How to CPS Transform a Monad

Annette Bieniusa and Peter Thiemann

Institut fiir Informatik, Universitdt Freiburg, Georges-Kohler-Allee 079
79110 Freiburg, Germany
{bieniusa,thiemann}@informatik.uni-freiburg.de

Abstract. CPS transformation is an important tool in the compilation
of functional programming languages. For strict languages, such as our
web programming language “Rinso” or Microsoft’s F#, monadic expres-
sions can help with structuring and composing computations.

To apply a CPS transformation in the compilation process of such
a language, we integrate explicit monadic abstraction in a call-by-value
source language, present a Danvy-Filinski-style CPS transformation for
this extension, and verify that the translation preserves simple typing.
We establish the simulation properties of this transformation in an un-
typed setting and relate it to a two stage transformation that implements
the monadic abstraction with thunks and introduces continuations in a
second step. Furthermore, we give a direct style translation which corre-
sponds to the monadic translation.

1 Introduction

A monad [21] is a powerful abstraction for a computation that may involve
side effects. Programming languages that support monads are often of the lazy
functional kind. For example, in Haskell [25] monads serve to integrate side-
effecting computations like I/O operations, exceptions, operations on references
and mutable arrays, and concurrency primitives [26/27[2829].

However, monads do not only serve to encapsulate computation but also to
structure it. The basic operations of a monad are the creation of a trivial compu-
tation (the “return” operator, which just returns a value) and the composition
of computations (the “bind” operator). Thus, a computation expressed using a
monad can be assembled declaratively (and compositionally) from some prim-
itive computations. This compositionality aspect has proven its relevance, for
example, in the Kleisli database query system where a monad abstracts over dif-
ferent collection types and its laws serve as simplification rules for queries [41].

Monadic structure also plays a role in strict languages (see Danvy and Hat-
cliff’s factorization of CPS translations [14], Wadler’s marriage of monads and
effects [39], or the work on monadic regions [I2]) and there are less obvious ap-
plications like the monads representing probability distributions in the work of
Ramsey and Pfeffer [3I] or Park and others [24].

We are currently running two projects in the context of call-by-value func-
tional programming languages that both benefit from the structuring aspect of

0. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 266-{280 2009.
© Springer-Verlag Berlin Heidelberg 2009

How to CPS Transform a Monad 267

a monad and the compositionality of monadic computations. The first project
concerns the implementation of a web programming language inspired by the
second author’s work on the WASH system [38], the Links project [6], Hop [35],
and generally the idea of tierless web programming [22]. The second project deals
with the efficient implementation of Park’s work [24] on representing probability
distributions by sampling functions (of monadic type).

Another indication for the importance of monads in strict languages is the
recent addition of workflow expressions to the F# language[37]. These workflow
expressions (or computation expressions) are nothing but monad comprehen-
sions [40] which admit some additional operators for monads that support them.
F# supports list and sequence operations, database operations, asynchronous
operations, manipulation of probability distributions as in Ramsey and Pfeffer’s
work [31], and a few more monadic computations through workflow expressions.
Interestingly, the concrete syntax chosen in F# closely matches our calculus in
SecBl Thus, our results are applicable to compiling F#.

The suitability of the CPS transformation for compilation has been disputed
[1115] but is now receiving renewed attention and is successfully competing with
other approaches like ANF or monadic languages [I7]. Our projects and in par-
ticular the work reported here may yield additional evidence in favor of CPS.

The projects have two commonalities. First, both source languages are strict
functional languages with linguistic support for monads (see Sec.). Both lan-
guages restrict side effects to monadic computations, so we are after encapsula-
tion of both, effects and compositionahty@ Second, both implementations involve
a CPS translation, a well-established implementation path for such languages.
These two requirements lead directly to the present work.

The main contributions of this work are as follows. We define AM, a call-by-
value lambda calculus with explicit monadic constructs (a strict variant of the
monadic metalanguage). We specify an optimizing CPS translation from A
to the lambda calculus and prove its simulation and translation properties. We
define the corresponding direct-style translation and prove simulation for it. We
briefly investigate an alternative transformation that first performs thunkifica-
tion and then runs a standard CPS transformation. We state a type system based
on simple types for AM and prove that the transformation preserves typing.

2 Two Strict Languages with Monads

In two seemingly unrelated projects, we have arrived at using a strict language
with a monadic sublanguage as a good match for the problem domain. In both
projects there is also the need of applying the CPS transformation to programs.
This section briefly introduces the projects and explains the role of the CPS
transformation in their implementation.

