
Precise Management of Scratchpad Memories

for Localising Array Accesses in Scientific Codes

Armin Größlinger

University of Passau
Department of Informatics and Mathematics

Innstraße 33, 94032 Passau, Germany
armin.groesslinger@uni-passau.de

Abstract. Unlike desktop and server CPUs, special-purpose processors
found in embedded systems and on graphics cards often do not have a
cache memory which is managed automatically by hardware logic. In-
stead, they offer a so-called scratchpad memory which is fast like a cache
but, unlike a cache, has to be managed explicitly, i.e., the burden of its
efficient use is imposed on the software. We present a method for com-
puting precisely which memory cells are reused due to temporal locality
of a certain class of codes, namely codes which can be modelled in the
well-known polyhedron model. We present some examples demonstrat-
ing the effectiveness of our method for scientific codes.

Keywords: scratchpad memory, software-managed data cache, array lo-
calisation, polyhedron model, embedded systems.

1 Introduction

The success of parallelising an algorithm depends on two factors. First, the
computations must be arranged suitably to exploit the available computational
power efficiently. Second, data transport between the computing entities must
not spoil the efficiency of the execution by consuming a considerable amount
of the total execution time. With current architectures, several levels of data
storage are available: registers, caches, CPU-local main memory, main mem-
ory of remote CPUs, remote network storage. Due to the dramatic difference
in their performance, which is, for technical and economic reasons, reflected in
the smaller sizes of faster storages, the data accessed often must be kept in
the fastest memory. Program transformations which increase locality have been
widely studied (cf. Section 2). On special-purpose architectures like embedded
systems and graphics processors, fast cache memory is not managed automati-
cally by hardware but has to be managed explicitly by software. We aim at an
automatic explicit management of so-called scratchpad memories present in such
architectures.

Since we aim at full automation, the techniques are not applicable to arbitrary
programs. They must be loop nests with bounds linear in the surrounding loops

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 236–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Precise Management of Scratchpad Memories 237

for (t=0; t<=n; t++)

parfor (p=0; p<=n; p++)

A[t+p+1] = f(A[t+p+1]);

(a) original program

for (x=0; x<=n-1; x++)

L[x] = A[x+1];

for (t=0; t<=n; t++) {
L[n] = A[t+n+1];

parfor (p=0; p<=n; p++)

L[p] = f(L[p]);

A[t+1] = L[0];

syncparfor (x=1; x<=n; x++)

L[x-1] = L[x];

}
parfor (x=0; x<=n-1; x++)

A[n+x+2] = L[x];

(b) localised version

Fig. 1. Locality-improving transformation on a simple parallel program

and structure parameters containing bodies with array accesses with affine sub-
scripts, i.e., we are working with programs that are being studied in the context
of the polytope/polyhedron model [12,13,14].

As an example of the desired transformation, let us look at the example pro-
gram in Figure 1(a). It consists of an outer sequential time loop and an inner
parallel loop. Each iteration (t, p) updates an array element A[t+p+1]. Since ev-
ery time step t accesses array elements A[t+1], . . . , A[t+n+1], there is considerable
overlap in the array elements used in successive time steps, namely n elements.
For example, the first time step t = 0 accesses the elements A[1], . . . , A[n+1],
the second time step t = 1 accesses A[2], . . . , A[n+2] and uses A[2], . . . , A[n+1]
again. If the access of array A has high latency, i.e., it is not stored in the fastest
available memory, the execution of the program can be accelerated by keeping
the relevant parts of A in a faster memory. One possible way to achieve this
localisation is shown in Figure 1(b). The array L is assumed to be stored in fast
memory. In every iteration of the loop on t, the element A[t+n+1] of A, which
has not been accessed in the previous iteration, is brought into L at L[n]. After
the computation, L[0] is exported to A[t+1], because it is not needed in the
next iteration, and the elements of L are shifted inside L to bring them into the
right position for the next iteration. In addition, elements are moved to/from L
before and after the loop on t, respectively. Having to move all (but one) ele-
ments of L can be costly depending on the architecture. With memory local to
the computing cores (which may require only one cycle per memory access) the
overall positive effect of the transformation outweighs this additional cost. As
the syncparfor statement in the code shown suggests, this reorganisation can
be executed synchronously in parallel.

We propose a way of computing the array elements which have to be moved
into L before each time step, exported from L and reorganised in L after each
time step. The reorganisation step requires particular attention because, as can
be seen in the above example, it overwrites elements of L. Therefore, an in-situ
reuse of the same L requires an ordering of the overwriting operations that does
not destroy data elements before they have been copied.

238 A. Größlinger

This paper is organised as follows. After discussing related work in Section 2,
we sketch a few concepts of the polyhedron model in Section 3. We present our
technique of computing the desired information about the memory accesses in
Section 4. We show some examples in Section 5 before Section 6 concludes.

