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Abstract. Activity diagrams are a well-known means to model the control flow
of system behavior. Their expressiveness can be enhanced by using their object
flow notation. In addition, we refine activities by pairs of pre- and post-conditions
formulated by interrelated object diagrams. To define a clear semantics for refined
activity diagrams with object flow, we use a graph transformation approach. Con-
trol flow is formalized by sets of transformation rule sequences, while object flow
is described by partial dependencies between transformation rules. This approach
is illustrated by a simple service-based on-line university calendar.

1 Introduction

UML2 activity diagrams are a well-known means to model the control flow of system
behavior. Their expressiveness can be enhanced by using their object flow notation. Cur-
rently, it is an open problem how to formalize coherent object flow for activity diagrams.
In this paper we aim at providing a precise semantics for refined activity diagrams with
coherent object flow. We use graph transformation as semantic domain, since it sup-
ports the integration of structural and behavioral aspects and provides different analysis
facilities.

In [1]], sufficient criteria for the consistency of refined activity diagrams were pro-
vided, where interrelated object diagrams are used to specify pre- and post conditions of
single activities. All conditions refer to a domain class model. This refinement serves as
a basis for consistency analysis. The refinement of activities by pre- and post-conditions
was first introduced in [2]] to analyze inconsistencies between individual activities re-
fining use cases. Pre- and post conditions are formalized as graph transformation rules.
Mehner et.al. extend the consistency analysis in [3]] where also the control flow is taken
into account. In [4], a similar approach for consistent integration of life sequence charts
(LSCs) with graph transformation, applied to service composition modeling, was de-
veloped. The formalization based on graph transformation is used to analyze rule se-
quences. In addition, data flow is modeled textually by name equality for input and
output variables.

In this paper, we extend refined activity diagrams by object flow. We introduce partial
rule dependencies to formalize the semantics of object flow. Based on the consistency
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notion of refined activity diagrams in [1l], we define consistency-related properties of
refined activity diagrams with object flow.

We illustrate our approach with an example from model-driven development of a
service-based web university calendar. In particular the behavior modeling of individual
services still lacks advanced support for precise modeling and subsequent consistency
analysis. Activity diagrams are an adequate means for modeling individual services,
and the use of object flow and pre-/post-conditions can define service behavior more
precisely.

This paper is organized as follows. Section [2] introduces the syntax and semantics
of refined activity diagrams with object flow informally. Section [3introduces algebraic
graph transformations and the new notion of partial rule dependency. SectionE presents
the semantics and consistency notion of refined activity diagrams and extends it for
object flow. Sections[3 and [6] contain related work and concluding remarks.

2 Introduction to Refined Activity Diagrams with Object Flow

This section introduces refined activity diagrams with object flow and illustrates this
modeling approach by a small example for a service-based web university calendar.
In this example, we model services by activity diagrams with object flow where each
activity is refined by pre- and post-conditions, and guards are refined by patterns.

2.1 Domain Model

Our example application manages course parts that are lectures, laboratories, and exer-
cises where a lecture may offer a laboratory and an exercise. Each course part is held
by a lecturer and can be located in a room. An appropriate class diagram is presented in
Fig.[[l From an abstract class Object , three classes are derived: Room, Lecturer and
CoursePart. The latter is abstract and is specialized by three further classes: Labora-
tory, Exercise and Lecture. Day and time information for course parts are realized by
enumerations Day and Time.

2.2 Activity Diagrams with Object Flow

We use UML2 activity diagrams with object flow [5] to model services of the univer-
sity calendar. Three services, AddLecture, AddExercise, and AddLaboratory, are shown
exemplarily in Fig.

Web applications usually contain a number of services. A service provides a clearly
defined logical unit of functionality based on data entities. While a basic service might
be realized by one activity only, more complex services might contain a number of
different activities. Defining services by the means of hierarchical activity diagrams
opens up the possibility to call services from other ones. The usage of other services
is depicted by placing a complex activity as representation of the used service into
the control flow. The invocation of a complex activity is indicated by placing a rake-
style symbol within the activity node. Our example service AddLecture uses two other

! Ttalic class names in diagrams indicate abstract classes.
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+5I4 : String = B pam. +FRIDAY : String = friday

Fig. 1. Domain Class Diagram

services. Accordingly, the complex activities modeling used services AddLaboratory
and AddExercise are refined by corresponding activity diagrams (cf. Section 4.

