollary 2 of [13] and
the identity κ ↔ κ

�
Xi∈V

(gi(Xi) ∧Xi(dXi))〈dXi
〉/Xi

�
, which can be shown by a

series of calculations. ��
Example 4. Let κ be the target formula ∀v:N. X(1, v), and E defined as:

(μX(m:N, n:N) = m ≤ 10 ⇒ (X(m,n+ 1) ∨ Y (m)))
(νY (p:N) = X(p, 0) ∧ (p ≥ 5 ⇒ Z(p)))
(μZ(q:N) = q ≤ 10)

The ConstElm algorithm produces the following approximations:

ga0(X) = (m = 1 ∧ n = n) ga0(Y ) = ⊥ ga0(Z) = ⊥
ga1(X) = (m = 1 ∧ n = n) ga1(Y ) = (p = 1) ga1(Z) = ⊥
ga2(X) = (m = 1 ∧ n = n) ga2(Y ) = (p = 1) ga2(Z) = ⊥

Strengthening each equation with the invariant gi (which assigns m = 1 to X , p = 1
to Y and ⊥ to Z), and simplifying the resulting right-hand sides of the equations, we
obtain the following reduced equation system:

(μX(m:N, n:N) = X(1, n+ 1) ∨ Y (1))
(νY (p:N) = X(1, 0))
(μZ(q:N) = ⊥)

Using the technique from the previous section, we find that formal parameters m,n, p
and q all become redundant. The solution to this system of equations has ⊥ as a solution
for X,Y and Z , which leads to the solution ⊥ for κ. Note that the instantiation solving
technique does not terminate on the original equation system E , nor does the redundant
parameter elimination technique remove formal parameters from E . ��

Complexity and implementation. Denote the number of predicate variables in occ(E)
by v, the maximum length for the argument list of a predicate variable by l, and the max-
imum number of occurrences of one variable in all the right-hand sides of E’s equations
by o. For each iteration n, gan can be computed in O(v×l×o) (ignoring the complexity
of rewriting that may be necessary), since there are v variables and for each gan(X), the
SUP of a set of at most o ground predicates is computed. This requires comparisons of
arrays of length l. Every variable dX [i] from an argument list can appear in the ground
approximations of X as a constant (dX [i] = c ∈ DX [i]) or as variable dX [i] = dX [i].
Once its assertion becomes dX [i] = dX [i], it will never become of the constant type
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again. Since the total number of constant assertions is decreasing with every iteration
(see also the proof of Lemma 3), and since there are at most v × l data variables in the
system, the maximum number of iterations until stabilisation is v × l. Hence, an upper
bound on the total cost of ConstElm is O(v2 × l2 × o).

In practice, checking whether the guards are unsatisfiable requires careful bookkeep-
ing and can be inefficient. A sound solution is to over-approximate all guards to �,
leading to a much quicker algorithm (which may compute weaker invariants), while
preserving soundness (the same proof applies).

5 Experiments

For conducting our experiments, we have used the tool-suite mCRL21, which imple-
ments techniques from [7,4] and for which we implemented the redundant parameter
elimination and the constant parameter elimination methods. All experiments described
in the remainder of this section have been conducted on a Dual Core, 2.6GHz AMD
Opteron Processor running Linux with 128Gb memory.

Redundant Parameter Elimination. The first series of experiments consists of an analy-
sis of several communication protocols from the literature: the Alternating Bit Protocol,
the Positive Acknowledgement Retransmission Protocol, the Concurrent Alternating
Bit Protocol and variations of the Sliding Window Protocol with different buffer size.
Note that none of these system descriptions could be simplified using the related pa-
rameter elimination techniques from [6] without manually changing the descriptions.

The verification problem that we encoded for each of these protocols is deadlock-
freedom. We varied the size of the set of messages M that can be communicated from
2, 4, 8 to ∞, and measured the increase in the size of the BES that is obtained by instan-
tiating the respective PBES before and after applying the redundant parameter elimina-
tion technique of Section 4.1, see Table 1. Running the latter algorithm takes less than
.1 seconds for every equation system (the number of data parameters for each equation
system varies from 13 to 22 per equation). Clearly, the size of the set of message has a
significant impact on the size of the BESs, as witnessed e.g., for the SWP with buffer
size 4: instantiating the equation system for the SWP with |M | = 4 is not viable in
a reasonable amount of time. In contrast, the redundant parameter elimination method
detects that the content of the messages is irrelevant for deadlock-freedom and there-
fore eliminates all references to messages from the equation system, resulting in small
BESs. A similar reduction in size can be obtained by first abstracting out the data from
the protocol descriptions and then checking the resulting systems for deadlock-freedom;
this, however, requires in-depth knowledge about the behaviours of the systems.