2 Related Work

Improving data locality by transforming a loop nest to obtain temporal or spa-
tial locality by reordering the loop iterations and/or changing the data layout
has long been a subject of study [19,10,5]. Earlier work relies on partitioning
program data [16]. Loop transformations have been used to partition the pro-
gram operations such that each partition’s accessed data fits into cache memory
[4] or to simplify the reuse pattern in order to store the reused data compactly
in scratchpad memory [11,9] if such a transformation is permitted by the depen-
dences. Later work [8] improves the situation by partitioning according to the
coefficients of the array index expressions, thus reducing the size of the blocks
stored in scratchpad memory considerably. Chen et. al [6] present a method to
minimise off-chip memory accesses by restructuring parallel code according to
data tiles to create temporal locality across processors.

Ehrhart polynomials have been used to compactly store only the elements of
an array used by the code after applying a transformation [7,15] or to compute
the number of accessed memory elements, cache misses, etc. [17].

For our technique to be effective, locality improving transformations described
in the previous work cited are desirable. Baskaran et al. [2] execute tiled loop
code on a graphics card with scratchpad memory. They approximate the local
data of a tile by a rectangular superset, load the respective data into scratchpad
memory before executing a tile and store it to global memory afterwards, but
they do not compute the used data set precisely nor do they try to retain reused
data in the scratchpad between tiles.

3 Prerequisites

3.1 The Polyhedron Model

Definition 1. An access is an array reference A[x] in a loop body. An instance
of an access is its execution for particular values of the variables of the surround-
ing loops.

Definition 2. A dependence is a relation between access instances which refer
to the same memory cell. An access instance a2 is said to depend directly on an
access instance a1, written a1 → a2, if both a1 and a2 access the same memory
cell, a2 is executed after a1 and there is no access a3 referring to the same mem-
ory cell executed between a1 and a2. A dependence is called an input dependence
if both access are reads, an output dependence if both accesses are writes, a flow
dependence if a1 writes and a2 reads, and an anti dependence if a1 reads and a2

writes. The array index referred to by an access a is denoted by accelem(a).

Precise Management of Scratchpad Memories 239

We require precise dependence information, i.e., there must not be dependences
which follow from other dependences by transitivity. Note that our definition of
dependences is a bit different from the usual, statement-based definition. With
our definition, there are two dependences in the statement

A[i] = A[i] + A[i] ,

namely an input dependence from one of the read accesses to the other (the
choice of the direction is arbitrary) and an anti dependence from the later read
access to the write access. With the usual definition, there are no dependences
inside one statement instance. We require this finer granularity of dependences
to capture that, in this example, all three accesses in the above statement refer
to the same memory cell and, hence, it is sufficient to fetch A[i] once from global
memory for both read accesses and that A[i] is immediately overwritten again,
so the fetched value must not be cached for following statements.

3.2 Z-Polyhedra

Definition 3. A Z-polyhedron Z ⊆ Z
m is the image of the integral points of

a polyhedron P ⊆ R
n under an integral affine mapping f : Z

n → Z
m, i.e.,

Z = {f(x) |x ∈ P ∩ Z
n}.

For example, the Z-polyhedron containing the even numbers can be defined by
P = R and f(x) = 2x.

Our main operation on Z-polyhedra is the counting of the integral points in a
(parametric) Z-polyhedron. There are algorithms [18] which compute, from the
description of a Z-polyhedron Z(p), a set of condition/quasi-polynomial pairs
(ci, ρi) such that the value ρi(p) of the quasi-polynomial ρi gives the number of
integral points in Z(p) if ci(p) holds. For example, the number of integral points
in the parametric Z-polyhedron Z(p, q) = {2 · i | 0 ≤ i ≤ min(p

2 , q) ∧ i ∈ Z} is
given by:

|Z(p, q)| =

⎧
⎪⎨

⎪⎩

p
2 + [1, 1

2]p if 0 ≤ p ≤ 2q

q + 1 if p ≥ 2q ≥ 0
0 otherwise

Counting the integral points in a union of Z-polyhedra is possible, too, by com-
puting a disjoint union of the Z-polyhedra first.

4 Locality Transformation

We consider codes of the form shown in Figure 2, i.e., there is one outer sequential
loop on t enumerating the time steps of the program and there are zero, one, or
several sequential and/or parallel loops on i inside (which need not be perfectly
nested, even though the code fragment shown in the figure is). The computation
statements inside the loops on i contain accesses A[fj(i)] (1 ≤ j ≤ n) to an

240 A. Größlinger

for (t ∈ T) {
(par)for (i ∈ D(t)) { body with A[f1(i, t)], . . . , A[fn(i, t)] }

}

Fig. 2. Program to be transformed with one outer sequential time loop

array A. The transformation can be applied successively for several different
arrays, but we restrict our presentation to the case of a single array.