UML2 provides several object flow notations. The preference for a notation depends
on different aspects, e.g. the amount of information, potential ambiguities, and the
equality of control and object flow. For example, if object and control flow overlap,
related objects may be depicted next to transitions as shown above activity SetRoom
in Fig. 2l Otherwise an object node with separate object flow edges has to be used as
shown for lecture /. However, it is desirable to keep the object flow description as sim-
ple as possible without leaving out important information. Each object may be named
and its identity is expressed by equal names within an activity diagram. E.g. in activity
diagram AddLecture both lecturer nodes named /2 depict the same object. Please note
that in our approach, an object may flow along multiple outgoing edges i.e. object flows,
whereas in UML2 one object serves one object flow exclusively.

Objects passed from outside to an activity diagram can be drawn on the diagram
boundary in order to show parameters flowing into certain activities. Objects passed out
of the diagram itself, may be depicted as boundary objects as well. Consider Fig.
Objects of types Lecturer and Room are passed to the activity diagram AddLecture,
while a newly created object of type Lecture is passed out of this diagram.

In Fig. 2 service AddLecture uses two other services AddLaboratory and AddExer-
cise. Once a lecture has been created and its attributes have been set, a related laboratory
or exercise might be created additionally. At first, a new lecture is created in activity
CreateLecture, its attributes are set and it is linked to lecturer /1. If, moreover, room r/
is not null, activity SetRoom is used to link this room r/ to the lecture newly created. If
a lecturer is given for a laboratory, the complex activity AddLaboratory is used to add a
laboratory to the lecture. Therefore, AddLecture has to pass the newly created lecture /,
lecturer 12, and room r2 to the activity. In diagram AddLaboratory a new laboratory is
created by the first activity CreateLaboratory. In the same step, this laboratory is linked
to lecture / and to lecturer [2. Furthermore, the laboratory’s attributes are set. In the next
activity, the laboratory’s location is set to room 2, provided that 72 is given. If a lecturer
for a related exercise is given, AddExercise is used by AddLecture analogously.
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Fig. 2. Activity Diagrams of Services AddLecture and AddLaboratory

Since our activity diagrams model services, we equip each of them with a name and
a comma-separated list of parameters. The semantics follow the programming concept
of parameter passing between operations, i.e. an activity diagram models an operation
consisting of a signature and a body. The signature of an activity diagram consists of
its name and a list of attribute and object parameters. While object parameters have a
type occurring in the domain model, attribute parameters have primitive types in most
cases. This signature is an extension of UML2 made by our approach. Please note that
all attributes and boundary objects used within the activity diagram are arguments which
correspond to the signature. In addition, each parameter declaration has to be enriched
with keyword in, out, or inout. This qualification defines the object flow direction. E.g.
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lecturer /7 has to be passed to diagram AddLecture and is therefore marked in. Vice versa,
the newly created lecture / is passed out of the diagram and is therefore marked by out.
Parameter objects marked by inout are both input and output objects.

2.3 Refined Activities

Activities are used to model specific changes of the current system snapshot i.e. object
structure. We propose to refine activities by pre- and post-conditions specifying snap-
shots before and after the activity respectively. We refine activities separately by pairs
of object diagrams which are typed over the domain model. Figure 3] shows object dia-
grams refining activities of our example (cf. Fig. ) where pre-conditions are depicted
on the left and post-conditions on the right. Objects and links with equal names on both
sides express identity and preservation. Objects and links occurring on the left-hand side
only will be deleted, while objects and links occurring in the right-hand side only will
be created. Conditions on non-existence of patterns are depicted in red dashed outline.

Createlecture (in String lecTitle, in Day lecDay, in Time lecTime, in Lecturer lecturer,
out Lecture newLecture)

lecturer : Lectirer |Iactutar : Lacwmr] newlecture - Lecture

title = lecTitle
Iday = lecDay

ftirme = lecTime

fitle = lecTile |
e -

CreateLaboratory (in String labTitle, in Day labDay, in Time labTime, in Lecture lecture,
in Lecturer lecturer, out Laboratory newlab)

lecture : | ecture lecture - Leciure
r : CoursePart |
lecturer _ Leclurer |'.iﬁe TETie | lecturer - Lecturer

|
[ o

newlab : Laboratory
litle = labTitle
day = labDay
time = labTime

SetRoom(in CoursePart coursepart, in Room room)

