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Abstract. Just as some functions have uniform behavior over distinct
types, other functions have uniform behavior over distinct arities. These
variable-arity functions are widely used in scripting languages such as
Scheme and Python. Statically typed languages also accommodate mod-
est forms of variable-arity functions, but even ML and Haskell, languages
with highly expressive type systems, cannot type check the wide variety
of variable-arity functions found in untyped functional languages. Con-
sequently, their standard libraries contain numerous copies of the same
function definition with slightly different names.

As part of the Typed Scheme project—an on-going effort to create an
explicitly typed sister language for PLT Scheme—we have designed and
implemented an expressive type system for variable-arity functions. Our
practical validation in the context of our extensive code base confirms
the usefulness of the enriched type system.

1 Types for Variable-Arity Functions

For the past two years, Tobin-Hochstadt and Felleisen [I2] have been devel-
oping Typed Scheme, an explicitly and statically typed sister language of PLT
Scheme [3]. In many cases, Typed Scheme accommodates existing Scheme pro-
gramming idioms as much as possible. One remaining obstacle concerns functions
of variable arity. Such functions have a long history in programming languages,
especially in LISP and Scheme systems where they are widely used for a variety of
purposes, ranging from arithmetic operations to list processing. In response, we
have augmented Typed Scheme so that its type system can cope with variable-
arity functions of many kinds.

Some variadic functions in Scheme are quite simple. For example, the function
+ takes any number of numeric values and produces their sum. This function,
and others like it, could be typed in a system that maps a variable number of
arguments into a homogeneous data structure[] Other variable-arity functions,
however, demand a more sophisticated approach than collecting the extra argu-
ments in such a fashion.

Consider Scheme’s map function, which takes a function as input as well as
an arbitrary number of lists. It then applies the function to the elements of the
lists in a pointwise fashion. The function must therefore take precisely as many
arguments as the number of lists provided. For example, if the make-student

! Languages like C, C++, Java, and C# support such variable-arity functions.
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function consumes two arguments, a name as a string and a number for a grade,
then the expression

(map make-student (list "Al" "Bob" "Carol") (list 87 98 64))

produces a list. We refer to variable-arity functions such as 4+ and map as having
uniform and non-uniform polymorphic types, respectively.

For Typed Scheme to be useful to working programmers, its type system
must handle this form of polymorphism. Further, although map and + are part
of the standard library, language implementers cannot arrogate the ability to
abstract over the arities of functions. Scheme programmers routinely define such
functions, and if they wish to refactor their Scheme programs into Typed Scheme,
our language must allow such function definitions.

Of course, our concerns are relevant beyond the confines of Scheme. Variable-
arity functions are also useful in statically typed languages, but are barely sup-
ported because of a lack of pragmatic approaches. Even the standard libraries
of highly expressive typed functional languages contain functions that would
benefit from non-uniform variable-arity, but instead are defined via copying of
code. For example, the SML Basis Library [4] includes the ARRAY and ARRAY2
signatures, which include functions that differ only in arity. The GHC standard
library [5] also features close to a dozen families of functions (such as zip and
zipWith) defined at a variety of arities. We conjecture that if their type systems
provided variable-arity polymorphism, Haskell and ML programmers would rou-
tinely define such functions, too.

In this paper, we present the first pragmatic and comprehensive approach to
variable-arity polymorphism: its design, implementation, and evaluation. Our
new version of Typed Scheme can assign types to hundreds of programmer-
introduced function definitions with variable arities, something that was simply
impossible before. Furthermore, we can now type check library functions such
as map and fold-left without resorting to special tricks or duplication.

In the next two sections, we describe Typed Scheme in general terms and then
present the type system for variable-arity functions. In section H, we introduce a
formal model of our variable-arity type system. In section [0l we present prelimi-
nary results of our evaluation effort with respect to the PLT Scheme code base
and the limitations of our system. In section [0l we discuss related work.

2 Typed Scheme ...

The goal of our Typed Scheme [2] project is to design a typed sister language
for an untyped scripting language in which programmers can transfer programs
to the typed world one module at a time. Like PLT Scheme, Typed Scheme is a
modular programming language; unlike plain Scheme programs, Typed Scheme
programs have explicit type annotations for function and structure definitions
that are statically checked. Typed Scheme also supports integration with un-
typed Scheme code, allowing a typed program to link in untyped modules and
vice versa. The mechanism exploits functional contracts [6] to guarantee a gen-
eralized type soundness theorem [I].
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Typed Scheme supports this gradual refactoring with a type system that
accommodates standard Scheme programming idioms with minimal code mod-
ification. In principle, Scheme programmers need only annotate structure and
function headers with types to move a module to the Typed Scheme world; on
occasion, they may also wish to define a type alias to keep type expressions con-
cise. The type system combines true union types, recursive types, first-class poly-
morphic functions, and the novel discipline of occurrence typing. Additionally,
Typed Scheme infers types for instantiations of polymorphic functions, based on
locally-available type information.