Each array access A[fj(i, t)] is part of a statement with an iteration domain
Dj(t), which depends on the point in time t, i.e., the access is executed for
every i ∈ Dj(t) for given t. To make our technique applicable, Dj(t) must
be a (parametric) Z-polyhedron. The aim of the proposed transformation is to
achieve that some or all array elements accessed at time t are loaded into the
local memory L of the compute node before the execution of the operations at
time t. This requires three questions to be answered:

1. Where (at which index) do we place elements to be stored in L?
2. Which elements are present at time t and which elements are loaded into

and which are removed from L before/during/after time t?
3. What happens to the elements in L between time t and time t+1?

Answers to these questions are given in the following sections. In Section 4.1,
we present how we map elements from A to L, assuming that we known already
which elements from A are to be mapped to L. Sections 4.2 and 4.3 present two
answers to the second question. Finally, we discuss answers to the third question
(applicable to both previous answers to Question 2) in Section 4.4.

4.1 The New Location of Array Elements

The local storage caches some elements of A at a given time to accelerate their
access. Let C(t) be the indices of the elements of A to be cached in L at time
t, i.e., x ∈ C(t) means that A[x] is available in L. We require C(t) to be a
Z-polyhedron.

We map the elements of A, which are present in L at a given time to L
such that L[0], L[1], . . . contain the cached elements of A in ascending order, i.e.,
if A[x1] and A[x2] are mapped to L[y1] and L[y2], respectively, then x1 < x2

implies y1 < y2. This way, we can determine the index of an element A[x] in L
by the number of elements y ∈ C(t) which precede x in lexicographic order. To
this end, we consider the union of parametric Z-polyhedra defined by

A≺(x, t) := {y |y ∈ C(t) ∧ y ≺ x} .

The number of integral points in A≺(x, t) is the number of array indices in C(t)
up to, but not including, x (at time t). Computing the number of integral points
in A≺(x, t) (cf. Section 3.2) yields a set {(c1, ρ1), . . . , (cq, ρq)} of conditions cj

on the parameters (including x and t) and quasi-polynomials ρj, where ρj(x, t)
evaluates to the number of integral points in A≺(x, t) if cj(x, t) holds. If we

Precise Management of Scratchpad Memories 241

combine the cj and ρj to a conditional expression ρ, which evaluates to ρj if cj

holds, then the location of an element A[x] in the local storage at time t is given
by L[ρ(x, t)] (provided that x ∈ C(t)).

By construction, we have the ordering property stated in the following lemma.

Lemma 1. Let t ∈ Z and x1, x2 ∈ C(t). Then x1 ≺ x2 ⇔ ρ(x1, t) < ρ(x2, t).

The total amount of local storage needed can be computed by counting C(t) and
maximising w.r.t to t.

4.2 Localisation Based on Access Instances

Localisation can be achieved without dependence information if we perform it
based on access instances only. The set of array elements accessed by an access
A[fj(i, t)], with iteration domain Dj(t) at time t, is given by the parametric Z-
polyhedron Cj(t) = {fj(i, t) | i ∈ Dj(t)}. The set of all array elements accessed
at time t is given by the union of the Cj(t). The most obvious choice of C(t) to
be stored in L is the set of exactly the elements accessed at a given time step,
but, since any superset represents a correct transformation, it is worthwhile
to add another degree of freedom. Often, we encounter algorithms which have
an alternating access pattern, for example, at even time steps one part of the
data is accessed and at odd time steps a different part of the data. With the
obvious choice of C(t), we would transform the program such that the contents
of L is replaced completely at every time step. Such situations are remedied by
introducing a localisation window, i.e., permitting the scope of elements kept in
L to be larger than the current time point. We describe the localisation window
by its width w (w ≥ 1) which denotes the number of successive time steps
considered part of the window. We now define C(t) by

C(t) :=
n⋃

j=1

w−1⋃

τ=0

Cj(t + τ) .

Note that w = 1 is the case in which C(t) contains only the elements accessed
at the current time t. From C(t), one can compute ρ(x, t) as described in Sec-
tion 4.1. Let us now address the question of data movement, i.e., which elements
to move in/out and around (within L) at a given time step. There are three
parts involved:

1. a “move in” phase which loads data not present in local storage before the
computation of the current time step,

2. a “move out” phase which removes data not need at the next time step from
local storage and saves it to the global memory,

3. a “reorganisation” phase between two successive time steps, in which the
data in local storage is reorganised such that the data retained in local
storage is in the correct location for the next computation.

242 A. Größlinger

The array elements relevant for each of these three phases are given by the
following sets:

I(t) := C(t) − C(t − 1), O(t) := C(t) − C(t + 1), G(t) := C(t) ∩ C(t + 1) .