coursepart : CoursePart room : Room coursepart : CoursePart
r 7 [

notNull (inouf Object abject)

| object : Object ‘

Fig. 3. Refined Activities by Pre- and Post-Conditions

Each pair of conditions exhibits a signature according to the inscription of its refined
activity, i.e. it consists of a name (the activity name) and a list of typed parameters
qualified with keyword in, out or inout. Parameters can be distinguished into object and
attribute parameters, analogously to their usage in activity diagrams. While the former
ones are matched to objects, the latter ones are used as attribute values. Keyword in
requires the occurrence of the related object (if object parameter) on the left-hand side.
The object may be used in a read, edit, or delete operation. Keyword out declares a
returned object and requires its presence on the right-hand side. It may be used for
a create or select operation. nout declares an object to be given and returned as well,
thus requires the given object on both sides which explicitly guarantees its non-deletion.
Attribute parameters must be input parameters. If occurring in pre-conditions, attribute
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parameter values restrict the matching of objects, occurring in post-conditions they are
used to assign attribute values. Object parameter types must be respected by condition
checking, i.e. by pattern matchings. Parameters may be matched, if they are matched
with equally typed or sub-typed values only. Analogously, this must hold for attribute
types. Note that arrays and collection-like types are not supported by our approach yet.

The first pair of conditions in Fig. Blrefines activity CreateLecture. The pre-condition
requires the existence of a lecturer in the current system snapshot, otherwise the activity
cannot be applied. Also, it requires the non-existence of a CoursePart instance (which
could be of concrete type Lecture, Exercise, or Laboratory) with a title equal to given
attribute parameter lecTitle. If both conditions hold, the activity is applicable and cre-
ates a Lecture instance associated with the given Lecturer instance and the lecture is
returned. The refinement of activity CreateLaboratory shown as second pair in Fig. 3
is quite similarly, but it requires two given objects to exist and the creation of an object
of type Laboratory. Since the conditions of CreateExercise are analogous to those of
CreateLaboratory, they are left out. The refinement of activity SetRoom is shown as
third pair. It requires two object parameters, one instance of type Room and one of type
CoursePart, and it forbids the CoursePart instance to have a room already. No object
but a link between the given course part and the new room is created here. Please note,
that CoursePart is an abstract type. Thus instances of its concrete sub-classes can be
used here only The last condition in Fig. 3 refines guard notNull. Since guards do not
perform model-changing transformations but rather check for existence in the system
snapshot, we just define a guard pattern here. Note that we disallow non-existence con-
ditions in guard patterns. Else-guards are predefined by negated guard patterns i.e. it is
checked for non-existence of the corresponding guard pattern.

3 Formalization by Graph Transformation

The UML variant presented in the previous section can be equipped with a graph trans-
formation semantics. We start with presenting the theory of graph transformation as in
[6] and extend it by new concepts. While class diagrams are formalized by type graphs,
activities with pre- and post-conditions are mapped to graph rules. The object flow is
formalized by a new concept called partial rule dependencies. This semantics definition
serves as a basis for validating the consistency of refined activity diagrams with object
flow.

3.1 Graphs and Graph Transformation

Graphs are often used as abstract representation of visual models, e.g. UML models.
When formalizing object-oriented models, graphs occur at two levels: the type level
(defined by a meta-model) and the instance level. This idea is described by the con-
cept of typed attributed graphs, where a fixed type graph T'G serves as an abstract
representation of the meta-model (without constraints). Node types can be structured
by an inheritance hierarchy and may be abstract in the sense that they cannot be instan-
tiated. Multiplicities and other annotations have to be expressed by additional graph
constraints. Attribute types are formally described by data type algebras. Instances of
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the type graph are object graphs equipped with a structure-preserving mapping to the
type graph. Attribute values are given by a concrete data algebra.
Graph transformation is the rule-based modification of graphs. A rule is defined by

p= (L FLENY GLR R,I,0,NACSs) where L is the left-hand side (LHS) of the rule
representing the pre-condition and R is the right-hand side (RHS) describing the post-
condition. [ and r are two injective graph morphisms, i.e. functions on nodes and edges
which are structure and type-preserving. They specify a partial mapping 7 o[~ from L
to R. L\I(K) defines the graph part that is to be deleted, and R\ r(K) defines the graph
part to be created. The types of newly created nodes have to be non-abstract. Elements
in K are mapped in a type preserving way. All graphs of a rule are attributed by the same
algebra being a term algebra with variables. Some of these variables are considered to
be rule parameters. Input parameters can be nodes or variables, thus I = Iy U Iy,
whereas output parameters can be nodes only, i.e. O = Oy with I C Land O C R.

