SSA Elimination after Register Allocation

Fernando Magno Quintao Pereira and Jens Palsberg

UCLA
University of California, Los Angeles

Abstract. Compilers such as gcc use static-single-assignment (SSA)
form as an intermediate representation and usually perform SSA elim-
ination before register allocation. But the order could as well be the
opposite: the recent approach of SSA-based register allocation performs
SSA elimination after register allocation. SSA elimination before regis-
ter allocation is straightforward and standard, while previously described
approaches to SSA elimination after register allocation have shortcom-
ings; in particular, they have problems with implementing copies be-
tween memory locations. We present spill-free SSA elimination, a simple
and efficient algorithm for SSA elimination after register allocation that
avoids increasing the number of spilled variables. We also present three
optimizations of the core algorithm. Our experiments show that spill-
free SSA elimination takes less than five percent of the total compilation
time of a JIT compiler. Our optimizations reduce the number of memory
accesses by more than 9% and improve the program execution time by
more than 1.8%.

1 Introduction

Register allocation is the process of mapping a program that uses an unbounded
number of wvariables to a program that uses a fixed number of registers, such
that variables with overlapping live ranges are assigned different registers. If
registers cannot accommodate all the variables that are live at some point in
the program, some of these variables must be spilled, that is, stored in memory.
Register allocation is one of the most important compiler optimizations and can
improve the speed of compiled code by more than 250% [17].

Static Single Assignment (SSA) form is an intermediate representation that
defines each variable at most once [9124] and in which @-functions express re-
naming of variables. ¢-functions are normally not present in the instruction
sets of actual computer architectures. Thus, compilers that use SSA form must
eventually do SSA elimination, replacing each @-function with copy and swap
instructions [2I5I8TOTY]. Many industrial compilers use the SSA form as an
intermediate representation, including gcc 4.0 [II], Sun’s HotSpot JVM [29],
IBM’s Java Jikes RVM [30], and LLVM [I5], and they all perform SSA elimi-
nation before register allocation. But the order could as well be the opposite:
the recent approach of SSA-based register allocation [B[TIT2|T3I2T] performs SSA
elimination after register allocation. SSA-based register allocation has three main

0. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 1584173} 2009.
© Springer-Verlag Berlin Heidelberg 2009

SSA Elimination after Register Allocation 159

advantages: (1) the problem of finding the minimum number of registers that are
needed for a program in SSA form has a polynomial-time solution, (2) a program
in SSA form requires at most as many registers as the source program, and (3)
register allocation can proceed in two separate phases, namely first spilling and
then register assignment. The two-phase approach works because the number
of registers needed for a program in SSA-form is equal to the maximum of the
number of registers needed at any given program point. Thus, spilling reduces
to the problem of ensuring that for each program point, the needed number of
registers is no more than the total number of registers. The register assignment
phase can then proceed without additional spills. The next figure illustrates the
phases of SSA-based register allocation:

Register Colored

SSA
SSA-form Spilling E_gz%iﬂc Assignment SSA-form Elimination [Executable
program | | program
program program

SSA elimination before register allocation is easier than after register alloca-
tion. The reason is that after register allocation, when some variables have been
spilled to memory, SSA elimination may need to copy data from one memory
location to another. The need for such copies is a problem for many computer
architectures, including x86, that do not provide memory-to-memory copy or
swap instructions. The problem is that at the point where it is necessary to
transfer data from one memory location to another, all the registers may be in
use! In this case, no register is available as a temporary location for performing
a two-instruction sequence of a load followed by a store.

One solution to the memory-transfer problem would be to permanently re-
serve a register to implement memory-to-memory copies. We have evaluated that
solution by reducing the number of available x86 integer registers from seven to
six, and we observed an increase of 5.2% in the lines of spill code (load and store
instructions) that LLVM [I5] inserts in SPEC CPU 2000. Another solution would
be to force the register allocator to assign the same register to all the variables
that are part of a p-function. In this case, each ¢-function would be trivially im-
plemented as a no-op; however, this form of aggressive coalescing might lead to
sub-optimal registers assignments. For instance, Pereira and Palsberg [19] Fig.3]
showed an example program where aggressive coalescing produces a minimal
allocation with three registers, whereas the variables of the same program in
SSA-form can be allocated in two registers.