I(t) contains the indices of elements used at t but not at t−1, i.e., the elements
to be moved to local storage for step t; O(t) contains the indices of elements
used only at t but not at t+1, i.e., the elements to be moved out after step t; and
G(t) contains the elements used at both t and t+1, i.e., the elements which must
remain in local storage and have to be reorganised between t and t+1. Each of
these three sets is a union of Z-polyhedra.

It is tempting to try to optimise the move-in and move-out sets by, for ex-
ample, moving out only the elements in O(t) that have actually been written to
at time t. But this “optimisation” is incorrect, since an element may have been
written several time steps before it is moved out (and may only have been read
in between). A correct and exact optimisation of data move in and out requires
dependence analysis techniques and is presented in Section 4.3.

During the reorganisation phase, care has to be taken not to overwrite data
which must still be moved before the next time step begins. A simple way to
avoid this problem is to use a second local storage to which the reorganised data
is written and swap the two storage areas after reorganisation. Using pointer
exchange for efficiency, this approach has little run-time overhead, but uses twice
as much local storage. This may be sufficient, but the amount of local storage
is often limited, e.g., in embedded devices. We present techniques for remedying
this drawback in Section 4.4.

for (t ∈ T) {
for (x ∈ I(t)) L1[ρ(x, t)] = A[x]; // move in

(par)for (i ∈ D(t)) { body with L1[ρ(fj(i, t))] instead of A[fj(i, t)] }
for (x ∈ O(t)) A[x] = L1[ρ(x, t)]; // move out

for (x ∈ G(t)) L2[ρ(x, t+1)] = L1[ρ(x, t)]; // reorg

swap(L1, L2);

}

Fig. 3. Preliminary localised code based on access instances with two local storages

A sketch of the code after the localising transformation is shown in Figure 3.
The array accesses A[fj(i, t)] in the body (cf. Figure 2) have been replaced
by L1[ρ(f(i, t))]. In Section 4.4, we show why a single area of local storage is
sufficient.

4.3 Localisation Based on Dependences

The access-based localisation of memory accesses presented in Section 4.2 is
simple in the sense that no dependence information is required by the localis-
ing transformation. On the other hand, this simplicity leads to overhead in the

Precise Management of Scratchpad Memories 243

data movement, for example by loading elements into local storage which are
never read but only written to. A dependence-based approach can remedy this
situation. Provided that an exact dependence analysis of the loop nest is avail-
able, we can mark each access as global or local. Whether to access global or
local memory depends on whether the desired value is present in local storage
or not. This way, there are no separate move-in and move-out statements which
precede and succeed the computation statements, respectively. Instead, they are
integrated into (or placed next to) the computations themselves.

Let R be the set of read access instances and W the set of write access
instances of the program. We write win(a1, a2) to denote that an access instance
a2 is inside the localisation window starting at a1, i.e., a2 is at most w time steps
after a1. We define global writes Wg and local writes Wl as follows:

Wg = {w ∈ W | ¬(∃w′ : w′∈W : w
out−−→ w′ ∧ win(w, w′)

)}
Wl = {w ∈ W | (∃r : r∈R : w

flow−−→ r ∧ win(w, r)
)}

A write is global if the value is not overwritten inside the localisation window. A
write is local if the value is read later inside the localisation window. Note that, by
this definition, there can be a write that is global and local. This happens when
the value is not overwritten in the localisation window and, therefore, has to be
written to global memory at some point (and we choose to do it immediately),
but it is read again later, so we also keep the value in local memory. It is also
possible for a write to be neither global nor local; this means that the value
will be overwritten and not read in between and, hence, we can drop the write
entirely.

Reads have to be partitioned into three groups. A read is local (Rl) if the
value accessed is present in local storage because it has been read or written to
earlier in the localisation window. A read is global (Rg) if no prior access in the
localisation window has been made and no later access will be made. A read is
from global memory with a successive store to local memory (Rgl) if no prior
access has been made but, later in the localisation window, the value will be
read again.

Rl = {r ∈ R | (∃w : w∈W : w
flow−−→ r ∧ win(w, r)

) ∨
(∃r′ : r′∈R : r′ in−→ r ∧ win(r′, r)

)}
Rg = {r ∈ R | ¬(∃r′ : r′∈R : r

in−→ r′ ∧ win(r, r′)
)} −Rl

Rgl = {r ∈ R | (∃r′ : r′∈R : r
in−→ r′ ∧ win(r, r′)

)} −Rl

The elements that are present in local storage are given by

C(t) = {accelem(a) | a ∈ Rl ∪Rgl ∪Wl, t ≤ time(a) ≤ t + w} .

From C(t) we can again compute ρ(x, t) (cf. Section 4.1), which gives the location
of an element A[x] in L at a given time t. The reorganisation of L between time
steps is described by the set G(t) = C(t) ∩ C(t + 1) as in Section 4.2.