NAC: is a set of negative application conditions, each defined by an injective graph
morphism n : L — N where N \ n(L) defines a forbidden graph part. n allows to
refine node types, i.e. a node of a more abstract type is allowed to be mapped to a node
with a finer type according to the inheritance hierarchy.

Example 1 (Example rules). Figure 3] shows example graph rules. Each pre-condition
forms an LHS with one negative application condition and each post-condition de-
scribes an RHS. Identifiers given by names indicate the mapping between left- and
right-hand sides. The solid parts of a pre-condition indicate the LHS L, while the dashed
ones prohibit a certain graph part and represent IV \ n(L) of the NAC. Input and output
parameters are listed on top of each pair of conditions, formally in the head of each rule.

A graph transformation step G P™S H between two instance graphs G and H is
defined by first finding a match m : L — G of the left-hand side L of rule p into
the current instance graph G such that m is an injective type-refining graph morphism.
Match m has to fulfill the dangling condition, i.e. nodes may be deleted only, if all
adjacent edges are mentioned in the LHS. Moreover, each NAC has to be fulfilled,
i.e. m satisfies a N AC, if for each n € N AC's there does not exist an injective type-
refining morphismo : N — G such that oon = m. Input parameters are instantiated by
concrete values being nodes of the instance graph and data type values. Thus, parameter
instantiation provides a partial match.

In the second step, graph H is constructed by a double-pushout construction (see
[6]). Roughly spoken, the construction is performed in two passes: (1) build a graph D
which contains all those elements of GG not deleted; (2) construct H as a union of D and
all elements of R to be created. To focus on the preserved part of a graph transformation
step, we define a partial graph morphism track : G — H by track = g~ o h.
Graph dom/(track) is the subgraph of G where ¢rack is defined, i.e. the domain of
track. (See also [7] for a first definition of track morphism.) Morphisms g : D — G
and h : D — H are constructed by a double-pushout as shown below. Morphism
g~ ! is always well-defined, since [ is injective and the pushout construction preserves
injectivity, thus g is also injective. Furthermore, a so-called co-match m’ : R — H is
defined by the double-pushout construction. Output parameters point to a certain part
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of this co-match. Output parameters are useful for pointing to specific nodes which can
be used in further transformation steps then.

Cc l r Cc

1 >L =< K >R=< 0

m m’
\ \ \
g h
G= D zH
track

A graph transformation (sequence) t = G P Gy Gy PEE G, consists
of zero or more graph transformation steps. Track morphism tracky,, of sequence ¢ is
simply the composition of track morphisms track,_1, o...otrackg, of its steps. For
n = 0, tracky o = idg,. A setof graph rules P, together with a type graph T'G, is called
a graph transformation system (GTS) GT'S = (T'G, P). A GTS may show two kinds
of non-determinism: Given a graph, (1) several rules can be applicable, and (2) for each
rule several matches can exist. There are techniques to restrict both kinds of choices.
The choice of rules can be restricted by the definition of control flow while the choice of
matches can be restricted by passing partial matches The tool AGG (Attributed Graph
Grammar System) [8]] can be used to specify and analyze graph transformation systems.

3.2 Partial Rule Dependencies

To restrict the choice of matches for rules, we introduce the concept of partial rule
dependencies which may relate output parameter nodes of one rule to input parameter
nodes of a (not necessarily direct) subsequent rule in a given rule sequencel]. We say that
rule sequences are dependency-compatible, if the transitive closure of all dependencies
between each two rules is well-defined.

Definition 1 (partial and joint rule dependencies). Given a GTS (T, P) and a rule
sequence s : pi, ..., pp With p1, ...,p, € P. A partial rule dependency between rules p;
andp; with1 <1 < j < nis defined by an injective partial morphism d;; : O;y — Iy,
Sfrom output parameter nodes of p; to input parameter nodes of p;. If d;; is the empty
morphism, no rule dependency is defined. For each pair of rules p; and p; in s, its
closure;; is defined as follows: (1) d;; belongs to closure;; and (2) for all d, dy;,
and rules py, with i < k < j add dy; o T, o l’;}k o d, to closures;.

