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Abstract. In Model-Driven Engineering (MDE) models are the primary artefacts
of the software development process. Similar to other software artefacts, mod-
els undergo a complex evolution during their life cycles. Version control is one
of the key techniques which enables developers to tackle this complexity. Tra-
ditional version control systems are based on the copy-modify-merge paradigm
which is not fully exploited in MDE because of the lack of model-specific tech-
niques. In this paper we give a formalisation of the copy-modify-merge paradigm
in MDE. In particular, we analyse how common models and merge models can be
defined by means of category-theoretical constructions. Moreover, we show how
the properties of those constructions can be used to identify model differences
and conflicting modifications.

1 Introduction and Motivation

Since the beginning of computer science, raising the abstraction level of software sys-
tems has been a continuous process. One of the latest steps in this direction has lead to
the usage of modelling languages in software development processes. Software models
are indeed abstract representations of software systems which are used to tackle the
complexity of present-day software by enabling developers to reason at a higher level
of abstraction. In Model-Driven Engineering (MDE) models are first-class entities of
the software development process and undergo a complex evolution during their life-
cycles. As a consequence, the need for techniques and tools to support model evolution
activities such as version control is increasingly growing.

Present-day MDE tools offer a limited support for version control of models. Typi-
cally, the problem is addressed using a lock-modify-unlock paradigm, where a repository
allows only one developer to work on an artefact at a time. This approach is workable
if the developers know who is planning to do what at any given time and can communi-
cate with each other quickly. However, if the development group becomes too large or
too spread out, dealing with locking issues might become a hassle.

On the contrary, traditional version control systems such as Subversion enable
efficient concurrent development of source code. These systems are based on the copy-
modify-merge paradigm. In this approach each developer accesses a repository and cre-
ates a local working copy – a snapshot of the repository’s files and directories. Then, the
developers modify their local copies simultaneously and independently. Finally, the lo-
cal modifications are merged into the repository. The version control system assists with
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the merging by detecting conflicting changes. When a conflict is detected, the system
requires manual intervention of the developer.

Unfortunately, traditional version control systems are focused on the management of
text-based files, such as source code. That is, difference calculation, conflict detection,
and source code merge are based on a per-line textual comparison. Since the structure
of models is graph-based rather than text- or tree-based [1], the existing techniques are
not suitable for MDE.

During the last years, research has lead to various outcomes related to model evo-
lution: [2] for the difference calculation, [3] for the difference representation, [4] for
the conflict detection, and [5] for syntactic software merging that exploits the graph-
based structure(s) of programs, to cite a few. However, the proposed solutions are not
formalised enough to enable automatic reasoning about model evolution. For example,
operations such as add, delete, rename and move are given different semantics in differ-
ent works/tools. In addition, concepts such as synchronisation, commit and merge are
only defined semiformally. Moreover, the terminology is not precise and unique, e.g. the
terms “create”, “add” and “insert” are frequently used to refer to the same operations.

Our claim is that the adoption of the copy-modify-mergeparadigm is necessary to en-
able effective version control in MDE. This adoption requires formal techniques which
are targeting graph-based structures. The goal of this paper is the formalisation of the
copy-modify-merge paradigm in MDE. In particular, we show that common models and
merge models can be defined as pullback and pushout constructions, respectively. For
our analysis we use the Diagram Predicate Framework (DPF)1 [6,7,8] which provides
a formal approach to modelling based on category theory – the mathematics of graph-
based structures. In addition, DPF enables us to define a language to represent model
differences and a logic to detect conflicting modifications.

The rest of the paper is structured as follow. Section 2 provides a brief introduction
to DPF. Then Section 3 outlines a motivating example, and gives the formalisation of
the concepts of version control. In Section 4 the state-of-the-art of research in version
control is summarised. Finally, in Section 5 some concluding remarks and ideas for
future work are given.