2.1 Basic Typed Scheme

Scheme programmers typically describe the structure of their data in comments,
rather than in executable code. For example, a shape data type might be repre-
sented as:

;5 A shape is either a rectangle or a circle

(define-struct rectangle (I w)) (define-struct circle (r))

To accommodate this style in Typed Scheme, programmers can specify true,
untagged unions of types:

(define-type-alias shape (|J rectangle circle))
(define-struct: rectangle ([l : Integer] [w : Integer]))
(define-struct: circle ([r : Integer]))

Typed Scheme also supports explicit recursive types, which, for example, are
necessary for typing uses of cons pairs in Scheme programs. This allows the
specification of both fixed-length heterogeneous lists and arbitrary-length ho-
mogeneous lists, or even combinations of the two.

Finally, Typed Scheme introduces occurrence typing, which allows the types
of variable occurrences to depend on their position in the control flow graph. For
example, the program fragment

(display "Enter a number to double: ")
(let ([val (read)]) ;; an arbitrary S-expression
(if (number? val) (display (x 2 val))
(display "That wasn't a number!")))

type-checks correctly because the use of * is guarded by the number? check.

2.2 Polymorphic Functions and Local Type Inference

Typed Scheme supports first-class polymorphic functions. For example, list-ref
has the type (V () ((Listof «) Integer — «)). It can be defined in Typed
Scheme as follows:
(: list-ref (V () ((Listof «) Integer — «)))
(define (list-ref 1 1)
(cond [(not (pair? 1)) (error "empty list")]

[(=04) (car )]
[else (list-ref (cdr 1) (— i 1))])
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The example shows two important aspects of polymorphism in Typed Scheme.
First, the abstraction over types is explicit in the polymorphic type of list-ref but
implicit in the function definition. Second, typical uses of polymorphic functions,
e.g., car and list-ref, do not require explicit type instantiation. Instead, the
required type instantiations are synthesized from the types of the arguments.

Argument type synthesis uses the local type inference algorithm of Pierce
and Turner [7]. It greatly facilitates the use of polymorphic functions and makes
conversions from Scheme to Typed Scheme convenient, while dealing with the
subtyping present in the rest of the type system in an elegant manner. Further-
more, it ensures that type inference errors are always locally confined, rendering
them reasonably comprehensible to programmers.

3 ... with Variable-Arity Functions

A Scheme programmer defines functions with lambda or define. Both syntactic
forms support fixed and variable-arity parameter specifications:

1. (lambda (z y) (+ z (x y 3))) creates a function of two arguments and
(define (f = y) (+ = (x y 3))) creates the same function and names it f;

2. the function (lambda (z y . 2) (+ z (apply maz y z))) consumes at least
two arguments and otherwise as many as needed;

3. (define (g z y . z) (+ = (apply maz y z))) names this function g;

4. (lambda z (apply + z)) creates a function of arbitrary arity; and

5. (define (h . 2) (apply + 2)) is the analogue to this lambda expression.

The parameter z in the last four cases is called the rest parameter.

The application of a variable-arity function combines any arguments in excess
of the number of required parameters into a list. Thus, (¢ 1 2 3 4) binds z to 1
and y to 2, while z becomes (list 3 4) for the evaluation of ¢’s function body. In
contrast, (h 12 3 4) sets z to (list 12 3 4).

The apply function, used in the examples above, takes a function f, a sequence
of fixed arguments vy ...v,, and a list of additional arguments r. If the list r is

the value (list wy ... wy), then (apply f vi ... v, ) is the same as (f vy ...
Up W1 ... wy). The apply function plays a critical role in conjunction with rest
arguments.

This section sketches how the revised version of Typed Scheme accommo-
dates variable-arity functions. Our revision focuses on the uses of such func-
tions that accept arbitrarily many arguments. Scheme programmers sometimes
use variable-arity functions to simulate optional or keyword arguments. In PLT
Scheme, such programs typically employ case-lambda [§] or equivalent define
forms instead.

3.1 Uniform Variable-Arity Functions

Uniform variable-arity functions are those that expect their rest parameter to
be a homogeneous list. Consider the following three examples of type signatures:
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(: + (Integer* — Integer))
(: string-append (String* — String))
(: list (V () (o* — (Listof «))))

The syntax Type* for the type of rest parameters alludes to the Kleene star
for regular expressions. It signals that in addition to the other arguments, the
function takes an arbitrary number of arguments of the given base type. The
form Type* is dubbed a starred pre-type, because it is not a full-fledged type and
may appear only as the last element of a function’s domain.

Here is a definition of variable-arity 4+ in Scheme:

;; assumes binary-+, a binary addition operator
(define (+ . zs) (if (null? zs) 0 (binary-+ (car xs) (apply + (cdr xs)))))

Typing this definition is straightforward. The type assigned to the rest parameter
of starred pre-type 7* in the body of the function is (Listof 7), a pre-existing
type in Typed Scheme.

3.2 Beyond Uniform Variable-Arity Functions

Not all variable-arity functions assume that their rest parameter is a homoge-
neous list of values. We can allow heterogeneous rest parameters by finding other
constraints. For example, the length of the list assigned to the rest parameter
may be connected to the types of other parameters or the returned value.