Oin > Iy Oky > Iy
dik dij
c c c c
\ \ I - \ v
R; Ly~< Ky, > Ry, L;

Rule sequence s is dependency-compatible, if for all closures closure;; the following
holds: (1) For all d € closure;;: type(z) has to be finer or coarser than type(d(x))

% Note that rule sequences differ from transformation sequences in not providing graphs to which
rules are applied.
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for all x € O;, wrt. the type inheritance relation defined by type graph T'. (2) Each
two dependencies d and d’ in closure;; are weakly commutative, i.e. d(x) = d'(z) for
all x € dom(d) Ndom(d’).

If rule sequence s is dependency-compatible, we can define a joint dependency of a
closure. Given closure;; we define the joint dependency dep;; : O, — 1, asfollows:
(1) dom(dep;;) = Udeclosmei_j dom(d) and (2) dep;;(y) = d(y) ify € dom(d) for
d € closure;;

Example 2 (partial rule dependencies). Considering the rules in Fig. Bl we compose
rule sequence s = CreateLecture, SetRoom, CreateLaboratory, SetRoom. As first step,
we define partial rule dependencies taking input and output parameters into account:
dya(newLecture) = coursepart,dss = d3q = dog = d1g4 = 0, dy3(newLecture) =
lecture. All dependencies are type-compatible, since either the types of mapped nodes
are equal or in hierarchy, e.g. type(newLecture) = Lecture is finer than
type(dia(newLecture)) = type(coursepart) = Coursepart (see Fig. [I). None of
the closures contains more than one non-empty partial dependency. Thus, partial rule
dependencies are not really composed from each other in this example, e.g. depiz =
d13.

If coursepart were an inout parameter of rule SetRoom, closure;s could look more
interesting: With das(coursepart) = lecture we would have closures = {dy3,das o
To O l;l o dy2} with depys(newLecture) = lecture.

If we enlarged the rule sequence by rule CreateLaboratory and defined ds4 (newLab)
= coursepart as well as dys(coursepart) = lecture, then depss would have to map
newLab) to lecture which would not be type-compatible.

Definition 2 (application of dependency-compatible rule sequences). A dependency
-compatible rule sequence s : p1, ..., p, is applicable to some graph Gy, if there is a
graph transformation sequence G| PLAY G Gy B G, such that m; o depy;
and track; j—1 o m}(O;, ) are weakly commutative, with track; j_1 being the track
morphism from G; to G;_1 and m, being the co-match of rule p; for1 <i < j <mn.

depi;
N
O'LN g > R’L L] < g I]N
m/ mj
v v
G; > Gj71

Partial rule dependencies are defined independently of causal dependencies. Causal de-
pendencies between rules can be analyzed by the critical pair analysis (CPA) [6]. The
only kind of causal dependencies we are interested in here are produce/use-
dependencies where the application of one rule produces an element needed by the
match of a second rule. If two rules are not causally dependent on each other, the
corresponding joint dependency which is defined explicitly must not introduce any
produce/use-dependency. If some partial dependency is defined, it has to correspond
with at least one produce/use dependency.
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4 Object Flow: Semantics Definition and Properties

In this section, we first specify well-structured refined activity diagrams, refine their
activities by graph rules and their guards by graph patterns, and define their semantics
and consistency based on graph transformation. Thereafter, this approach is extended
to refined activity diagrams with object flow.

From now on, we assume that an activity diagram does not contain any complex ac-
tivities and that each complex activity has been flattened before, i.e. it has been replaced
by its refining activity diagram. During this potentially recursive process, each object
which goes in to or comes out from a complex activity is glued with the corresponding
boundary object of the refining activity diagram, i.e. the boundary and boundary objects
disappear.

4.1 Refined Activity Diagrams

As in [911]], we restrict our considerations to well-structured activity diagrams. The
building blocks are simple activities, sequences, fork-joins, decision-merge structures,
and loops only.

Definition 3 (well-structured activity diagram). A well-structured activity diagram
A consists of a start activity s, an activity block B, and an end activity e such that there
is a transition between s and B and another one between B and e. An activity block is
defined as follows:

— Empty: An empty activity block is not depicted.

— Simple: A simple activity is an activity block.

— Sequence: A sequence of two activity blocks A and B connected by a transition
from A to B form an activity block.