Rinso. Rinso is an experimental programming language for writing client-side
web applications. Rinso compiles to JavaScript and provides convenient monadic

1 Another option would be to structure side effects using a hierarchy of effect-indexed
monads [I0], but we stick with the simpler scenario for this paper.

268 A. Bieniusa and P. Thiemann

// producer : MVar Int * Int * Int -> I0 ()
producer (mvar, a, b)
if (a <= Db) {
exec (putMVar (mvar, a));
exec (producer (mvar, a+l, b))
} else {
return ()
}
// consumer : MVar Int -> I0 ()
consumer (mvar) {
x = exec (readMVar (mvar));
exec (print (x));
consumer (mvar)
}
// main : Unit -> I0 ()
main () {
mvar = exec newEmptyMVar;
exec (fork (producer (mvar, 1, 100)));
exec (consumer (mvar))

}

Fig. 1. Producer and consumer in Rinso

abstractions to protect programmers from the idiosyncrasies of the target lan-
guage as much as possible. The current prototype implementation supports a
monadic interface to I/O, references, and concurrency via thread creation. Be-
fore getting to an actual example program, we take a short digression and explain
the underlying concurrency primitives.

Rinso’s concurrency library is based on Concurrent Haskell’s MVar abstrac-
tion [26]. An MVar is a mutable variable with two distinct states. It is either
empty or it is full and holds a value of a fixed type. An MVar supports the
following operations in the I0 monad:

newEmptyMVar : I0 (MVar a)
putMvar : MVar a *x a -> I0 ()
readMVar : MVar a -> 10 a

An MVar starts its life cycle with an invocation of newEmptyMVar, which creates
a fresh, empty MVar. The execution of readMVar (mv) blocks while mv is empty.
If mv is full, then readMVar mv empties mv and returns its value. The execution
of putMVar (mv, v) blocks while mv is full. If mv is empty, then putMVar (mv,
v) fills mv with v and returns the unit value. Multiple readMVar (putMVar) may
block on the same empty (full) MVar, only one will be chosen by the run-time
system to proceed. The operations putMVar and readMVar are atomic.

Figure [[shows an excerpt of Rinso code implementing a producer/consumer
abstraction. Rinso marks monadic computations by curly braces, that is, {m}
is a computation defined by the statement sequence m (which is quite similar
to Haskell’s do-notation [25]). A statement can be a binding z = e; (where the

How to CPS Transform a Monad 269

// bernoulli : double -> P bool
bernoulli (p) {

X = exec sample;

return (x <= p)
}
// uniform : double * double -> P double
uniform (a, b) {

X = exec sample;

return (a + x * (b-a))
}
// gaussian : double * double -> P double
gaussian (m, sigma) {

x1 = exec sample;

x2 = exec sample;

x12 = exec sample;
return (m + sigma * (x1 + x2 + ... + x12 - 6.0))

}

Fig. 2. Encodings of distributions

x = part may be omitted) or a return statement return e. In both cases, e is
evaluated. Ordinary binding is free of side effects, whereas a binding = exec ¢;
expects e to evaluate to a monadic value which is then executed immediately.

The prototype implementation of Rinso performs lambda lifting, CPS trans-
formation, and closure conversion. The resulting first-order program is translated
to JavaScript. The CPS transformation must be involved for two reasons. First,
the target technology (your friendly web browser) stops programs that run “too
long”. Hence, the program has to be chopped in pieces that invoke each others
indirectly. Cooper et al. report a similar approach [@].

Second, as Rinso is supposed to be used on the client side of a web applica-
tion, it needs facilities for implementing user interfaces. One important ingredient
here is concurrency where Rinso supports a thread model similar to concurrent
Haskell. The implementation of such a thread model is much facilitated if pro-
grams are translated to CPS.

A planned extension of Rinso to also include server-side computation would
add yet another reason for using the CPS transformation. As Graunke et al.
[19] point out, compiling interactive programs for server-side execution requires
a CPS transformation.

Stochastic Computation. Our second project concerns sensor-based technical
devices. These devices perform stochastic processing of their sensor data close to
the sensors themselves to avoid network congestion with bulk data and also to
save power by keeping network transmitters powered down as long as possible.

To cut down on power and cost, as well as to lower the likelihood of errors, part
of this processing is implemented in hardware. Thus, this hardware implements
computation-intensive tasks which remain fixed over the lifetime of the system.

270 A. Bieniusa and P. Thiemann

It is often co-designed with the software that performs higher level processing
tasks which are more likely to change over time.