244 A. Größlinger

There is one detail we have to consider with this approach. Scheduling a
parallel program usually does not impose restrictions on input dependences.
This allows the case that an input dependence r1

in−→ r2 with r1 ∈ Rgl is not
carried by a sequential loop and r1 and r2 reside on different processors. In
this case, it is possible that the read from global memory and the following
write to the local memory cell for r1 are, in fact, executed after r2, which is
supposed to read the same value as r1 from local memory, because the ordering of
operations between the two involved processors in not determined. To guarantee
correct execution of transformed programs we have either to require that input
dependences respect the same restrictions as the other dependence types or we
have to emit a barrier synchronisation statement which makes sure the write to
local memory at r1 is executed before the read from local memory at r2. In the
examples we present in Section 5, we choose to introduce synchronisations when
needed as synchronisation is rather cheap on the platform we use.

4.4 Ordering the Reorganisation

As has been outlined in Section 4.2, a straight-forward implementation of the
reorganisation phase requires two areas of local storage to avoid overwriting
elements which have not been moved, yet. We will now prove that a single
storage area is sufficient, i.e., the reorganisation can always be performed in-
situ by adhering to a certain order in the intra-storage element moves. The key
observation is that, if an element L[y1] has to be moved to L[y2] (y1 �= y2) and
L[y2] has in turn to be moved to L[y3], then y2 �= y3 and L[y1] and L[y2] move
in the same direction, i.e., y1 < y2 ⇔ y2 < y3.

Definition 4. Let t ∈ Z and x ∈ G(t). The drift δ(x, t) of the element L[ρ(x, t)]
is defined as δ(x, t) := ρ(x, t+1)−ρ(x, t). We say that L[ρ(x, t)] moves forward,
if δ(x, t) > 0, and backward if δ(x, t) < 0.

We now present the key idea introduced above formally and prove that, if an
element moves from L[y1] to L[y2], the contents of L[y2] moves in the same
direction as the contents of L[y1] (provided that L[y2] moves at all).

Proposition 1. Let t ∈ Z and x1, x2 ∈ G(t) such that ρ(x1, t + 1) = ρ(x2, t).
This validates the following two implications:

δ(x1, t) > 0 ⇒ δ(x2, t) > 0
δ(x1, t) < 0 ⇒ δ(x2, t) < 0

Proof. Let t, x1, x2 be as stated and δ(x1, t) > 0, i.e., ρ(x1, t + 1) > ρ(x1, t).
Since ρ(x1, t + 1) = ρ(x2, t) and x1, x2 ∈ C(t), this implies (by Lemma 1)
that x1 ≺ x2. Again by Lemma 1 and since x1, x2 ∈ C(t + 1), this implies
ρ(x1, t+1) < ρ(x2, t+1) and, because of ρ(x1, t+1) = ρ(x2, t), we get δ(x2, t) >
0. Analogous reasoning applies to the second case with < 0 instead of > 0.

From this proposition, a way to reorganise local storage in-situ is quite obvious.

Precise Management of Scratchpad Memories 245

Corollary 1. The reordering of elements in local storage L at the end of time
step t can be achieved in-situ by a two-pass sweep over L.

The in-situ reorganisation works by scanning G(t) once in ascending lexico-
graphic order and once in descending lexicographic order. In the ascending pass,
it is guaranteed that, if δ(x, t) < 0 holds for an x ∈ G(t) scanned, then its value
(which corresponds to A[x]) can safely be moved from L[ρ(x, t)] to L[ρ(x, t+1)],
since the target entry in L is either empty (because it contained an element from
A which is not used at time step t) or it has been moved already, because its drift
is negative, too. The descending scan, in turn, can safely move all the elements
with a positive drift.

Modulo Addressing. In the very regular cases that the drift is identical for all
elements of local storage, there exists an alternative to moving the data around.
We can change the addressing of the local storage to accomplish the same effect.
Accesses L[ρ(x, t)] are replaced by L[(ρ(x, t) + o) mod s], where s is the size of
the local storage and o is an offset which is initialised to 0 and incremented by
−δ(t) at the end of every time step.

This round-robin addressing achieves the same effect as continuous movement
by δ(t). It is, of course, costly. It depends on the architecture whether moving the
data or paying additional addressing costs is more efficient. If δ(t) is constant,
i.e., independent of t, the increment to o is the same in each iteration of the loop
on t and the costly modulo operation may be replaced by less costly constructs
like a conditional increment-or-zero.