Brisk [6l Ch.13] has presented a flexible solution that spills a variable on de-
mand during SSA elimination, uses the newly vacant register to implement mem-
ory transfers, and later reloads the spilled variable when a register is available.
We are unaware of any implementation of Brisk’s approach, but have gauged its
potential quality by counting the minimal number of basic blocks where spilling
would have to happen during SSA elimination in LLVM, independent on the as-
signment of physical locations to variables. We found that for SPEC CPU 2000,
memory-to-memory transfers are required for all benchmarks except 181.mcf -
the smallest program in the set. We also found that the lines of spill code must

160 F.M.Q. Pereira and J. Palsberg

increase by at least 0.2% for SPEC CPU 2000, and we speculate that an im-
plementation of Brisk’s algorithm would reveal a substantially higher number.
However, in our view, the main problem with Brisk’s approach is that its second
spilling phase - during SSA-elimination - substantially complicates the design of
a register allocator.

Our goal is to do better. We will present spill-free SSA elimination, a simple
and efficient algorithm for SSA elimination after register allocation. Spill-free
SSA elimination never needs an extra register, entirely eliminates the need for
memory-to-memory transfers, and avoids increasing the number of spilled vari-
ables. The next figure summarizes the three approaches to SSA elimination.

Accommodates optimal Avoids spilling
register assignment during SSA elimination
Spare register No Yes
On-demand spilling [6] Yes No
Spill-free SSA elimination Yes Yes

The starting point for our approach to SSA-based register allocation is Con-
ventional SSA (CSSA)-form [28] rather than the SSA form from the original
paper [9] (and text books [2]). CSSA form ensures that variables in the same
p-function do not interfere. We show how CSSA-form simplifies the task of re-
placing ¢-functions with copy or swap instructions. As explained by Sreedhar et
al. |28, p.196], and Briggs et al. [5, p.873], the original algorithm that converts
a program into SSA form [J] already guarantees the CSSA property; however,
compiler optimizations such as copy folding might produce interferences between
variables related by o-functions and thereby lose the CSSA property. Thus, our
approach to SSA elimination requires us to convert the source program back into
CSSA form before register allocation starts.

In this paper we make two assumptions. First, we assume that the CSSA-form
program contains no critical edges. A critical edge is a control-flow edge from
a basic block with multiple successors to a basic block with multiple predeces-
sors. Algorithms for removing critical edges are standard [2]. Second, we assume
that the target architecture provides us with a way to swap the contents of two
registers. If swaps are not provided, then the problem of finding the minimal
number of registers required by a program is NP-complete [4J20]. For integer
registers, architectures such as x86 provide a swap instruction, while on other
architectures one can implement a swap with a sequence of three xor instruc-
tions. In contrast, for floating point registers, most architectures provide neither
direct swap instructions nor xor instructions, so instead compiler writers have
to use one of the other approaches to SSA-elimination, e.g: separate a temporary
register or perform spilling on demand.

We will present both a core algorithm for spill-free SSA elimination as well as
three optimizations. We have implemented our SSA elimination framework in a
puzzle-based register allocator [2I]. Our experiments show that our approach to
SSA elimination, including the conversion of source program into CSSA-form,
takes less than five percent of the total compilation time of a JIT compiler.

SSA Elimination after Register Allocation 161

Our optimizations reduce the number of memory accesses by more than 9% and
improve the program execution time by more than 1.8%. Our SSA elimination
framework works for any SSA-based register allocator such as [I3], and it can
also be used to insert the fixing code required by register allocators that follow
the bin-packing model [T42T126/3T].

We will state three theorems with either just a proof sketch or no proof at all;
the proofs can be found in Pereira’s Ph.D. dissertation [I8, Ch.5].

2 Example

We now present an example that assumes a target architecture with a single
register r. Figure[a) shows a program in SSA form that contains six variables:
a,ai,as,b,b; and by. We use an abstract notation to represent instructions. For
instance, the assignment as = b does not represent a move instruction, but just
an instruction that defines variable as and uses variable b. In the same way,
by = e is an instruction that defines by, and e = @ is an instruction that uses a.
Figure[I[(b) shows the program after spilling and register assignment. A pair such
as (b,r) indicates that variable b has been allocated to register r. Our example
uses the disjoint memory addresses m, ms and m; as locations for the spilled
variables. Figure[Il(c) shows the program after SSA elimination with on-demand
spilling. Notice that in Figure [[l(c), a ¢-function has been replaced with four
instructions that implement a copy from mso to m. The address my is used to
temporarily hold the contents of r, while this register is used in the memory-
to-memory transfer. The need for that copy happens at a program point where
the only register 7 is occupied by b2. So we must first spill 7 to my, then we can
copy from mso to m via the register r, and finally we can load m; back into 7.