Our project investigates an approach to specifying such systems in a single
linguistic framework. One core aspect is the modeling of probability distributions
using a sampling monad as inspired by Park et al.’s work [24]. One obstacle in
putting this work into practice is its limited performance if implemented purely in
software. Thus, we aim at implementing the stochastic processing in hardware.
The implementation follows one of the standard paths in functional language
compilation, CPS transformation and closure conversion, before mapping the
program to hardware via VHDL [34].

Figure 2l contains some distributions which are encoded using a Rinso-like syn-
tax. They are transcribed from Park et al. [24]. The basic computation is sample
of type P double (where P is the probability monad), which models a 0-1 uni-
formly distributed random variable. bernoulli(p) implements a Bernoulli dis-
tribution with probability p, uniform(a,b) implements a uniform distribution
over the interval (a,b), and gaussian(m,sigma) implements an (approximation
of a) Gaussian distribution using the 12-rule.

3 CPS Transformation

3.1 The Source Language

Figure B shows the syntax of AM, a call-by-value lambda calculus extended with
monadic expressions. In addition to constants, variables, lambda abstractions,
and function applications (marked with infix @) there are also monadic compu-
tations {m}, which open a new binding scope with the x = ... statements as
binding operations. Side effects can only occur in computations. Computations
can be bound to variables as in x = {m} because they are values. Their evalua-
tion must be triggered via the keyword exec. The monadic statement x = e ;m
behaves like z = exec {return e} ;m. We use fv to denote the set of free vari-
ables in an expression or computation, and bv for variable bound by a binding
operation m;. The print operation which displays integers serves as an example
for a side effecting operation.

The figure further defines the semantics of AM. Monadic reduction s, is
the top-level notion of reduction. M denotes the evaluation context for monadic
statements, £ the corresponding one for expressions. The superscript on the
reduction can be 7 representing the printed value or ¢ if no output happens.
The annotation .4 on the transitive closure of reduction stands for a (potentially
empty) sequence of integers. Computation stops with return v at the top level.

Figure @l presents a simple type system for AM inspired by Moggi’s meta-
language [21I]. The unary type constructor T represents the monad. Hence, a
computation returning a value of type 7 has type T 7.

Theorem 1. The type system in Fig. [4] is sound with respect to the semantics
of AM in Fig.[3.

How to CPS Transform a Monad 271

Syntax:

expressions e u=c|z | Az.e|e@Qe| {m}

statements m ::=returne |z =exece;m |z =¢€;m
constants ¢ = "¢’ | print

values v =="i"| Az.e | {m} | print

output a =¢li teZ
variables z € Var

Evaluation contexts:

M=z =execE;m|z=E;m|return &
E u=1[]] Qe | v@QE
Evaluation:
(Az.)Qu ¢ e[z —]
$:v;m»i>mm[z»—>y]
z = exec (print@7i7);m o mlz — Ti7
T = exec {mi;...;Mmp;return e} ;m rom, Mi;...;Mn;T =€ ;m
if fu(m) N bv(ma,...,my) =10
/ * / ’ 1" ’
ete e N erg € € —ee eree
U 6'—76 € * I £ 12
Ele] —e &[] e e M{e] S Me']
a ’ A, ’ / a 1
M =, M - m—m, m M —m m
a ’ mi—=m m Aa,*
M[m] =m M[m] m s, m”

Fig. 3. Syntax and semantics of the source language A™

types 7,0 u=int|T —7|T7T
contexts I' == |I,x:7
Typing rules:
I'z)=r
I' = print : int — T int '™ int I'kxz:7
Nr:mke:m I'kei:m11— T I'es:m
'k Xxe:mi — 1 I'= e1@Qe; : 7
I'bp,m:Tr I'ke:T I'ke:T Iz:rthk,m:T7
I'k{m}:Tr ', returne: TT I'bhz=em:T7

I'~e:TT F,x:Tl—mm:TT/

'k, x =exece;m: T+
Fig. 4. Simple type system for AM

3.2 CPS Transformation of Monadic Expressions

Our CPS transformation on A terms extends Danvy and Filinski’s one-pass
optimizing call-by-value CPS transformation [8] with transformation rules for

272 A. Bieniusa and P. Thiemann

Syntax:
expressions E,F :=C|z|Az.E| FQFE
constants ~C' = print_ | ¢"
values V. u=C|A\.E

where ¢ € Z and = € Var, an infinite set of variables
Reduction contexts for call-by-value (€,) and call-by-name (&y):

& u=[]| £,QE | V@&, & =[] | E.QE

Reduction (for j € {v,n}):
(\2.E)QF 55 E[F/z] (\e.E)QV Sy E[V/z] (print @7i@QF v, FQ™i"
Eavq E' E,., B EAS, B B B

“ , a , ESS, B 4
EE] ¥y EJE] En[E] S EalE] B, B

Fig. 5. The target language A

monadic expressions and statements. The result is a one-pass CPS transforma-
tion which does not introduce any administrative g-redexes. In addition, poten-
tial n-redexes around tail calls are avoided by using auxiliary transformations C,
and CJ,,.