2 Diagram Predicate Framework

Diagram Predicate Framework (DPF), is a diagrammatic formalism for the definition
and reasoning about modelling languages, (meta)models and model transformations.
The formalism is based on category theory and first order logic; it combines the math-
ematical rigour – which is necessary to enable automatic reasoning – with the intu-
itiveness of diagrammatic notations [9]. DPF’s usage in the formalisation of concepts
in (meta)modelling and model transformations are discussed in [8] and [7,10], respec-
tively. This section includes only a short description of the basic concepts of DPF such
as signatures, constraints and diagrammatic specifications.

In DPF, software models are represented by diagrammatic specifications2. These dia-
grammatic specifications are structures which consist of a graph and a set of constraints.

1 Formerly named Diagrammatic Predicate Logic (DPL).
2 In this paper the terms model and diagrammatic specification are used interchangeably.
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The graph represents the structure of the model. Predicates from a predefined diagram-
matic signature are used to add constraints to the graph [6]. Each modelling language
L corresponds to a diagrammatic signature ΣL and a metamodel MML. L-models
are represented by ΣL-specifications where the underlying graphs are instances of the
metamodel MML [8]. Signatures, constraints and diagrammatic specifications are de-
fined as follows:

Definition 1 (Signature). A (diagrammatic predicate) signature Σ := (Π, α) is an
abstract structure consisting of a collection of predicate symbols Π with a mapping
that assigns an arity (graph) α(p) to each predicate symbol p ∈ Π .

Definition 2 (Constraint). A constraint (p, δ) in a graph G is given by a predicate
symbol p and a graph homomorphism δ : α(p) → G, where α(p) is the arity of p.

Definition 3 (Diagrammatic Specification). A Σ-specification S := (G(S), S(Π)),
is given by a graph G(S) and a set S(Π) of constraints (p, δ) in G(S) with p ∈ Π .

Table 1 shows a sample signature Σ = (Π, α) which consists of a collection of useful
predicates such as [cover], [key] etc. The first column of the table shows the names

Table 1. A sample signature Σ

Π α Proposed visualisation Intended semantics

[total] 1
x �� 2 A •

f �� B ∀a ∈ A : |f(a)| ≥ 1

[key] 1
x �� 2 A

f [KEY]�� B ∀a, a′ ∈ A : a �= a′ implies f(a) �=
f(a′)

[single-
valued]

1
x �� 2 A

f [1]�� B ∀a ∈ A : |f(a)| ≤ 1

[cover] 1
x �� 2 A

f � �� B ∀b ∈ B : ∃a ∈ A | b ∈ f(a)

[isA] 1
x �� 2 A

[isA]

f

� �� B f = |φ where φ : B → A is a persis-
tent extension and |φ is its reduct.

[contain-
ment]

1
x �� 2 A

�� f �� B ∀b ∈ B, ∃a ∈ A| b ∈ f(a) and ∀g :
X → B, ∀x ∈ X if b ∈ g(x) then
f = g, X = A and a = x

[inverse] 1

x
��
2

y

�� A

f
��

[INV] B
g

�� ∀a ∈ A , ∀b ∈ B : b ∈ f(a) iff a ∈
g(b)

[jointly-
key]

1
x ��

y

��

2

3

A
f ��

g

��

[JK]

B

C

∀a, a′ ∈ A : a �= a′ implies f(a) �=
f(a′) or g(a) �= g(a′)
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Fig. 1. A Diagrammatic Specification: (a) S = (G(S), S(Π)), (b) its graph G(S)

of the predicates. The second and the third columns show the arities and a possible visu-
alisation of these predicates, respectively. In the fourth column, the intended semantic
of each predicate is specified. These predicates in Table 1 allow for specifying some
useful properties and constraints that a modeller would define for a structural model.
In addition, the signature can be extended with custom-defined predicates. Typically
in structural models, model elements are interpreted as sets and arrows as multival-
ued functions f : A → ℘(B), i.e. an arrow without constraints stands for an arbitrary
multivalued function. For example, in UML class diagrams the intended semantics of
an association between two classes is that the instances of those two classes have a
many-to-many relationship.