A second batch of experiments conducted using the same protocols and the same
setup is to verify whether a sender can infinitely often send a particular (constant) mes-
sagem, which is formalised by the following formula of fixed point alternation depth 2:
νX. μY. 〈r(m)〉X ∨ 〈¬r(m)〉Y , where the action r models the sending of the message
to the communications protocol (which is receiving the message). The number of data
parameters for the equation systems again varies from 13 to 22 per equation). Unlike for

1 http://www.mcrl2.org

http://www.mcrl2.org
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Table 1. The effect of redundant parameter elimination in equation systems encoding (1)
deadlock-freedom (νX. [�]X ∧ 〈�〉�) and (2) infinitely-often sending a constant message
(νX.μY. 〈r(m)〉X ∨ 〈¬r(m)〉Y ) of various communication protocols using a set M of mes-
sages. Here, the x in x/y stands for the size of the BES before elimination of redundancy and the
y in x/y stands for the size of the BES after elimination of redundancy.

Property (1)
|M| → 2 4 8 ∞

Protocol ↓
ABP 74 / 38 146 / 38 290 / 38 ∞ / 38
PAR 91 / 47 179 / 47 355 / 47 ∞ / 47
CABP 464 / 224 1,040 / 224 2,576 / 224 ∞ / 224
One-bit SWP 324 / 144 900 / 144 2,916 / 144 ∞ / 144
SWP (buffer size 2) 14,064 / 1,860 140,352 / 1,860 1.7 ∗ 106 / 1,860 ∞ / 1,860
SWP (buffer size 4) 2.6 ∗ 106 / 43,320 nc / 43,320 nc / 43,320 ∞ / 43,320

Property (2)
|M| → 2 4 8 ∞

Protocol ↓
ABP 77 / 41 149 / 41 293 / 41 ∞ / 41
PAR 95 / 51 183 / 51 359 / 51 ∞ / 51
CABP 513 / 257 1,121 / 257 2,721 / 257 ∞ / 257
One-bit SWP 379 / 181 991 / 181 3,079 / 181 ∞ / 181
SWP (buffer size 2) 17,809 / 2,545 163,393 / 2,545 1.9 ∗ 106 / 2,545 ∞ / 2,545
SWP (buffer size 4) 3.5 ∗ 106 / 64,609 nc / 64,609 nc / 64,609 ∞ / 64,609

the deadlock freedom property, the presence of the data message in the system descrip-
tion is vital, which means that abstracting the data away is no option. First applying the
redundant parameter elimination technique from [6] therefore yields no improvement.
The results of our experiments are depicted in the second matrix in Table 1 and show a
similar trend as the first batch of experiments. It is important to note that the resulting
BESs are also alternating. Thus, size really becomes a problem as the best, known al-
gorithms for solving BESs are exponential in the fixed point alternation depth and have
as base the size of the BES. Large BESs thus quickly become intractable.

Constant Parameter Elimination. As demonstrated in [13,8], well chosen invariants help
to simplify equation systems, so that rewriting becomes less of a bottleneck in instanti-
ating. Figure 1 clearly illustrates this effect: applying a constant parameter elimination
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Fig. 1. The effect of constant parameter elimination on the instantiation time required to obtain a
BES from an equation system encoding the deadlock-freedom property for n dining philosophers
(left) and for n Milner schedulers (right). Time is measured in minutes (y-axis).
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in the equation systems that encode deadlock-freedom in n dining philosophers and a
token ring of n Milner schedulers, respectively. The time required to solve the original
equation systems increases exponentially with increasing n in both cases (continuous
lines). In contrast, after applying a constant parameter elimination, the increase in time
to compute the resulting equation system is modest (dashed lines). Removing the con-
stant parameters requires little time: < 10 seconds for the most complex case.

6 Summary

We have devised algorithms that reduce the complexity of PBESs; this is achieved by
detecting and removing parameters that do not contribute to the solution of a PBES
and by removing constant parameters. Our experiments show that the algorithms are
very effective at reducing the size of the BESs that can be computed from the PBESs.
This means that the complexity of solving the PBES via a resolution of the BES can be
reduced as well, which is particularly important for alternating BESs.

As we observed and proved, a sufficient invariance condition for PBESs can be
stated that does not require a quantification over arbitrary predicate environments. Our
constant detection algorithm is a special case of an invariance detection algorithm for
PBESs, based on the above-mentioned observation; it is therefore interesting future
work to extend the constant detecting algorithm in order to detect more complex classes
of invariants.
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