The transformation is defined in a two-level lambda calculus [23] which distin-
guishes between abstractions and applications at transformation time (Az.e and
f@e) and at run time (Az.e and f@e¢). The former reduce during transformation
whereas the latter generate target code.

Figure [l defines syntax and semantics of the target language of the trans-
formation. There are two semantics, call-by-value given by the relation —, and
call-by-name given by +,,. The print operation is provided in terms of a CPS
primitive print,.

Figure [defines the CPS transformation for A . The result of transforming
an expression e to CPS in an empty context is given by C.[e]@(Az.z), and in a
dynamic context by Ak.C.[e]@(Az.k@Qz). The same holds for the transformation
of monadic expressions m. The latter are only transformed in a dynamic context,
so the corresponding transformation C,, [| for static contexts has been elided.

The type transformation corresponding to our call-by-value CPS transforma-
tion is defined in two steps with a value type transformation * and a computation
type transformation . The type X is the answer type of all continuations.

int* = int
(r—=o) =1 =of
(Tr) =7*
= (Tr—-X)—-X

Theorem 2. If ' e: 7, then I'*,k: 7% — X |k (Cl[e])@k : 7%
IfT'hyomo:7, then Tk : 7 — X bk (CL,[m])@Qk : 7%,

How to CPS Transform a Monad

Danvy and Filinski’s optimizing call-by-value CPS transformation [§]

Ce[i7] = Ak.c@7¢"
Celz] = Ak.cQz
Ce[Az.€] = Ak.kQ(Az.\K.C,[e] Qk)
Celeo@e1] = Ak.Celeo]@(Avo.Ceer]@Q(Avy.(vo@Quy)Q(Aa.£kQa)))

C[i7] = Ak.k@ 47
C.[z] = M\k.kQzx
Ci[Aw.e] = M. k@Q(\z.\k.C.[e] Qk)
Clleo@er] = Ak.Ce[eo] @(Avo.Ce[er]@(Av1.(vo@Qur)@Qk))

Extension to monadic expressions and statements

Ce[print] = Ak.kQ(Az.A\k.kQ(print Qz))
Ce[{m}] = A\s.k@Q(\k.C,, [m] QF)

C.[print] = A\k.kQ(Az.\k.kQ(print Qz))
CL[{m}] = Me.kQ(An.C), [m]@n)

Co[[return e] = C.[e]
Crollx = e ;m] = Mk.CL[e]@(\z.C;, [m] QF)
Cro[x = exec e;m] = Ak.Ce[e]@(Mv.v@(Ax.Cy, [m]QK))

Fig. 6. CPS transformation

273

Proof. The proof works by ignoring the annotations, performing induction on
the translated terms, and then invoking subject reduction for the simply typed
lambda calculus to see that the overlined reductions do not change the type.

3.3 Simulation and Indifference

Danvy and Filinski [§] have shown that the upper half of the rules in Fig. 6] trans-
forms a source term to a result which is gn-equivalent to applying Plotkin’s call-
by-value CPS transformation to the same source term. Like Plotkin, they prove
simulation and indifference results and we follow their lead closely in extending

the simulation and indifference results to our setting.

For values v let ¥ (v) = C.[v]Q(Az.x). Tt is straightforward to show that ¥ (v)

is a value and that the following equations hold:
Cc[v]@r = kQ(¥(v))
Cl[v]@Qk = kQ(¥(v))
Cc[w]@r = C[w]@Q(An.x@Qn)

where v denotes a value and w a term that is not a value.

274 A. Bieniusa and P. Thiemann

A variable z occurs free in a static continuation if for some term p it occurs
free in kK@p but not in p. An expression k is schematic if for any terms p and ¢
and any variable z not occurring free in k,

(k@p)[z — q] = KQ(p[z — q]).