— Decision/Merge: A decision activity which is followed by two guarded transitions
leading to one activity block each and where each block is followed by a transition
both heading to a common merge activity form an activity block. One transition is
explicitly guarded, called the if-guard, while the other transition carries a prede-
fined guard "else” which equals the negated if-guard.

— Loop: A decision activity is followed by a guarded transition. This guard is called
loop-guard. The transition leads to an activity block with an outgoing transition
to the same decision activity as above. Considering this decision activity again, its
incoming transition from outside becomes the incoming transition of the new block.
Its outgoing transition to outside becomes the outgoing transition of the new block.
This transition is guarded by “else”. The whole construct forms an activity block.

— Fork/Join: A fork activity followed by two branches with one activity block each
followed by a join activity form an activity block.

To be able to define object flow to be coherent with control flow we define a control
flow relation as prerequisite. Because of potential loops it is not a partial order.

Definition 4 (control flow relation). The control flow relation CF R 4 of an activity
diagram A contains pairs (x,y) where x, y are activities such that the following holds:
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— Pair (z,y) € CFR,, if x is directly connected via a transition with y.
- If(a,b) € CFR4 and (b,c) € CFRy, then also (a,c) € CFR4.

An if- or loop-guard is equipped with a graph pattern which describes an existence
condition on graphs. A guard pattern can be interpreted as identical rule (i.e. a rule
where the left and the right-hand sides are equal). Guard pattern g is fulfilled by a graph
G, if its corresponding rule p, is applicable to G. After rule p, has been performed, the
guarded alternative is executed. Otherwise, rule p, which formalizes “else” for given
guard g, is applicable to G and the second alternative is performed.

Definition 5 (guard pattern, guard rule and negated guard rule). A guard pattern
g is defined by a typed graph being attrlbuted over a term algebra with variables. Its

guard rule Dy lS defined by (g 2o g ida, g,1,0,0). Its negated guard rule p, is defined
by (0 Ll 0,0,0,{n:0— g}).

Lemma 1. Given a guard pattern g and a graph G. Rule pg is applicable to G, iff rule
Dg is non-applicable to G.

Proof. See [10].

Definition 6 (refined activity diagram). A refined activity diagram RA is a well-
structured activity diagram such that each simple activity occurring in RA is equipped
with a graph transformation rule. Each if- or loop-guard occurring in RA is equipped
with a guard pattern. We also say that an activity is refined by a transformation rule
where decision activities are refined by guard rules deduced from guard patterns which
refine guards.

Definition 7 (semantics of refined activity diagrams). Given an activity block B of a
refined activity diagram RA, its corresponding set of rule sequences Sg is defined as
follows.

If B is empty, Sp = 0.

If B consists of a simple activity a refined by rule p,, Sp = {pa}-

IfBisasequence of X andY, Sp := Sx seq Sy = {sz5y|sz € Sx Nsy € Sy}

If B is a decision block on X and 'Y with guard pattern g refining its if-guard,

SB = ({pg} seq Sx) U ({Dg} seq Sy)

— If B is a loop block on X with guard pattern g refining its loop-guard, Sp =
loop(g, Sx) = U;e; S% where S% = {pg}, Sk = {pg} seq Sx seq {Pg}
S% = {p,} seq Sx seq Sk and S% = {p,} seq Sx seq S fori > 2.
Sp(n) = S% denotes the semantics of loop block B with exactly n loop executions.

- IfBisaforkblockon X andY, Sg := Sx||Sy = U sz||sy with sz € Sx Nsy €

Sy where s,|I\ = {s.}, [, = {5, }. and p,,|Ipys, = {po} seq (s}]|p,s,,) U

{py} seq (pusyllsy)-

The semantics Sem(RA) of a refined activity diagram RA consisting of a start ac-
tivity s, an activity block B, and an end activity e is defined as the set of rule se-
quences Sp generated by the main activity block B. If RA contains k guarded loops,

,,,,, i (RA) C Sem(RA) denotes a restricted semantics where the semantics of
each guarded loop B; € Afor1 < j < kisSp;(n;).
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Now, we are ready to check the control flow consistency of activity diagrams. To do so,
we consider snapshots of the system, i.e. object models which are formalized as graphs
by mapping objects to graph nodes and object links to graph edges. In the following
definitions for consistency-related properties, we directly use graphs as abstract syntax
representation of object models.