Fig. 1a shows an example of a Σ-specification S = (G(S), S(Π)). S specifies the
structural model of a simple information system for universities. G(S) in Fig. 1b is the
graph of S without any constraints on it. In S, every university educates one or more
students; this is forced by the constraint ([total], δ1) on the arrow educates (see
Table 2). Moreover, every student studies at exactly one university; this is forced by
the constraint ([single-valued], δ2) on the arrow studies. Another property
of S is that the functions studies and educates are inverse of each other, i.e. ∀u ∈
University : u = studies(educates(u)) and ∀s ∈ Student : s ∈ educates(stu-
dies(s)). This is forced by the constraint ([inverse], δ4) on studies and
educates.

Table 2. Diagrams (p, δ) ∈ S(Π)

(p, δ) α(p) δ(α(p))

([total], δ1) 1
x �� 2 University

educates �� Student

([single-valued], δ2) 1
x �� 2 Student

studies �� University

([cover], δ3) 1
x �� 2 University

educates �� Student

([inverse], δ4) 1

x
��
2

y

�� Student

studies 		
University

educates
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3 Version Control in MDE

The problem of version control in MDE is formalised in terms of category-theoretical
constructs. It should be noted that our reasoning is applicable both at model and meta-
model levels.

First we start with an example to present a usual scenario of concurrent development
in MDE. In our examples we use diagrammatic specifications defined by means of DPF.
The example is obviously simplified and only the details which are relevant for our
discussion are presented. Then, common models, merge models and their computations
are analysed in the subsequent sections.

Suppose that two software developers, Alice and Bob, use a version control system
based on the copy-modify-merge paradigm. The scenario is depicted in Fig. 2, while an
overview of the models in the example is shown in Fig. 3.

Alice checks out a local copy of the model V1 (Fig. 1) from the repository and mod-
ifies it to V1A , where 1 is a version number and A stands for Alice. In particular, she
adds the node PhDStudent as an extension of Student, together with the arrow
enrols. This modification takes place in the evolution step e1A . Since the model in
the repository may have been updated in the mean time, she needs to synchronise her
model with the repository in order to integrate her local copy with other developers’
modifications. This is done in the synchronisation s1A . However, no modifications of
the model V1 has taken place in the repository while Alice was working on it. Therefore,
the synchronisation completes without changing the local copy V1A . Finally, Alice com-
mits the local copy, which will be labelled V2 in the repository (Fig. 3a). This is done
in the commit c1A .

Afterwards, Bob checks out a local copy of the model V2 from the same reposi-
tory and modifies it to V2B . In particular, he takes into consideration also Postdoc as a
different type of student; to avoid the pollution of extensions in the model he deletes
the PhDStudent node, and refactors the model by adding a new node Enrolment.
Then, he synchronises his model with the repository. Again, the synchronisation com-
pletes without changing the local copy V2B . Finally, Bob commits the local copy, which
will be labelled V3 in the repository (Fig. 3b).

Alice continues working on her local copy, which is still V2 and is not synchronised
with the repository which contains Bob’s modifications. She adds a node Project

Fig. 2. The timeline of the example
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Fig. 3. The models of the example
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(Fig. 3c). She synchronises her model with the repository where the last model is V3.
Hence, the synchronisation computes the merge model V3,2A (Fig. 3i). Now, the version
control system reports a conflict in the merge model which forbids the commit c2A . This
is because the node PhDStudent has been deleted by Bob, but Alice has added some
arrows from/to it. The resolution of the conflict requires the manual intervention of
Alice, who must review the model and decide to adapt it to Bob’s modifications, or,
adapt Bob’s modifications to her own model.

3.1 Common Model

When Alice changes her local copy from V2 to V2A , her development environment must
keep track over what is common between the two models. The identification of what
is common is the same as the identification of what is not modified, which should be
feasible to implement in any tool.