Now we go on to illustrate that spill-free SSA elimination can do better.
Figure [[d) shows the same program as in Figure [[[a), but this time in CSSA
form, Figure [[l(e) shows the program after spilling and register assignment, and
Figure [Ii(f) shows the program after spill-free SSA elimination. Notice that in
Figure [[(d), top right corner, CSSA makes a difference by requiring the extra
instruction that copies from as to asz. This instruction splits the live range of
a2, what is necessary because variables a and ag interfere. We now do register
allocation and assign each of a, a;, and as to the same memory location m
because those variables do not interfere. In Figure [[l(e), top right corner, the
value of as arrives in memory location ms, and is then copied to memory location
m via the register r. The point of the copy is to let both elements of the first row
of the p-matrix be represented in m, just like both elements of the second row
of the p-matrix are represented in r. We finally arrive at Figure [[[(f) without
any further spills.

3 CSSA Form and Spartan Parallel Copies

We now show that for programs in CSSA-form, the problem of replacing each
p-function with copy and swap instructions is significantly simpler than for

162 F.M.Q. Pereira and J. Palsberg

17

m=r

(dl m) (a,,m)

Fig.1. Top: SSA-based register allocation and SSA elimination with on-demand
spilling. Bottom: SSA-based register allocation and spill-free SSA elimination.

programs in SSA-form (Theorem [I]). Along the way, we will define all the con-
cepts and notations that we use.

SSA form uses ¢-functions to express renaming of variables. We will describe
the syntax and semantics of ¢-functions using the matrix notation introduced
by Hack et al. [I3]. Figure [l contains examples of p-matrices. An assignment
such as V = @M, where V is a vector of length n, and M is an n x m matrix,
represents n p-functions and m parallel copies [I6I27)32]. Each column in the
(p-matrix corresponds to an incoming control-flow edge. A ¢-function works as
a multiplexer: it assigns to each element v; of V' an element v;; of M, where j is
determined by the actual control-flow edge taken during the program’s execution.
The parameters of a p-function are evaluated simultaneously at the beginning of
the basic block where the @-function is defined [I]. For instance, the p-matrix in

SSA Elimination after Register Allocation 163

Figure[Il (a) represents the parallel copies (a,b) := (a1, b1) and (a,bd) := (az, ba).
The first parallel copy is executed if control reaches L3 from L1, while the second
is executed if control reaches L3z from L.

Conventional Static Single Assignment (CSSA) form was first described by
Sreedhar et al. [28] who used CSSA form to facilitate register coalescing. In order
to define CSSA form, we first define an equivalence relation = over the set of
variables used in a program. We define = to be the smallest equivalence relation
such that for every set of ¢-functions V' = @M, where V is a vector of length n
with entries v;, and M is an n x m matrix with entries v;;, we have

foreachi€1l.n:v;, = v, = V2 = ... = Vy-
Sreedhar et al. use p-congruence classes to denote the equivalence classes of =.

Definition 1. A program is in CSSA form if and only if for every pair of vari-
ables vy, v, we have that if v1 = ve, then v1 and vy do not interfere.

Budimlic et al. [§] presented a fast algorithm for converting an SSA-form program
to CSSA-form. A register allocator for a CSSA-form program can assign the same
location to all the variables v;, v, ..., Vim, for each i € 1..n, because none of
those variables interfere. We say that register allocation is frugal if it uses at
most one memory location together with any number of registers as locations
for v;, vi1,...,Vim, for each i € 1..n.

The problem of doing SSA-elimination consists of implementing one parallel
copy for each column in each p-matrix. We can implement each parallel copy
independently of the others. We will use the notation

(lla"'uln) :(/lvvl;z)

for a single parallel copy, in which ;,1,i € 1..n, range over RU M, where R =
{r1,7a,...,11} is a set of registers, and M = {mj,ma,...} is a set of memory
locations. We say that a parallel copy is well defined if all the locations on its left
side are pairwise distinct. We will use p to denote a store that maps elements of
RU M to values. If p is a store in which 1}, ..., are defined, then the meaning
of a parallel copy (I1,...,1,) = (1,...,10) is p[ls — p(l)), ... ln — p(I})].

We say that a well-defined parallel copy (I, ...,0,) = (Ii,...,1,) is spartan if

1. for all I/, 17, if I, = I}, then a = b; and,
2. for all l,, 1} such that [, and [j are memory locations, we have [, = [if and
only if a = b.

Informally, condition (1) says that the locations on the right-hand side are pair-
wise distinct, and condition (2) says that a memory location appears on both
sides of a parallel copy if and only if it appears at the same index.

Theorem 1. After frugal register allocation, the p-functions used in a program
in CSSA-form can be implemented using spartan parallel copies.