Activity diagrams are consistent, if there is a set S of model graphs such that each
rule sequence in the diagram semantics is applicable to some of these graphs. If the di-
agram contains guarded loops, we use the restricted semantics for diagrams (as defined
above) which checks for each guarded loop, if a predefined number of loop executions
is feasible. S is without junk, if each of its model graphs represents a potential snapshot
of the system to which an activity sequence in A can be applied.

Definition 8 (completeness). A set S of graphs is complete wrt. to a refined activity
diagram RA, if for all rule sequences s in Sem(RA) there is a graph G in S such that s
is applicable to G. If RA contains k guarded loops, a set S of graphs is quasi-complete
wrt. to RA, if for all rule sequences s in Semy, ... n,(RA) there is a graph G in S
such that s is applicable to G. Set S is without junk, if for each graph in S at least one
applicable rule sequence in Sem(RA) (resp. Semy,, .. n, (RA)) exists.

Definition 9 (consistent activity diagram (without object flow)). A refined activity
diagram RA is consistent, if there is a set S of graphs which is complete wrt. RA.
If RA contains k guarded loops, RA is quasi-consistent, if there is a set S of graphs
which is quasi-complete wrt. RA.

4.2 Refined Activity Diagrams with Object Flow

In the following, we define refined activity diagrams by partial rule dependencies which
formalize object flows and enrich its semantics.

Definition 10 (well-structured activity diagram with coherent object flow). A well-
structured activity diagram Apr = (A, Obj, OF R, I, O) with coherent object flow is
a well-structured activity diagram A (as given in Def.[3) equipped with a set of object
nodes Obj, an object flow relation OF R for A and Obj, input parameter set I, and
output parameter set O, defined as follows:

— Input parameters can be object nodes or values, i.e. I = Iy U Iy with Iy C Obj.
Output parameters may only be object nodes only, i.e. O = Oy with O C Obj.

— Object flow relation OF R contains triples (x,0,y) where x and y are simple or
decision activities and o € Obj. In addition, there is a special tag null not used as
activity name which is used to define object flow from and to parameter objects, i.e.
triples (null, 0, y) and (z, 0, null) can also be in OF R where o € Ix or o € Op,
resp. For each object o in Iy (resp. in On), there is a triple (null,o0,y) (resp.
(z,0,null)) in OFR . For each other object o € Obj, there has to be a triple
(x,0,y) € OFR.

— OFR is coherent with control flow relation CFR 4 of A (see Def. |), i.e. for all
(z,0,y) € OF R with x,y # null there is (x,y) € CFR4.
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Please note that OF' R contains a triple for each pair of object flows sharing an object
and Obj is not allowed to contain objects not involved in object flow.

Definition 11 (refined activity diagram with object flow). A refined activity diagram
RAor with object flow is a well-structured activity diagram Aor = (A, Obj, OFR, I,
O) with coherent object flow such that each simple activity x occurring in Aop is
refined by a graph transformation rule p,. Each decision activity x € Aop has an
if- or loop-guard which is equipped with a guard pattern g. Its guard rule pg is also
denoted by p. Let Oy, be the output parameter set of p, and I, the input parameter
set of py. OF R has to be coherent with refining rules which is defined as follows:

- Forall (z,0,y) € OF R where x # null, an output object parameter exists in Op,
which is called src(x,0,y). If y # null, an input object parameter exists in I, ,
called tgt(x,0,y).

— Forall triples (z,0,y), (z,0,y") (resp. (x,0,y), (2, 0,y)) in OF R we have
sre(z, 0,y) = sre(zx, 0,y') (resp. tgt(z,0,y) = tgt(z',0,y) ).

— For each two activities x and y and the set of all (x,0,y) € OFR, the set of all
pairs (src(x, 0,y),tgt(x, 0,y)) defines an injective mapping.

— For all triples (z,0,null), (x,0 ,null) (resp. (null,o0,y), (null,o’,y)) in OFR
with o # o' we have src(x,o,null) # src(x, o, null) (resp. tgt(null,o,y) #
tgt(null, o', y)).