Every two model elements which correspond to each other can be identified in a
common model. For example, the model C2,2A (Fig. 3e) is a common model of the
models V2 and V2A . The usage of a common model makes the construction of merge
models at synchronisation step easy (explained in Sec. 3.2, 3.3). In some frameworks,
what is common between two models is defined implicitly by stating that structurally
equivalent elements imply that the elements are equal (soft-linking). This approach has
the benefit of being general, but its current implementations are too resource greedy
to be used in production environment. In other frameworks, elements with equal iden-
tifiers are seen as equal elements (hard-linking). Unfortunately, this approach is tool-
dependent, since the element identification is different for every environment. Our claim
is that “recording” which elements are kept unmodified during an evolution step ad-
dresses the problems of the soft- and hard-linking approaches. That is, these equal-
ities are specified explicitly in common models as in the following definition (see
Fig. 4).

Ci,iU � �
incV

iU

����
��

��
��injVi

����
��

��
��

Vi ViU

Fig. 4. Common model

Definition 4 (Common Model). A model Ci,iU together with the injective morphism
injVi and the inclusion morphism incV

iU
is a common model for Vi and ViU .

Note that we support renaming operations by allowing arbitrary injective morphisms
injVi . We decided, however, that the common model contains always the most recent
names by requiring that the incV U

i
are inclusions.

In order to find the common model between two models which are not subsequent
versions of each other, i.e. for which we do not have a direct common model, we can
construct the common model by the composition of the common models of their inter-
mediate models. For example, the model C3,2A (Fig. 3f) is the common model of the



A Category-Theoretical Approach to the Formalisation of Version Control in MDE 71

models V3 and V2A . We call this common model for the composition of commons or the
normal form. A possible way to compute this common model is as follows (see Fig. 5):

Ci,k

injCi,j



��
��

��
��

� �
incCj,k

����
��

��
��

P.B.

f

��

� �

g

��

Ci,j

injVi

����
��

��
��

� �
incVj

����
��

��
��

Cj,k

injVj



��
��

��
��

� �

incVk

��	
		

		
		

	

Vi Vj Vk

Fig. 5. Common models: Ci,j and Cj,k; and the composition: Ci,k

Definition 5 (Composition of Commons). Given the diagrams Vi Ci,j

injVi�� � 	
incVj ��Vj

and Vj Cj,k

injVj�� � 	incVk �� Vk the common model for Vi and Vk is Ci,k with the two
morphisms f and g where f = injCi,j ; injVi , g = incCj,k

; incVk
, and, Ci,k is a pull-

back (Ci,k, injCi,j : Ci,k → Ci,j , incCj,k
: Ci,k → Cj,k) of the diagram

Ci,j
� 	
incVj �� Vj Cj,k

injVj�� such that incCj,k
is an inclusion.

3.2 Merge Model

Recall that when Alice wanted to commit her local copy V2A to the repository, she had to
first synchronise it with the repository. In the synchronisation s2A , a merge model V3,2A

was created (Fig. 3i). The merge model must contain the information which is needed
to distinguish which model elements come from which model. Since this is exactly one
of the properties of pushout, we use pushout construction to compute merge models, as
stated in the next definition (see Fig. 6).

Ci,j

injVi

����
��

��
��

P.O.

� �
incVj

��















Vi

mi ��













 Vj

�

mj����
��

��
��

Vi,j

Fig. 6. Merge model

Definition 6 (Merge Model). Given the models Vi, Vj and Ci,j , the merge model Vi,j

is the pushout (Vi,j , mi : Vi → Vi,j , mj : Vj → Vi,j) of the diagram

Vi Ci,j

injVi�� � 	
incVj �� Vj such that mj is an inclusion.

The properties of the pushout are then used to decorate merge models such that added,
deleted, moved, and renamed elements are distinguished (explained in Sec. 3.4).
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3.3 Synchronisation and Commit

Fig. 7 outlines synchronisation and commit operations in the copy-modify-merge para-
digm. These operations are defined as follows. In Fig. 7 and in the following definitions
and propositions, U stands for “username”.

Definition 7 (Synchronisation). Given the local copy ViU , the last model in the repos-
itory Vj and their merge model Vj,iU , the synchronisation siU : (ViU , Vj) → VjU is an
operation which generates a synchronised local copy VjU such that

VjU :=

⎧
⎪⎨

⎪⎩

ViU if i = j;

Vj,iU if i < j, and Vj,iU /∈ CU
with CU the set of conflicting merge models.