4.5 Code Generation Considerations

Since the iteration domains of the computation statements and the move in,
move out, and reorganisation statements are Z-polyhedra, we can use a polyhe-
dral code generator like CLooG [3] to generate the transformed code. To obtain
efficient code, we have to take care of the conditionals contained in the new
access functions L[ρ(. . .)]. In general, ρ is a case distinction on several condi-
tions c1, . . . , cq. To avoid evaluating the conditions at every access, we split the
iteration domain D of the statement by the conditions, i.e., we replace D by
Di := {x |x ∈ D, ci(x)}. This increases the number of iteration domains, but in
each Di no conditional has to evaluated in the access function.

At present, we have an implemented prototype of the localisation based on
access instances. We have used this prototype to compute the examples presented
in Section 5; the examples for the localisation based on dependences have been
derived by hand from the localisation based on access instances.

5 Examples

Let us now present some examples demonstrating the effectiveness of our trans-
formation. In order not to bother the reader with long, complicated code re-
sulting from the transformation, we show shortened versions of the code which

246 A. Größlinger

illustrate the transformation but may be less efficient w.r.t. control flow than
the codes used in the benchmarks.

The parallel benchmarks have been performed on an NVIDIA graphics card
with a GTX9800 GPU, a 1944 MHz shader clock and a 1150 MHz memory clock.
The programming environment is NVIDIA’s CUDA technology [1]. The graph-
ics card consists of 16 streaming multi-processors. Each multi-processor executes
one instruction of 32 threads in 4 clock cycles provided that all 32 threads (called
a warp) take the same execution path. When the threads of a warp diverge, i.e.,
take different execution paths, their execution is sequential. A multiprocessor
has 16 KB of local memory which can be accessed within one clock cycle simul-
taneously by the threads of a warp provided that some alignment restrictions
are obeyed. Access to main memory is much slower, but the thread scheduler
in a multiprocessor tries to hide memory latency by overlapping computation
and memory access. Therefore, the higher latency of the main memory can be
hidden partly if enough threads are available. Our experiments use only one mul-
tiprocessor at a time since there is no way to share scratchpad memory between
multiprocessors.

Example 1 (1d-SOR). As an example of a scientific code, let us look at one-
dimensional successive over-relaxation (1d-SOR). The code of a sequential im-
plementation is given in Figure 4(a). 1d-SOR scans the elements of an array A
repeatedly and replaces every element A[i] by the average of its two neighbours.
A parallel version of the code is shown in Figure 5(a). Notice the synchronous
parallelism expressed by the parallel loop on p inside the sequential loop on t.
Before we apply our techniques to the parallel code, we briefly note that the
sequential code can be improved slightly using the localisation transformation.
We also use this example to compare the localisation based on access instances
and on dependences.

Localisation based on access instances. Considering the loop on i in the
sequential code as the time loop, we obtain C(i) = {i− 1, i, i+ 1}, i.e., at time i
the accessed elements are A[i−1], A[i], and A[i+1]. This yields ρ(x, i) = x−i+1,
i.e., A[i− 1] is mapped to L[0], A[i] to L[1], and A[i + 1] to L[2]. Since the drift
δ(x, i) = ρ(x, i + 1)− ρ(x, i) is constantly −1, we obtain the simple transformed
code shown in Figure 4(b). Since the indices into L are fixed at 0, 1, 2, the array
L can be replaced by three local variables for the array elements.

Localisation based on dependences. Localisation based on dependences
takes into account which elements are reused, i.e., which are read again after

Table 1. 1d-SOR: benchmark for sequential codes for n = 106 on AMD Opteron
2.2 GHz with GCC 4.2, runtimes in milliseconds

m = 128 256 384 512

original 1095 2168 3111 4139

localised 723 1595 2150 2865

speed-up 1.52 1.36 1.45 1.44

Precise Management of Scratchpad Memories 247

Table 2. 1d-SOR: benchmark for parallel codes, n = 106 on GPU, number of threads
equal to m, runtimes in milliseconds. “X” means code could not be executed due to
too many divergent threads.

m = 1 32 64 128 192 256 320 384 448 512

parallel code 381 511 709 1089 1456 1759 2135 2416 2807 3082

intra-thread localised – 433 545 758 964 1125 1322 1515 1766 2019

inter-thread localised – 529 525 539 587 652 684 784 856 1002

fully localised with moves – 509 504 518 559 611 647 735 800 X

fully localised with modulo addr. – 577 498 534 621 710 789 905 X X

having been read or written. In this example, this reveals that the write to A[i] is
local, since it is reused at the next time step, and global, since it is not overwritten
later. A[i−1] is in the local read set for i ≥ 2. It is in the global read set for i = 1
since no input dependence to A[i − 1] for i = 1 exists. Since there is no relevant
input dependence, the global-local read set Rgl is empty. The code obtained (we
again exploit the fact that the indices into L turn out to be constants) is shown
in Figure 4(c). A polyhedral code generator can unroll the first iteration of the
loop on i to avoid the conditionals i = 1 and i ≥ 2; additionally, traditional
compiler data flow analysis reveals that l0 and l1 can be stored in the same
memory cell l (likely a register), thereby saving the reorganisation. The resulting
code is shown in Figure 4(d). Running the sequential code and the transformed
code on an AMD Opteron machine yields the runtimes shown in Table 1. The

for (k=1; k<=m; k++)

for (i=1; i<=n-1; i++)