164 F.M.Q. Pereira and J. Palsberg

Pomatri First Second Third
-matrix Column Column Column
1 L, 1, 1 1 1
1 2 3 4
1 1 2 1], «—I

12 13 13 11 ' \ \1 / i \

o t ot 5 Vot
1 b 1, 1 ™
’ 2o 1, v13 L— L,—>1,
1, L oL

Fig. 2. A p-matrix and its representation as three location transfer graphs

4 From Windmills to Cycles and Paths

We now show that a spartan parallel copy can be represented using a particularly
simple form of graph that we call a spartan graph (Theorem [2]).
We will represent each parallel copy by a location transfer graph.

Definition 2. Location Transfer Graph. Given a well-defined parallel copy
(I1,. .oy ln) = (0, .. 1), the corresponding location transfer graph G = (V, E)
is a directed graph where V.= {l1, ..., 1, l,..., 1}, and E = {(l/,,1s) | a € 1..n}.

Figure 2] contains a p-matrix and its representation as three location transfer
graphs. The location transfer graphs that represent well-defined parallel copies
form a family of graphs known as windmills [23]. This name is due to the shape
of the graphs: each connected component has a central cycle from which sprout
trees, like the blades of a windmill.

The location transfer graphs that represent spartan parallel copies form a
family of graphs that is significantly smaller than windmills. We say that a
location transfer graph G is spartan if

— the connected components of G are cycles and paths;

— if a connected component of G is a cycle, then either all its nodes are in R,
or it is a self loop (m,m);

— if a connected component of G is a path, then only its first and/or last nodes
can be in M; and

— if (m1,m2) is an edge in G, then m; = ma.

Notice that the first and second graphs in Figure [2 are not spartan because
they contain nodes with out-degree 2. In contrast, the third graph in Figure[2is
spartan as long as l1, 1,13, 14 are registers because the graph is a cycle.

Theorem 2. A spartan parallel copy has a spartan location transfer graph.
Proof. Tt is straightforward to prove the following properties:

1. the in-degree of any node is at most 1;
2. the out-degree of any node is at most 1; and
3. if a node is a memory location m then:

SSA Elimination after Register Allocation 165

(a) the sum of its out-degree and in-degree is at most 1, or
(b) G contains an edge (m,m).

The result is immediate from (1)—(3). O

5 SSA Elimination

Our goal is to implement spartan parallel copies in the language Seq that con-
tains just four types of instructions: register-to-register moves r; := ro, loads
r := m, stores m := r, and register swaps r; @ ro. Notice that Seq does not
contain instructions to swap or copy the contents of memory locations in one
step. We use ¢ to range over instructions. A Seq program is a sequence I of
instructions that modify a store p according to the following rules:

(t,p) = ¢/
(i:1,p) = (I, p')
(li :=1l2,p) = pllh — p(l2)]
(r1 @72, p) = plr1 < p(r2),r2 — p(r1)]
The problem of implementing a parallel copy can now be stated as follows.

IMPLEMENTATION OF A SPARTAN PARALLEL COPY
Instance: a spartan parallel copy (I1,...,0,) = (1,...,1).
Problem: find a Seq program I such that for all stores p,

(I,p) =" plli = p(1y), .- Ln — p(13)].

Our algorithm ImplementSpartan uses a subroutine ImplementCompo-
nent that works on each connected component of a spartan location transfer
graph and is entirely standard.

Algorithm 1. ImplementComponent: Input: G, Output: program [
Require: G is a cycle or a path
Ensure: [is a Seq program.

1: if Gis a path (l1,72),..., (Th=2,7n-1), (rn—1,l») then
20 I =(lp :=7rpn_1;Tn-1:=Tn-2;...;72:=11)

3: else if G is a cycle (r1,72),..., (Th=1,7n), (Tn,r1) then
4: I=(rn®rn-1;7n-1Prn_2;...;72D7T1)

5: end if

Theorem 3. For a spartan location transfer graph G, ImplementSpartan(G)
is a correct implementation of G.

Once we have implemented each spartan parallel copy, all that remains to com-
plete spill-free SSA elimination is to replace the p-functions with the generated
code. As illustrated in Figure [l the generated code for a parallel copy must be
inserted at the end of the basic block that leads to the parallel copy.