Definition 8 (Commit). Given the synchronisation siU : (ViU , Vj) → VjU , the commit
ciU : VjU ⇒ Vj+1 is an operation which adds the model VjU to the repository as Vj+1.

Whenever a local copy ViU is synchronised with a model Vj from the repository, if
the version numbers are the same, i.e. i = j, then a synchronised local copy VjU will
be created such that VjU = ViU . However, if i < j, then a merge model Vj,iU will
be created such that VjU = Vj,iU , only if Vj,iU is not in a conflict state (explained
in Sec. 3.4), i.e. Vj,iU /∈ CU . Finally, the commit operation will add the synchronised
local copy VjU to the repository and will label it Vj+1. The next procedure explains the
details of our approach to the synchronisation and commit operation (see Fig. 7).

Ci,iU
� 


incV
iU



��
��

��
�� injVi

����
��

��
��

�
Ci,j � �

incVj

��














injVi



��
��

��
��

�

ViU
��

mu
iU ����

��
��

��

P.O.

Vi

mui����
��

��
��

�

mri ����
��

��
��

�
e

iU��

P.O.

. . .

P.O.

�� Vj��

mrj

����������������

��
�
�
�

�
�
�

Vi,iU
��

mu
i,iU ����

��
��

��
Vi,j

mri,j

��
��

��
��

Vj+1

Vj,iU ����� VjU

c
iU

��������������

������������

Fig. 7. Synchronisation and Commit

Procedure 9 (Synchronisation Procedure). Given the models ViU , Vi, Ci,iU and Vj ,
where i < j, the synchronisation siU : (ViU , Vj) → VjU is computed as follows:

1. compute the merge model (Vi,iU , muiU , mui) as a pushout of

ViU Ci,iU� �
incV

iU��
injVi �� Vi

2. compute the common model (Ci,j , injVi , incVj) as a pullback of

Vi
mri �� Vi,j Vj

mrj��
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3. compute the merge model (Vi,j , mri, mrj) as a pushout of

Vi Ci,j

injVi��
incVj �� Vj

4. compute the merge model (Vj,iU , mui,iU , mri,j) as a pushout of

Vi,iU Vi
mri ��mui�� Vi,j

5. VjU := Vj,iU only if Vj,iU /∈ CU

3.4 Difference and Conflict

As mentioned, during a synchronisation operation siU : (ViU , Vj) → VjU where i < j,
the merge model Vj,iU may contain conflicts. To detect these conflicts, we need a way to
identify the differences between ViU and Vj , i.e. the modifications which has occurred
in the evolution step(s). Difference identification in the merge model Vj,iU can be done
by distinguishing common elements, ViU -elements and Vj -elements from each other.
However, since this is one of the properties of merge models, we already have all the
information we need to identify the differences and, we only need a language to rep-
resent these differences. Moreover, since software models are graph-based structures,
we need a diagrammatic language for this purpose. The language must enable tagging
model elements as common, added, deleted, renamed and moved. We use DPF to define
such a diagrammatic language, Δ, for the representation of model differences.

The language Δ is represented by the signature ΣΔ = (ΠΔ, αΔ) which consists
of five predicates: [common], [add], [delete], [rename], and [move] (see
Table 3). The merge models will be decorated by predicates from the signature ΣΔ in
addition to the predicates from the signature which represents the modelling language.

Each of [common],[add] and [delete] has two arities: 1 and 1
x �� 2 . That

is, each of these predicates can be used to tag either a node or an arrow. For example,
Bob has added the node Enrolment and the arrows student and university in
the model V3 (Fig. 3b). These added elements are coloured green, i.e. tagged as added,
in the merge model V2,3 (Fig. 3g) since the visualisation of the predicate [add] in ΣΔ

is green.
For the predicate [rename], when an element A ∈ Vi is renamed to B ∈ ViU ,

the common model Ci,iU will contain B with injVi(B) = A and incV
iU

(B) = B.