A[i] = (A[i-1]+A[i+1])*0.5;

(a) original code

for (k=1; k<=m; k++) {
l0 = A[0]; // move in

for (i=1; i<=n-1; i++) {
l2 = A[i+1]; // move in

l1 = (l0 + l2) * 0.5;

A[i-1] = l0; // move out

l0 = l1; // reorganise

}
A[n-1]=l0; A[n]=l1; // move out

}
(b) access-based localisation

for (k=1; k<=m; k++) {
for (i=1; i<=n-1; i++) {
(i==1 ? l0:l1) = A[i] =

((i==1 ? A[i-1] : l0)

+ A[i+1]) * 0.5;

if (i >= 2) l0 = l1;

}
}
(c) dependence-based localisation

for (k=1; k<=m; k++) {
l = (A[0]+A[2])*0.5;

for (i=2; i<=n-1; i++)

l = A[i] = (l+A[i+1])*0.5;

}
(d) dependence-based localisation with
loop optimisations

Fig. 4. One-dimensional successive over-relaxation: sequential codes

248 A. Größlinger

for (t=0; t<=n+2*m-4; t++) {
parfor (p=max(0,(t-n+3)/2); p<=min(m-1,t/2); p++) {
int i = t+1-2*p;

A[i] = (A[i-1] + A[i+1]) * 0.5;

}
}

(a) parallel code

(b) iteration domain for m = 4, n = 16

Fig. 5. One-dimensional successive over-relaxation: parallel version

transformed code runs faster because localisation and traditional optimisation
techniques together save one of the three accesses to array A.

The parallel code is shown in Figure 5(a) and depicted in Figure 5(b). Note
that the number of parallel threads that can be used equals the parameter m.
We can localise twice. First, we can do localisation for each thread of the inner
parallel loop w.r.t. the loop on t, i.e., exploit the intra-thread reuse of data
(similar to the localisation of the sequential code). We find by the dependence-
based localisation that the value written by A[i] in iteration t is read again by
A[i − 1] in the iteration t + 1 in the same thread.

The second localisation is again w.r.t the loop on t for all threads, i.e., to
exploit inter-thread data reuse, too. With all m threads active, 2m+1 array
elements are accessed in one iteration of the t loop and there is an overlap of
2m−1 elements to the next iteration. The code resulting from this transformation
with about 60 lines of code is not shown for lack of space. Table 2 shows the
runtimes of the unlocalised and the localised codes. As can be seen, the fully
localised code (both localisations applied) performs best with speedups up to 3.5;
explicit data moves in the reorganisation phase outperform modulo addressing.
On a GPU with slower main memory (NVIDIA Quadro NVS 135m, 800 MHz
shader clock, 600 MHz memory clock), we observed speedups up to 4.7.

Example 2 (2d-Gauss-Seidel). Let us now consider a two-dimensional Gauss-
Seidel algorithm with row-wise alternating even-odd updates on an (n+1)2 matrix

Table 3. 2d-Gauss-Seidel: runtimes in seconds for m = 1000, n = 2p + 1 on GPU

p = 64 128 192 256 320 384

parallel code 0.29 0.99 2.10 3.54 5.42 8.03

fully localised parallel code with moves 0.30 0.74 1.42 2.18 3.10 4.21

speedup 0.99 1.35 1.48 1.62 1.75 1.91

Precise Management of Scratchpad Memories 249

with m iterations and p parallel threads. The localisation based on dependences
is performed with a localisation window encompassing both the updates to even
and odd elements of a row. The localised part of the matrix consists of two
successive rows progressing row by row with the computation. The comparison
of the runtimes of the original and localised codes is shown in Table 3.

6 Conclusions

By way of precise data dependence information we are able to compute pre-
cisely which data items to copy to fast memory (e.g., scratchpad memory) to
exploit temporal locality. We determine exactly when to copy a value to fast
memory, when to copy an updated value back to main memory and when to
relocate a value in fast memory. Our technique is applicable to all codes which
can be modelled in the polyhedron model, i.e., loop programs with bounds and
array index expressions linear in the variables and structure parameters. Since
the data held in fast storage is stored in a compact fashion without holes, the
access functions can be complex (piecewise conditional quasi-polynomials), but
our experiments suggest that, by using advanced code generation techniques,
the overhead can be eliminated by partitioning the iteration domains according
to the conditions in the new access functions. In our experiments on a GPU,
we observed accelerations of factors up to 3.5 compared to parallel code which
uses main memory only. If no dependence information is available, a simpler
transformation based on access instances which may move more elements to fast
storage than necessary can be applied.