166 F.M.Q. Pereira and J. Palsberg

Algorithm 2. ImplementSpartan: Input: G, Output: program I
Require: G is a spartan location transfer graph.
Require: G has connected components Ci, ..., Cp.
Ensure: [is a Seq program.
1: I = ImplementComponent(C1);...; ImplementComponent(Cy,);

6 Optimizations

We will present three optimizations of the ImplementSpartan algorithm. Each
optimization (1) has little impact on compilation time, (2) has a significant
positive impact on the quality of the generated code, (3) can be implemented
as constant-time checks, and (4) must be accompanied by a small change to the
register allocator.

6.1 Store Hoisting

Each variable name is defined only once in an SSA-form program; therefore, the
register allocator needs to insert only one store instruction per spilled variable.
However, algorithm ImplementSpartan inserts a store instruction for each
edge (r,m) in the location transfer graph. We can change ImplementCompo-
nent to avoid inserting store instructions:

1: if Gis apath (I1,72),...,(rn—2,7n-1), (rn—1,m) then

20 I=(rp_1:=rp_9;...;r2:=1)
3:
4: end if

For this to work, we must change the register allocator to insert a store in-
struction after the definition point of each spilled variable. On the average, store
hoisting removes 12% of the store instructions in SPEC CPU 2000.

6.2 Load Lowering

Load lowering is the dual of store hoisting: it reduces the number of load and copy
instructions inserted by the ImplementSpartan Algorithm. There are situa-
tions when it is advantageous to reload a variable right before it is used, instead
of during the elimination of ¢-functions. Load lowering is particularly useful in
algorithms that follow the bin-packing model [T4I21I2613T]. These allocators al-
low variables to reside in different registers at different program points, but they
require some fixing code at the basic block boundaries. The insertion of fixing
code obeys the same principles that rule the implementation of ¢-functions in
SSA-based register allocators. In Figure [3] we simulate the different locations of
variable v by inserting mock y-functions at the beginning of basic blocks Ly and
L7, as pointed in Figure B (b). The fixing code will be naturally inserted when
these ¢-functions are eliminated. The load lowering optimization would replace
the instructions used to implement the ¢-functions, shown in Figure 3] (c), with
a single load before the use of v at basic block Ly, as outlined in Figure B (d).

SSA Elimination after Register Allocation 167

L Allocate v
. |intor,

Spill v due to high
register pressure

visin
mem. along
dashed path

Move v into
r, to avoid

spilling L
6
L, L1 |

Fig. 3. (a) Example program (b) Program augmented with mock o-functions. (c) SSA
elimination without load-lowering. (d) Load-lowering in action.

Variables can be lowered according to the nesting depth of basic blocks in
loops, or the static number of instructions that could be saved. The SSA elimi-
nation algorithm must remember, for each node [in the location transfer graph,
which variable is allocated into [. During register allocation we mark all the
variables v that would benefit from lowering, and we avoid inserting loads for
locations that have been allocated to v. Instead, the register allocator must in-
sert reloads before each use of v. These reloads may produce redundant memory
transfers, which are eliminated by the memory coalescing pass described in Sec-
tion[6.3] The updated elimination algorithm is outlined below:

1: if G is a path (m,72),...,(rn-2,70-1), ("n-1,1,) then
2: if m is holding a variable marked to be lowered then

3: I=(lp:="n_1;Tn—1:="Tn_2;...;T3 :=12)

4: else

5: I=(lp:=7Tn1;Tn—1:="Tn_2;...;T3 1= T2;T2 := M)
6: end if

7

8: end if

6.3 Memory Coalescing

A memory transfer is a sequence of instructions that copies a value from a
memory location mj to another memory location msy. The transfer is redundant
if these locations are the same. The CSSA-form allows us to coalesce a common
occurrence of redundant memory transfers. Consider, for instance, the code that
the compiler would have to produce in case variables v and v, in the figure
below, are spilled. In order to send the value of vo to memory, the value of v
would have to be loaded into a spare register r, and then the contents of r would
have to be stored, as illustrated in figure (b). However, v and v, are mapped to

168 F.M.Q. Pereira and J. Palsberg

the same memory location because they are ¢-related. The store instruction can
always be eliminated, as in figure (c). Furthermore, if the variable that is the
target of the copy - v in our example - is dead past the store instruction, then
the whole memory transfer can be completely eliminated, as we show in figure
(d) below. Notice that (d) is not a simple case of dead-code elimination, as the
pair (ve,m) might not be dead, e.g, variable v might be reloaded from m at
some future program point. However, the compiler can safely eliminate this store
because the value of v, which equals the value of vy, has already been stored in
m by a frugal register allocator.