Lemma 1. Let p be a term, v a value, T a variable, ' a fresh variable, and let
k be a schematic continuation and k any term. Then

Celplz — v]]@k = (Ce[plz — 2']]@x)[z" — ¥ (v)]
eymlple = @k = (C.), [l — 2']]QK) [1 @ ()]

e/m e/m
Proof. By induction on p.

The next lemma extends the indifference theorem to AM. All reductions are
independent of the choice of the reduction strategy j for the target language:
Each argument of an application is a value from the beginning, hence the VQ¢&,
evaluation context is never needed and the rule BV is sufficient for all reductions.

The relation H]‘ denotes the transitive closure of the respective relation +;.

Lemma 2. Let k be a schematic continuation and j € {v,n}.
If p —. q, then C.[p]Qk Eb’—J>rj Cclq]@xr and C.[p]Qk f’—irj Cllq]Qk.

If p S, g, then C [p]@k ©5; ! [q] @k.
Each source reduction gives rise to at most five target reduction steps.

Proof. Induction on the derivation of —,. and |i>m. The case for reducing z =
exec (print@Ti™); takes five steps in the target language. All other cases take
fewer steps.

Inductive application of Lemmal[2to a multi-step reduction yields the indifference
and simulation theorem.

Theorem 3. Let m be a well-typed term and v be a value such that m »im
return v. Then

¢, [ml@(\z.z) 255 w(v)

in at most five times as many reduction steps for j € {v,n}.

4 Alternative CPS Transformation

An obvious alternative to the discussed CPS transformation works in two stages,
thunkification followed by CPS transformation. Thunkification defers the evalu-
ation of a monadic expression by wrapping its body into a thunk. The transfor-
mation of exec forces the thunk’s evaluation by providing a dummy argument.

We extend AM (and its CPS transformation) with a new direct-style print
operator print; as indicated in Fig. [l Figure B gives the thunkification as a
transformation on AM. It maps print to a function that accepts an output

How to CPS Transform a Monad 275

C = ‘ printd printd@rij ,i)e 37
-+ | print, Ce[print,] = Mk.k@print,

Fig. 7. Extension of the source language

7’6[[%'1]] —

Te[print] = Az.Az.print ,Qz z#x
Te[z] =z

T[Az.€] = Az.Z.[e]

T.[e1@ez] = (Te[ea])@(Ze[e2])
T[{m}] =X2Tn[m] 2z ¢ fu(m)
T [return e] = Tc[e]

Tz =e;m] = (Az.Tw[m])Q(Zc[e])

Tz = exec e;m] = (A\x. T [m])Q((Ze[e])@70T)

Fig. 8. Thunkification

value and a dummy argument and calls print if the dummy argument is pro-
vided. The value "0 serves as a dummy argument to force the evaluation of
the expression following an exec. The transformed program does not use the
monadic constructs anymoreE

We now get a one-pass CPS transformation as the combination of two trans-
formations:

Celp] = CTelp]] and C)p,[p] = CLITe/m[p]]

The result is a set of somewhat more complicated transformation rules for the
monadic expressions (all other transformation rules remain unchanged as they
are not affected by thunkification).

Ceprint] = Ak.k@Az.\k.kQ(\z. \k.(print,Qz)Qk)
Cc[{m}] = M6.k@QAz.(\E.C, [m]QF)
C! [return e] = C'[e] = C [return €]
Cl [z = e ;m] = Me.Co[e]Q@(Avr.((Az.AE.CL, [m] @k)Qu,)QF)
C! [z = exec e;m] =
Me.Co[e] @(Mwo. (wo@™0) @(Aa.((Az Ak.C! [m]Qk)Qa)Qk))

As one can easily show, this more intuitive ansatz is 57 equivalent, but less
efficient for the monadic constructs as the one in Fig. [0l Indeed, of the most
frequently used monadic operations the x = v binding requires one additional
reduction step and the x = exec {m} binding requires three additional reduction
steps.

2 Park’s implementation of the probability monad [24] works in a similar way.

276 A. Bieniusa and P. Thiemann

5 Direct-Style Translation

To obtain the direct-style translation in Fig[d corresponding to the monadic
translation in Figlfl we first have to find a suitable grammar for the resulting
CPS terms. The nonterminals cv, cc, and ck stand for CPS values, computations,
and continuations. Their definitions are familiar from direct-style translations for
the lambda calculus [7]. The last two cases for cv are specific to the monadic
case. They involve mc¢ (monadic computations), which in turn involve monadic
continuations mk. The translation inserts let x = ein f expressions which are
interpreted as (Az.f)Qe.