References

1. NVIDIA CUDA. http://www.nvidia.com/cuda
2. Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev,

A., Sadayappan, P.: Automatic data movement and computation mapping for
multi-level parallel architectures with explicitly managed memories. In: PPoPP
2008: Proc. of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 1–10. ACM Press, New York (2008)

3. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 2004: Proc. of the 13th Int. Conf. on Parallel Architectures and Compilation
Techniques, Washington, DC, USA, pp. 7–16. IEEE Computer Society Press, Los
Alamitos (2004)

4. Bastoul, C., Feautrier, P.: Improving data locality by chunking. In: Hedin, G. (ed.)
CC 2003. LNCS, vol. 2622, pp. 320–335. Springer, Heidelberg (2003)

5. Bondhugula, U., Baskaran, M.M., Krishnamoorthy, S., Ramanujam, J., Rountev,
A., Sadayappan, P.: Automatic transformations for communication-minimized par-
allelization and locality optimization in the polyhedral model. In: Hendren, L. (ed.)
CC 2008. LNCS, vol. 4959, pp. 132–146. Springer, Heidelberg (2008)

6. Chen, G., Kandemir, M.: Compiler-directed code restructuring for improving
performance of MPSoCs. IEEE Transactions on Parallel and Distributed Sys-
tems 19(9), 1201–1214 (2008)

http://www.nvidia.com/cuda

250 A. Größlinger

7. Clauss, P., Meister, B.: Automatic memory layout transformations to optimize spa-
tial locality in parameterized loop nests. In: 4th Annual Workshop on Interaction
between Compilers and Computer Architectures, INTERACT-4, Toulouse, France
(January 2000)

8. Issenin, I., Brockmeyer, E., Miranda, M., Dutt, N.: Data reuse analysis technique
for software-controlled memory hierarchies. In: DATE 2004: Proc. of the Conf.
on Design, Automation and Test in Europe, Washington, DC, USA, pp. 202–207.
IEEE Computer Society Press, Los Alamitos (2004)

9. Kandemir, M., Choudhary, A.: Compiler-directed scratch pad memory hierarchy
design and management. In: DAC 2002: Proc. of the 39th Conf. on Design Au-
tomation, pp. 628–633. ACM Press, New York (2002)

10. Kandemir, M., Ramanujam, J., Choudhary, A.: A compiler algorithm for optimiz-
ing locality in loop nests. In: Proc. of the 11th Int. Conf. on Supercomputing (ICS),
July 1997, pp. 269–276 (1997)

11. Kandemir, M., Ramanujam, J., Irwin, J., Vijaykrishnan, N., Kadayif, I., Parikh,
A.: Dynamic management of scratch-pad memory space. In: DAC 2001: Proc. of
the 38th Conf. on Design Automation, pp. 690–695. ACM, New York (2001)

12. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for
uniform recurrence equations. Journal of the ACM 14(3), 563–590 (1967)

13. Lamport, L.: The parallel execution of DO loops. Communications of the
ACM 17(2), 83–93 (1974)

14. Lengauer, C.: Loop parallelization in the polytope model. In: Best, E. (ed.) CON-
CUR 1993. LNCS, vol. 715, pp. 398–416. Springer, Heidelberg (1993)

15. Loechner, V., Meister, B., Clauss, P.: Precise data locality optimization of nested
loops. J. Supercomput. 21(1), 37–76 (2002)

16. Panda, P.R., Dutt, N.D., Nicolau, A.: Efficient utilization of scratch-pad memory
in embedded processor applications. In: EDTC 1997: Proc. of the 1997 European
Conf. on Design and Test, Washington, DC, USA, p. 7. IEEE Computer Society
Press, Los Alamitos (1997)

17. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Analytical
computation of ehrhart polynomials: Enabling more compiler analyses and opti-
mizations. In: Irwin, M.J., Zhao, W., Lavagno, L., Mahlke, S. (eds.) Proc. of the
2004 Int. Conf. on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES), Washington DC, USA, pp. 248–258. ACM Press, New York (2004)

18. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting
integer points in parametric polytopes using Barvinok’s rational functions. Algo-
rithmica 48(1), 37–66 (2007)

19. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: PLDI 1991: Proc.
of the ACM SIGPLAN 1991 Conf. on Programming Language Design and Imple-
mentation, pp. 30–44. ACM Press, New York (1991)

	Precise Management of Scratchpad Memories for Localising Array Accesses in Scientific Codes
	Introduction
	Related Work
	Prerequisites
	The Polyhedron Model
	Z-Polyhedra

	Locality Transformation
	The New Location of Array Elements
	Localisation Based on Access Instances
	Localisation Based on Dependences
	Ordering the Reorganisation
	Code Generation Considerations

	Examples
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