M =¢ |V, [(Vﬂlﬂ =¢ I (v,m) [(V,Hl)} =¢:~~ (Vz‘rnl; [(V,Hl)} =¢E (Vzvmﬂ

b) 1: (v,r) = (v,m) B ©) 1: (vyr) = (v,m) (d) Ifv, is dead after

V. =V 2: (vz,r) = (v,r) store, the memory
transfer can be

3: (vm) = (v,,1) o = (v,1) safely removed

—
©
=

7 Experimental Results

The data presented in this section uses the SSA-based register allocator described
by Pereira and Palsberg [21], which has the following characteristics:

— the register assignment phase occurs before the SSA-elimination phase;

— registers are assigned to variables in the order in which they are defined,
as determined by a pre-order traversal of the dominator tree of the source
program;

— variables related by move instructions are assigned the same register if they
belong into the same @-equivalence class whenever possible;

— two spilled variables are assigned the same memory address whenever they
belong into the same @-equivalence class;

— the allocator follows the bin-packing model, so it can change the register
assigned to a variable to avoid spilling. Thus, the same variable may reach a
join point in different locations. This situation is implemented via the mock
p-functions discussed in Section

— SSA-elimination is performed by the Algorithm ImplementSpartan aug-
mented with code to handle register aliasing, plus load-lowering, store hoist-
ing, and elimination of redundant memory transfers.

Our register allocator is implemented in the LLVM compiler framework [15],
version 1.9. LLVM is the JIT compiler used in the openGL stack of Mac OS 10.5.
Our tests are executed on a 32-bit x86 Intel(R) Xeon(TM), with a 3.06GHz cpu
clock, 4GB of memory and 512KB L1 cache running Red Hat Linux 3.3.3-7. Our
benchmarks are the C programs from SPEC CPU 2000.

Impact of our SSA Elimination Method Figure Ml summarizes static data
obtained from the compilation of SPEC CPU 2000; we have ordered the bench-
marks by size. Our SSA Elimination algorithm had to implement 197,568 loca-
tion transfer graphs when compiling this benchmark suite. These LTGs contain

SSA Elimination after Register Allocation 169

gcc pbk gap msa vtx twf cfg vpr amp prs gzp bz2 art eqk mcf
#ltg 72.6 403 22.1 156 158 68 7.7 45 40 52 .9 .73 .36 .27 .44
Y%sp 3.3 5.0 98 23 93 65 149 135 7.9 6.5 10.922.7 9.2 20.8 25.6
#edg 586.2 256.3 150.8 96.9 121.5 58.0 124.2 101.7 29.6 35.5 11.1 14.3 2.7 5.8 6.1
%mt 56.4 41.7 43.5 50.6 47.1 57.3 66.8 75.4 37.4 42.8 63.6 71.8 46.0 72.0 57.7

Fig. 4. #ltg: number of location transfer graphs (in thousands), %sp: percentage of
LTG’s that are potential spills, #edg: number of edges in all the LTG’s (in thousands),
%mt: percentage of the edges that are memory transfers

1,601,110 edges, out of which 855,414, or 53% are memory transfers. Due to the
properties of spartan location transfer graphs, edges representing memory trans-
fers are always loops, that is, an edge from a node m pointing to itself. Because
our memory transfer edges have source and target pointing to the same address,
the SSA Elimination algorithm does not have to insert any instruction to im-
plement them. Potential spills could have happened in 11,802 location transfer
graphs, or 6% of the total number of graphs, implying that, if we had used a
spilling on demand approach instead of our SSA elimination framework, a second
spilling phase would be necessary in all the benchmark programs. We mark as
potential spills the location transfer graphs that contain memory transfers, and
in which the register pressure is maximum, that is, all the physical registers are
used in the right side of the parallel copy.

B Phi-lifting []Remove crit. edges [l Phi-coalescing [] SSA-Elimination

«d DEEEEEE

40%

20%

gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art egk mcf Avg

B Phi-lifting + Phi-coalescing + SSA-elimination + Remove crit. edges
] Register allocation pass [] Other compilation passes

0% 4 — A
60% H +——— fFHHHHH—H—H 4 HHH H — H

0% 44— — - =

20%

gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art egk mcf Avg

Fig. 5. Execution time of different compilation passes

170 F.M.Q. Pereira and J. Palsberg

Memory access instructions eliminated Move instructions eliminated
(.SH [] SH+RMTE []SH+RMTE+LL ELL T
1
09 - - - - H| -
08 f H| | HH HI HHTHH T HH 1 I HH
07 1] | - sk sl sl sl 5 | HH
0.6 -8 -t AL —
gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art egk mcf Avg
H LL+RMTE ELL [JRMTE
1.03
1
S S VI 4
”7hhillhh1lllhhhh
0.95
IIIIIIIIIIIIIIIII

gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art egk mcf Avg

Fig. 6. Impact of Load Lowering (LL) and Redundant Memory Transfer Elimination
(RMTE) on the code produced after SSA-elimination. (Up) Code size. (Down) Run-
time.