Definition 12 (semantics of refined activity diagrams with object flow). The seman-
tics Sem(RAor) of an activity diagram RAor with object flow being a refined activ-
ity diagram of Aor = (A,0bj,OFR,1,0) is equal to Sem(RA), the semantics of
refined activity diagram RA without object flow, where in addition partial rule depen-
dencies (see Def.[I) are defined as follows:

For each pair of rules (p;,p;) in a rule sequence s : pi,...,pn of Sem(RA) with
1 < i < j < n, partial rule dependency d;; is defined as follows: Let x (resp. y)
be the activity that is refined by rule p; (resp. p;) in sequence s, then the partial rule
dependency d;; between p; and p; consists of all pairs (src(z, 0,y),tgt(z,0,y)) such
that (x,0,y) € OF R where src and tgt are given by Def.[[]

RAoF is called dependency-compatible, if all rule sequences in Sem(RAor) are
dependency-compatible, as defined in Def.

Definition 13 (completeness of refined activity diagrams with object flow). A set S
of graphs is complete wrt. a dependency-compatible refined activity diagram RAor, if
for all dependency-compatible rule sequences s in RAor there is a graph G in S such
that s is applicable to G in the sense of Def.

Properties quasi-completeness and consistency of refined activity diagrams without ob-
ject flow can be extended to those with object flow accordingly.

Example 3 (Semantics of activity diagrams). The semantics of the flattened activity
diagram AddLecture in Figure Dl consists of a number of rule sequences. For listing
some of them, we use the following acronyms: NN=NotNull, CLec=CreateLecture,
CLab=CreateLaboratory, CEx=CreateExercise, and SR=SetRoom: Sem(RAor) 2
{(CLec, NN,NN,NN),(CLec, NN,SR,NN,NN),(CLec,NN,NN,CLab,NN,NN),
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(CLec, NN,NN,CLab,NN,SR,NN),(CLec, NN,SR, NN, CLab, NN,NN),
(CLec, NN,NN,CLab,NN,SR, NN,CExz, NN, SR),
(CLec, NN, SR,NN,CLab, NN, SR, NN,CExz, NN, SR)}
As partly shown in Example 2] the object flow in our example can be formalized by
partial rule dependencies. All rule sequences given above are dependency-compatible.

5 Related Work

This paper is rooted in formal semantics and analysis of activity diagrams as well as
graph transformation approaches. While a lot of research has been done on semantics
and validation of activity diagrams (see e.g. [11112/9]), few works exist on the analysis
of object flow in activity diagrams such as [13] and [14]. For example, [14] adds data
flow semantics to activity diagrams by means of colored petri nets. Objects which are
passed between activities have attribute value checks and method calls. Colored Petri
nets provide validation like reachability of certain states and quantitative analyses as
matching of time bounds. In contrast, we define a semantics for activity diagrams with
object flow where activities may be refined by interrelated object diagrams which has
not been done before (to the best of our knowledge).

Fujaba [[15)], VMTS [16], and GReAT [17]] are graph transformation tools for spec-
ifying and applying object rules along a control flow specified by activity diagrams.
Fujaba’s story diagrams integrate activity diagrams with object rules. Compared to our
approach, object flow is not depicted separately, but represented by equal names in
activities. Furthermore, rules are not separated from activities. Rules used at different
places have to be specified several times. We define object rules independently of activ-
ities and can apply them more than once with different arguments. VMTS and GReAT
support controlled rule application with explicit control flow in a similar way and some
kind of object flow. All three approaches are implemented, but do not provide a formal
semantics comprising activity refinement and object flow.

6 Conclusion

In this paper, we have defined refined activity diagrams with object flow where each
activity is refined by a set of interrelated object diagrams in addition, describing the
pre- and post-conditions of an activity. Pre-conditions can also include non-existence
conditions on object patterns. We have formalized the semantics of well-structured re-
fined activity diagrams with coherent object flow using algebraic graph transformation
where activity-refining object diagrams are defined by transformation rules. In addi-
tion, we have introduced the notion of partial dependencies between rules formalizing
object flow between refined activities. To prepare a notion of consistency we define the
applicability of rule sequences with partial rule dependencies.

In this paper, we have applied the approach to service modeling. Our example
demonstrates how service behavior can be modeled precisely and how the coherence
of its object flow can be checked. We expect that domains such as work flow design and
aspect-oriented modeling can benefit from the application of our concepts as well. In
future, we want to use the formal semantics given by graph transformation to prove the
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consistency of refined activity diagrams with object flow along sufficient criteria easy
to check. We expect that the graph transformation environment AGG can do a good job
to support automatic checks.
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