Moreover, the visualisation will be B [REN:A �→ B] in the merge model Vi,iU . The
morphism injVi is injective in order to allow for this renaming. Moreover, the morphism
incV

iU
is inclusion so that the common- and the merge models always contains the new

name. However, when Vj,iU is a merge model for j > i, then the visualisation will be

C [REN:C �→ Y], where C ∈ Vi is the old name, and Y ∈ Vj or Y ∈ ViU is the new
name. This is due to the commutative property of pushouts. Fig. 8 shows an example of
renaming, where Employee is renamed in an evolution step e1A to Person.

In general, the predicate [move] is used when the source of the reference to a con-
tained model element is changed from a container to another. In object oriented models,
e.g. in class diagrams, this operation is usually used in two cases; when an attribute or a
method of a class is moved to another class, and, when a class is moved from a package
to another. An example of the usage of a move operation is shown in Fig. 8, where the
attribute salary is moved to the objectified relationship Employment.
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Table 3. The signature ΣΔ. A, B, C, f, g ∈ Vi,j . Vi,j and Ci,j are the merge and common
models, respectively, of Vi and Vj , with i < j.

ΠΔ αΔ Proposed visualisation Intended semantics

[common]n 1 A A ∈ Vi and A ∈ Vj

[common]a 1
x �� 2 A

f �� B f ∈ Vi and f ∈ Vj

[add]n 1 A A /∈ Vi and A ∈ Vj

[add]a 1
x �� 2 A

f �� B f /∈ Vi and f ∈ Vj

[delete]n 1 A A ∈ Vi and A /∈ Vj

[delete]a 1
x �� 2 A

f �� B f ∈ Vi and f /∈ Vj

[rename] 1 C [REN:X 	→ Y] ∃C ∈ Ci,j : injVi (C) = X and
incVj (C) = Y where injVi : Ci,j →
Vi and incVj : Ci,j → Vj

[move] 1
x �� 2

3

y

�� A
�� f �� B

C
��

g

��
[MOV] ��

f ∈ Vi and f /∈ Vj and g ∈ Vj and
g /∈ Vi and B ∈ Ci,j and both f and
g are containment arrows as defined in
Table 1

The synchronisation procedure we have developed uses ΣΔ for two main purposes:

– to reduce the decorated merge model Vj,iU according to the rules in Table 4, e.g. if
a model element is tagged with both [common] and [delete], it will be tagged
only with [delete] in Vj,iU .

– to obtain the synchronised local copy VjU from Vj,iU by interpreting the predicates
as operations, e.g. if a model element is tagged with the predicate [delete], it
will not exist in VjU (see Table 4).

If the reduced merge model Vj,iU contains the predicate [conflict], then Vj,iU ∈
CU , i.e. it is in a state of conflict. Although conflicts are context-dependent, we have
recognised some situations where syntactic conflicts will arise. The definition of new
rules/conflicting situations is also allowed in DPF. The following is a summary of the
concurrent modifications which we identify as conflicts:

– adding structure to an element which has been deleted
– renaming an element which has been renamed
– moving an element which has been moved

In Table 4, the predicates in Vj,iU (ΠΔ) are written in the form ([p], δv
x) with v a

version number and p ∈ ΠΔ, where v is used to distinguish between predicates which
come from Vi,iU and Vi,j (see Def. 2). For example, [common] (X) in the first column

is an abbreviation for (([common]n, δi,iU

x ) : 1 �→ X) ∈ Vj,iU (ΠΔ) for x ∈ N. That
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Fig. 8. Examples of the predicates [move] and [rename]

Table 4. A subset of the rules used for the reduction of Vj,iU and to obtain VjU from Vj,iU .
X, f ∈ Vj,iU

Vi,iU (ΠΔ) Vi,j(ΠΔ) Vj,iU (ΠΔ) In VjU

[common] (X) [common] (X) [common] (X) remains

[delete] (X) [delete] (X) [delete] (X) deleted

[common] (X) [delete] (X) [delete] (X) deleted

[delete] (X) [common] (X) [delete] (X) deleted

[move] (X) [move] (X) [conflict] (X) ⊥
[add]a (f ) [delete]n (src(f)) [conflict] (f, src(f)) ⊥
[add]a (f ) [delete]n (trg(f)) [conflict] (f, trg(f)) ⊥

[rename] (X) [rename] (X) [conflict] (X) ⊥
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is, the predicate [common]n comes from the model Vi,iU . Moreover,⊥ means that the
synchronised local model VjU will not be created.