Time Overhead of SSA-Elimination. The charts in Figure [f] show the time re-
quired by our compilation passes. Register allocation accounts for 28% of the
total compilation time. This time is similar to the time required by the standard
linear scan register allocator, as reported in previous work [2225]. The passes
related to SSA elimination account for about 4.8% of the total compilation time.
These passes are: (i) phi-lifting, which splits the live ranges of all the variables
that are part of p-functions using “method I” due to Sreedhar et al. [28, pg.199];
(ii) a pass to remove critical edges; (iii) phi-coalescing, which reduces the number
of copies inserted by phi-lifting using a variation of the algorithm proposed by
Budimlic et al [§]; (iv) our spill-free SSA elimination pass. The amount of time
taken by each of these passes is distributed as follows: (i) 0.2%, (ii) 0.5%, (iii)
1.6% and (iv) 2.5%. Our experiments show that converting a program from SSA
to CSSA-form is a fast process. Passes (i) and (iii) take less than 2% of the total
compilation time. The conversion algorithm described by Budimlic et al [8] is
linear space and almost linear time in the number of variables in y-functions.

Impact of the Optimizations. Figure [0l shows the static reduction of load, store
and copy instructions due to the optimizations described in Section [6l The
criterion used to determine if a variable should be lowered or not is the number
of reloads that would be inserted for that variable versus the number of uses of
the variable. Before running the SSA-elimination algorithm we count the number

SSA Elimination after Register Allocation 171

of reloads that would be inserted for each variable. The time taken to get this
measure is negligible compared to the time to perform SSA-elimination: loads
can only be the last edge of a spartan location transfer graph (Theorem [2]). A
variable is lowered if its spilling causes the allocator to insert more reloads than
the number of uses of that variable in the source program. Store hoisting (SH)
alone eliminates on average about 12% of the total number of stores in the target
program, which represents slightly less than 5% of the lines of spill code inserted.
By plugging in the elimination of redundant memory transfers (RMTE) we re-
move other 2.6% lines of spill code. Finally, load lowering (LL), on top of these
other two optimizations, eliminates 7.8% more lines of spill code. Load lowering
also removes 5% of the copy instructions from the target programs.

The chart in the bottom part of Figure [0l shows how the optimizations influ-
ence the run time of the benchmarks. On the average, they produce a speed up of
1.9%. Not all the programs benefit from load lowering. For instance, load lowering
increases the run time of 186.crafty in almost 2.5%. This happens because, for
the sake of simplicity, we do not take into consideration the loop nesting depth of
basic blocks when lowering loads. We speculate that more sophisticated criteria
would produce more substantial performance gains. Yet, these optimizations are
being applied on top of a very efficient register allocator, and they do not incur
in any measurable penalty in terms of compilation time.

8 Conclusion

We have presented spill-free SSA elimination, a simple and efficient algorithm
for SSA elimination after register allocation that avoids increasing the number
of spilled variables. Our algorithm runs in polynomial time and accounts for a
small portion of the total compilation time. Our approach to SSA elimination
works for any SSA-based register allocator.

Acknowledgments. Fernando Pereira was sponsored by the Brazilian Ministry of
Education under grant number 218603-9.

References

1. Appel, A.W.: SSA is functional programming. SIGPLAN Notices 33(4), 17-20
(1998)

2. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java, 2nd edn.
Cambridge University Press, Cambridge (2002)

3. Bouchez, F.: Allocation de registres et vidage en mémoire. Master’s thesis, ENS
Lyon (October 2005)

4. Bouchez, F., Darte, A., Guillon, C., Rastello, F.: Register allocation: What does the
NP-completeness proof of chaitin et al. really prove? or revisiting register alloca-
tion: Why and how. In: 19th International Workshop on Languages and Compilers
for Parallel Computing, pp. 283-298 (2006)

5. Briggs, P., Cooper, K.D., Harvey, T.J., Simpson, L.T.: Practical improvements to
the construction and destruction of static single assignment form. Software Practice
and Experience 28(8), 859-881 (1998)

172

6.