The special cases are as follows. The new value Ak.mc corresponds to a
monadic computation. The computation cv@mk stands for the activation of a
delayed computation and is hence mapped to an exec statement in the monad.

The direct style transformation is given for each CPS term. To obtain better
readability, DS [| denotes the translation that results in a monadic binding
with exec. The expected simulation result holds:

Lemma 3. Suppose that mc ﬂj kQcv. Then Dy,c[mc] nﬁm Dimc[kQcv].

However, the pair of transformations C/,, and D,,. does not form an equational
correspondence (let alone a reduction correspondence or a reflection) because
the source language AM lacks reductions that perform let insertion and let
normalization. Such reductions are added in the work of Sabry, Wadler, and
Felleisen [3332] and lead directly to the existence of such correspondences. The
same reductions could be added to AM with the same effect, but we refrained
from doing so because it yields no new insights.

6 Related Work

Since Plotkin’s seminal paper [30] CPS transformations have been described
and characterized in many different flavors. Danvy and Filinski [8] describe an
optimizing one-pass transformation for an applied call-by-value lambda calculus
that elides administrative reductions by making them static reductions which
are performed at transformation time. Our transformation extends their results
for a source language with an explicit monad.

Danvy and Hatcliff [9] present a CPS transformation that exploits the results
of strictness analysis. Our transformation of the explicit monad is inspired by
their treatment of force and delay, but adds the one-pass machinery.

Hatcliff and Danvy’s generic account of continuation-passing styles [14] fac-
torizes CPS transformations in two strata. The first stratum transforms the
source language into Moggi’s computational meta-language [21I] encoding dif-
ferent evaluation strategies. The second stratum “continuation introduction” is
independent from the source language and maps the meta-language into the
CPS sublanguage of lambda calculus. Our transformation is reminiscent of the
second stratum, but our source language is call-by-value lambda calculus with
an explicit monad and our transformation optimizes administrative reductions.

How to CPS Transform a Monad 277

Grammar of CPS terms

cv =" | x| Az Ak.cc | Ak.mc | print Qz
cc = cvQcvQck | ckQ@Qcv

ck == Xa.cc|k

me = cvQcv@Qmk | mkQcv | cv@mk

mk == Az.mc | k

Lambda calculus cases

D[7] =47 Dec[ckQcv] = Dex[ck]|[Dev]cv]]
Deylz] == Dexl[k] =[]
Deo[Az. Ak cc]| = Az Decfec] Der[ra.cc] = leta = []inDefec]

Dec[cv1Q@Qcv2@Qck] = Der[[ck] [Dev[cv1] QD o[cr2]]

Monadic cases

De[Ak.mc] = {Dmc[mc]} Dy [x.mc] = = exec []; Dme[md]
Deo[print Qz] = printQz Deulk] = x = exec [];return
D77Lc[[mk@cv]] = Dmk[[mk]] [Dcv[[cv]]] ’Dmk[[AleC]] = = H ;D"w[[mc]]
Dc[cv@mk] = D [mk][Dev[cv]] Dyi[k] = return []

Dnc[[cv1@cv2@mk] = Dyi[mk] [Dev[cv1]QDey[cv2]]
Fig. 9. Direct style translation

An unoptimized version of our transformation could likely be factored through
the computational meta-language, but we have not investigated this issue, yet.

Danvy and Hatcliff [T5] study an alternative presentation of the call-by-name
CPS transformation by factoring it into a thunkification transformation that
inserts delays around all function arguments and forces all variables and a
call-by-value CPS transformation extended to deal with delay and force. In
addition, the paper also investigates an optimizing one-pass transformation but
the details are different because our monadic brackets do not contain expressions
but monadic statements.

Ager et al. [2] employ another path for transforming monadic code to CPS,
which is a key step in their work to derive an abstract machine from a monadic
evaluator. The authors first replace the monadic operations in the interpreter
with their functional definitions. Then they transform the resulting monad-free
evaluator to CPS using a standard call-by-value CPS transformation. It turns out
that our thunkification transformation can be seen as expansion of the monadic
operations. In fact, the transformation maps the monad type (T 7)% to () — 7°
with the obvious return and bind operations. However, as we have demonstrated
in Section [the combined transformation misses opportunities for optimization
that our one-pass transformation exploits. One way to obtain a better trans-
formation via thunkification might be to apply Millikin’s idea of using shortcut
deforestation with a normalization pass to create a one-pass transformation [20],
but we have not yet explored this idea further.