4 Related Work

The literature related to model evolution and in particular version control is becoming
abundant. Firstly, we have the works that describe how to compute the difference of
models: EMF Compare [2] and DSMDiff [11] are two model differencing tools which
are based on a similar technique. The difference calculation is divided in two phases.
The first is the detection of model mappings, where all the elements of the two input
models are compared using metrics like signature matching and structural similarity.
The second phase is the determination of model differences, where all the additions,
deletions and changes are detected. This approach has the great benefit of being general,
but at the price of being resource greedy.

Secondly, there are works which analyse how to represent differences among models
conforming to an arbitrary metamodel. There are different approaches for the represen-
tation of model differences:

1. As models which conform to a difference metamodel. The difference metamodel
can be generic [12], or obtained by an automated transformation [3]. Those mod-
els are in general minimalistic (i.e. only the necessary information to represent the
difference is presented), transformative (i.e. each difference model induce a trans-
formation), compositional (i.e. difference models can be composed sequentially or
in parallel), and typically symmetric (i.e. given a difference representation we can
compute the inverse of it).

2. As a model which is the union of the two compared models, with the modified
elements highlighted by colours, tags, or symbols [13], which is similar to our
visualisation. The adoption of this technique is typically beneficial for the designer,
since the rationale of the modifications is easily readable. However, these quality
factors are retained only if the base models are not large and not too many updates
apply to the same elements, since the difference model consists of both base models
to denote the differences.

3. As a sequence of atomic actions specifying how the initial model is procedurally
modified [14]. While this technique has the great advantage of being very efficient,
the difference representation is not readable and intuitive. In addition, edit scripts
do not follow the “everything is a model vision”. They are suitable for internal rep-
resentations but quite ineffective to be adopted for documenting changes in MDE
environments.

Thirdly, there are works aimed at identifying the types of structural and semantic con-
flicts that can occur in distributed development. In [4] a predefined set of a priori con-
flicts is identified, stating that it is not possible to provide a generic technique for con-
flict detection with an arbitrary accuracy. However, in [15,16] the authors propose a
Domain-Specific Modelling Language for the definition of weaving models which rep-
resent custom conflicting patterns. Moreover, it is possible to describe the resolution
criteria through OCL expressions.
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5 Conclusion and Future Work

In this paper, category-theoretical constructs are used to formalise concepts used in
version control. Usual operations such as checkout, synchronise and commit that a de-
veloper perform in a distributed development are analysed. Moreover, the concepts of
common and merge models are introduced and defined as pullback and pushout, re-
spectively. In addition we defined a language Δ – specified as the signature ΣΔ in DPF
– which we have used to formalise model differences. The predicates of ΣΔ enable
the reasoning about and presentation of operations such as add, delete, move, and re-
name. That is, model elements which has been added, deleted, moved or renamed are
tagged by predicates from ΣΔ. Finally, we described how these predicates can be used
for the identification of possible conflicting modifications. DPF has shown to have the
expressiveness and flexibility which are required to define the language Δ.

The proposed approach to version control in MDE differs from the approaches in the
related work mentioned above since it is based on common models instead of differ-
ence models. The difference between two models is identified by means of category-
theoretical constructs and represented through the language Δ.

In this work, we focused only on the detection of a predefined set of syntactic con-
flicts which are derived from experience. In a future work, we analyse and formalise
semantic conflicts, i.e. modifications which are violating metamodel constraints or pred-
icate dependencies. Moreover, a prototype implementation of these techniques will be
necessary to show the efficiency of the proposed techniques. This is a challenging task,
considering the lack of mature standards and the issues related to the identification of
model elements [17].
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