7.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

F.M.Q. Pereira and J. Palsberg

Brisk, P.: Advances in Static Single Assignment Form and Register Allocation.
PhD thesis, UCLA, University of California, Los Angeles (2006)

Brisk, P., Dabiri, F., Jafari, R., Sarrafzadeh, M.: Optimal register sharing for high-
level synthesis of SSA form programs. IEEE Trans. on CAD of Integrated Circuits
and Systems 25(5), 772-779 (2006)

. Budimlic, Z., Cooper, K.D., Harvey, T.J., Kennedy, K., Oberg, T.S., Reeves, S.W.:

Fast copy coalescing and live-range identification. In: PLLDI, ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pp. 25-32. ACM
Press, New York (2002)

. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently

computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451-490 (1991)

de Ferriére, F., Guillon, C., Rastello, F.: Optimizing the translation out-of-SSA
with renaming constraints. ST Journal of Research Processor Architecture and
Compilation for Embedded Systems 1(2), 81-96 (2004)

Gough, B.J.: An Introduction to GCC, 1st edn. Network Theory Ltd. (2005)
Hack, S., Goos, G.: Copy coalescing by graph recoloring. In: PLDI, ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 227-237
(2008)

Hack, S., Grund, D., Goos, G.: Register allocation for programs in SSA-form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247-262. Springer,
Heidelberg (2006)

Koes, D.R., Goldstein, S.C.: A global progressive register allocator. In: PLDI, ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
204-215 (2006)

Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO, International Symposium on Code Generation
and Optimization, pp. 75-88 (2004)

May, C.: The parallel assignment problem redefined. IEEE Trans. Software
Eng. 15(6), 821-824 (1989)

Nandivada, V.K., Pereira, F., Palsberg, J.: A framework for end-to-end verification
and evaluation of register allocators. In: Proceedings of SAS, International Static
Analysis Symposium, Kongens Lyngby, Denmark, August 2007, pp. 153-169 (2007)
Pereira, F.M.Q.: Register Allocation by Puzzle Solving. PhD thesis, UCLA, Uni-
versity of California, Los Angeles (2008)

Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315-329. Springer, Heidelberg
(2005)

Pereira, F.M.Q., Palsberg, J.: Register allocation after classical SSA elimination
is NP-complete. In: Aceto, L., Ingdlfsdéttir, A. (eds.) FOSSACS 2006. LNCS,
vol. 3921, pp. 79-93. Springer, Heidelberg (2006)

Pereira, F.M.Q., Palsberg, J.: Register allocation by puzzle solving. In: PLDI, ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
216-226 (2008)

Poletto, M., Sarkar, V.: Linear scan register allocation. Transactions on Program-
ming Languages and Systems (TOPLAS) 21(5), 895-913 (1999)

Rideau, L., Serpette, B.P., Leroy, X.: Tilting at windmills with Coq: formal verifi-
cation of a compilation algorithm for parallel moves (2008)

Rosen, B.K., Zadeck, F.K., Wegman, M.N.: Global value numbers and redundant
computations. In: POPL, ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 12-27. ACM Press, New York (1988)

25.

26.

27.

28.

29.

30.

31.

32.

SSA Elimination after Register Allocation 173

Sagonas, K., Stenman, E.: Experimental evaluation and improvements to linear
scan register allocation. Software, Practice and Experience 33, 1003-1034 (2003)
Sarkar, V., Barik, R.: Extended linear scan: An alternate foundation for global
register allocation. In: Krishnamurthi, S., Odersky, M. (eds.) CC 2007. LNCS,
vol. 4420, pp. 141-155. Springer, Heidelberg (2007)

Sethi, R.: Complete register allocation problems. In: STOC, 5th Annual ACM
Symposium on Theory of Computing, pp. 182-195. ACM Press, New York (1973)
Sreedhar, V.C., Ju, R.D.-C., Gillies, D.M., Santhanam, V.: Translating out of static
single assignment form. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694,
pp. 194-210. Springer, Heidelberg (1999)

JVM Team. The java HotSpot virtual machine. Technical Report Technical White
Paper, Sun Microsystems (2006)

The Jikes Team. Jikes RVM home page (2007),
http://jikesrvm.sourceforge.net/

Traub, O., Holloway, G.H., Smith, M.D.: Quality and speed in linear-scan regis-
ter allocation. In: PLDI, ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 142-151 (1998)

Welch, P.H.: Parallel assignment revisited. Software Practice and Experi-
ence 13(12), 1175-1180 (1983)

http://jikesrvm.sourceforge.net/

	SSA Elimination after Register Allocation
	Introduction
	Example
	CSSA Form and Spartan Parallel Copies
	From Windmills to Cycles and Paths
	SSA Elimination
	Optimizations
	Store Hoisting
	Load Lowering
	Memory Coalescing

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