Sabry and Felleisen [32] describe their source calculus via an axiom set which
extends the call-by-value lambda calculus. Using an compactifying CPS transfor-
mation they present an inverse mapping which yields equational correspondence

278 A. Bieniusa and P. Thiemann

of terms in source and target calculi of Fischer-style call-by-value CPS trans-
formations. Sabry and Wadler [33] show that Plotkin’s CPS transformation is a
reflection on Moggi’s computational lambda calculus. Barthe et al. [4] propose
the weaker notion of reduction correspondence for reasoning about translations.
An initial investigation shows some promise for embedding our CPS transfor-
mation into this framework.

On the practical side, Appel’s book [3] presents all the machinery necessary for
compiling with continuations and applies it to the full ML language. The main
impact for compilation is that CPS names each intermediate value, sequential-
izes all computations, and yields an evaluation-order independent intermediate
representation that is closed under § reduction. The latter is important as it
simplifies the optimization phase of the compiler: It can perform unrestricted
[reduction wherever that is desirable. Steele [36] was the first to exploit this
insight in his Rabbit compiler for Scheme, Kelsey and others [I8[16] later ex-
tended the techniques to work with procedural languages in general. Unlike some
of his precursors, Appel uses a one-pass CPS transformation which reduces some
administrative reductions. He relies on another optimizing pass for eliminating
71 reductions. An optimizing transformation, like ours, avoids this burden and
leads to more efficient compilation.

Another point in favor of CPS-based compilation is the ease with which con-
trol operators can be supported in the source language. Friedman et al. [I3] make
a compelling point of this fact. This may be important in the further develop-
ment of our Rinso language as control operators are well suited to implement
cooperative concurrency.

7 Conclusion

There is evidence that a call-by-value language with an explicit monad is a
design option for certain applications. Working towards compilation of such a
language, we have developed an optimizing one-pass CPS transformation for
this language and proven simulation and indifference for it. We present a direct
style transformation for the CPS terms. We have demonstrated that our CPS
transformation is preferable to an indirect one via thunkification. Finally, the
transformation is compatible with simple typing.

References

1. Abadi, M. (ed.): Proc. 32nd ACM Symp. POPL, Long Beach, CA, USA, January
2005. ACM Press, New York (2005)

2. Ager, M.S., Danvy, O., Midtgaard, J.: A functional correspondence between
monadic evaluators and abstract machines for languages with computational ef-
fects. Theoretical Computer Science 342(1), 149-172 (2005)

3. Appel, A.W.: Compiling with Continuations. Cambridge University Press, Cam-
bridge (1992)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

How to CPS Transform a Monad 279

Barthe, G., Hatcliff, J., Sgrensen, M.H.: Reflections on reflections. In: Hartel, P.H.,
Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 241-258. Springer, Heidelberg
(1997)

Benton, N., Kennedy, A., Russell, G.: Compiling Standard ML to Java bytecodes.
In: Hudak, P. (ed.) Proc. ICFP 1998, Baltimore, MD, USA. ACM Press, New York
(1998)

Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without
tiers. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2006. LNCS, vol. 4709, pp. 266—296. Springer, Heidelberg (2007)

Danvy, O.: Back to direct style. Science of Computer Programming 22, 183-195
(1994)

Danvy, O., Filinski, A.: Representing control: A study of the CPS transformation.
Mathematical Structures in Computer Science 2, 361-391 (1992)

Danvy, O., Hatcliff, J.: CPS transformation after strictness analysis. Letters on
Programming Languages and Systems 1(3), 195-212 (1993)

Filinski, A.: Representing layered monads. In: Aiken, A. (ed.) Proc. 26th ACM
Symp. POPL, San Antonio, Texas, USA, pp. 175-188. ACM Press, New York
(1999)

Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proc. 1993 PLDI, Albuquerque, NM, USA, pp. 237-247 (June
1993)

Fluet, M., Morrisett, G.: Monadic regions. J. Funct. Program. 16(4-5), 485-545
(2006)

Friedman, D.P., Wand, M.: Essentials of Programming Languages, 3rd edn. MIT
Press and McGraw-Hill (2008)

Hatcliff, J., Danvy, O.: A generic account of continuation-passing styles. In: Proc.
1994 ACM Symp. POPL, Portland, OR, USA, pp. 458-471. ACM Press, New York
(1994)

Hatcliff, J., Danvy, O.: Thunks and the A-calculus. J. Funct. Program. 7(3), 303—
319 (1997)

Kelsey, R., Hudak, P.: Realistic compilation by program transformation. In: Proc.
16th ACM Symp. POPL, Austin, Texas, pp. 281-292. ACM Press, New York (1989)
Kennedy, A.: Compiling with continuations, continued. In: Ramsey, N. (ed.)
Proc. ICFP 2007, Freiburg, Germany, pp. 177-190. ACM Press, New York (2007)
Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., Adams, N.: ORBIT: An
optimizing compiler for Scheme. SIGPLAN Notices 21(7), 219-233 (1986); Proc.
Sigplan 1986 Symp. on Compiler Construction

Matthews, J., Findler, R.B., Graunke, P., Krishnamurthi, S., Felleisen, M.: Au-
tomatically restructuring programs for the web. Automated Software Engineer-
ing 11(4), 337-364 (2004)

Millikin, K.: A new approach to one-pass transformations. In: van FEekelen,
M. (ed.) Trends in Functional Programming, September 2007, vol. 6 (2007),
intellectbooks.co.uk

Moggi, E.: Notions of computations and monads. Information and Computation 93,
55-92 (1991)

Neubauer, M., Thiemann, P.: From sequential programs to multi-tier applications
by program transformation. In: Abadi [1], pp. 221-232

Nielson, F., Nielson, H.R.: Two-Level Functional Languages. Cambridge Tracts in
Theoretical Computer Science, vol. 34. Cambridge University Press, Cambridge
(1992)

intellectbooks.co.uk

280

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

A. Bieniusa and P. Thiemann

Park, S., Pfenning, F., Thrun, S.: A probabilistic language based upon sampling
functions. In Abadi [1], pp. 171-182

Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press, Cambridge (2003)

Peyton Jones, S., Gordon, A., Finne, S.: Concurrent Haskell. In: Proc. 1996 ACM
Symp. POPL, St. Petersburg, FL, USA, pp. 295-308. ACM Press, New York (1996)
Peyton Jones, S., Reid, A., Hoare, T., Marlow, S., Henderson, F.: A semantics for
imprecise exceptions. In: Proc. 1999 PLDI, Atlanta, Georgia, USA (May 1999);
volume 34(5) of SIGPLAN Notices

Peyton Jones, S.L.: Tackling the awkward squad: Monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In: Hoare, T., Broy, M.,
Steinbruggen, R. (eds.) Engineering Theories of Software Construction, pp. 47-96.
I0S Press, Amsterdam (2001)

Peyton Jones, S.L., Wadler, P.L.: Imperative functional programming. In: Proc.
1993 ACM Symp. POPL, Charleston, South Carolina, pp. 71-84. ACM Press,
New York (1993)

Plotkin, G.: Call-by-name, call-by-value and the A-calculus. Theoretical Computer
Science 1, 125-159 (1975)

Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Mitchell, J. (ed.) Proc. 29th ACM Symp. POPL, Portland, OR,
USA. ACM Press, New York (2002)

Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
Lisp and Symbolic Computation 6(3/4), 289-360 (1993)

Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Prog. Lang. and
Systems 19(6), 916-941 (1997)

Saint-Mleux, X., Feeley, M., David, J.-P.: SHard: A Scheme to hardware compiler.
In: Proc. 2006 Scheme and Functional Programming Workshop, pp. 39-49. Univ.
of Chicago Press (2006)

Serrano, M., Gallesio, E., Loitsch, F.: HOP, a language for programming the Web
2.0. In: Proceedings of the First Dynamic Languages Symposium, Portland, OR,
USA (October 2006)

Steele, G.L.: Rabbit: a compiler for Scheme. Technical Report AI-TR-474, MIT,
Cambridge, MA (1978)

Syme, D., Granicz, A., Cisternino, A.: Expert F#. Apress (2007)

Thiemann, P.: An embedded domain-specific language for type-safe server-side
Web-scripting. ACM Trans. Internet Technology 5(1), 1-46 (2005)

Wadler, P., Thiemann, P.: The marriage of monads and effects. ACM Trans. Com-
putational Logic 4(1), 1-32 (2003)

Wadler, P.L.: Comprehending monads. In: Proc. ACM Conference on Lisp and
Functional Programming, Nice, France, pp. 61-78. ACM Press, New York (1990)
Wong, L.: Kleisli, a functional query system. J. Funct. Program. 10(1), 19-56 (2000)

	How to CPS Transform a Monad
	Introduction
	Two Strict Languages with Monads
	CPS Transformation
	The Source Language
	CPS Transformation of Monadic Expressions
	Simulation and Indifference

	Alternative CPS Transformation
	Direct-Style Translation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