For example, Scheme’s map function is not restricted to mapping unary func-
tions over single lists, unlike its counter-parts in ML or Haskell. When map
receives a function f and n lists, it expects f to accept n arguments. Also, the
type of the kth function parameter must match the element type of the kth list.

Scheme’s apply function provides its own challenges. It is straightforward to
type the use of apply with a uniform variable-arity function, as in the hypotheti-
cal definition of + from section 3.1l If the type of f involves the starred pre-type
7*, then the list » must have type (Listof 7).

However, take the following example taken from the PLT Scheme code base:

;; implements a wrapper that prints f’s arguments
(define (verbose f)
(if quiet? f (lambda a (printf "xform-cpp: “a\n" a) (apply f a))))

The intent of the programmer is clear—the result of applying verbose to a func-
tion f should have the same type as f for any function type. With uniform
variable-arity functions, we can type the internal lambda’s argument a only
as a homogeneous list of arbitrary length. Thus, if f has some fixed arity n,
then there is no way to statically guarantee that the list of arguments a has
n elements, and thus applying the function f to the list a via apply may go
wrong. Our type system should protect the programmer from arity mismatches,
whether through function application or uses of apply, while allowing functions
like verbose.
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3.3 Non-uniform Variable-Arity Functions

As of the latest release, Typed Scheme can represent the types of non-uniform
variable-arity functions. Below are the types for some example functions:

;; map is the standard Scheme map
(: map
(v (yag..)
((a B ...3 — ) (Listof «) (Listof 3) ...3 — (Listof v))))

;3 map-with-funcs takes any number of functions,

;; and then an appropriate set of arguments, and then produces
;; the results of applying all the functions to the arguments

(: map-with-funcs

VBa..)(a.. a0 —(a.. .o— (Listofs))))

Our first key innovation is the possibility to attach ... to the last type variable
in the binding position of a V type constructor. Such type variables are dubbed
dotted type variables. Dotted type variables signal that this polymorphic type
can be instantiated with an arbitrary number of types.

Next, the body of V types with dotted type variables may contain expressions
of the form 7 ..., for some type 7 and a dotted type variable ce. These are dotted
pre-types; they classify non-uniform rest parameters just like starred pre-types
classify uniform rest parameters. A dotted pre-type has two parts: the base 7 and
the bound «a. Only dotted type variables can be used as the bound of a dotted
pre-type. Since V-types are nestable and thus multiple dotted type variables may
be in scope, dotted pre-types must specify the bound.

When a dotted polymorphic type is instantiated, any dotted pre-types are
expanded by copying the base an appropriate number of times and by replacing
free instances of the bound in each copy with the corresponding type argument.
For example, instantiating map-with-funcs as follows:

(inst map-with-funcs Number Integer Boolean String)

results in a value with the type:

((Integer Boolean String — Number)* —
(Integer Boolean String — (Listof Number)))

Typed Scheme also provides local inference of the appropriate type argu-
ments for dotted polymorphic functions, so explicit type instantiation is rarely
needed [9]. Thus, the following uses of map are successfully inferred at the ap-
propriate types:

(map not (list #t #f #t))
;; map is instantiated (via local type inference) at:
;; (Boolean — Boolean) (Listof Boolean) — (Listof Boolean))

(map make-book (list "Flatland") (list "A. Square") (list 1884))
;; ((String String Integer — book)
;; (Listof String) (Listof String) (Listof Integer) — (Listof book))
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Typed Scheme can also type-check the definitions of non-uniform variable-
arity functions:
(: fold-left
VHyap...)((yap...s =) v (Listof a) (Listof 3) ... — 7)))
(define (fold-left f ¢ as . bss)
(if (or (null? as) (ormap null? bss)) ¢

(apply fold-left (apply f ¢ (car as) (map car bss)) (cdr as)
(map cdr bss))))

The example introduces a definition of fold-left. Its type shows that it accepts at
least three arguments: a function f; an initial element c; and at least one list as.
Optionally, fold-left consumes another sequence bss of lists. For this combination
to work out, f must consume as many arguments as there are lists plus one; in
addition, the types of these lists must match the types of f’s parameters because
each list item becomes an argument.

Beyond this, the example illustrates that the rest parameter is treated as if it
were a place-holder for a plain list parameter. In this particular case, bss is thrice
subjected to map-style processing. In general, variable-arity functions should be
free to process their rest parameters with existing list-processing functions.

The challenge is to assign types to such expressions. On the one hand, list-
processing functions expect lists, but the rest parameter has a dotted pre-type.
On the other hand, the result of list-processing a rest parameter may flow again
into a rest-argument position. While the first obstacle is simple to overcome
with a conversion from dotted pre-types to list types, the second one is onerous.
Since list-processing functions do not return dotted pre-types but list types, we
cannot possibly expect that such list types come with enough information for
an automatic conversion.

Thus we use special type rules for the list processing of rest parameters with
map, andmap, and ormap. Consider map, which returns a list of the same length
as the given one and whose component types are in a predictable order. If xs is
classified by the dotted pre-type 7T .. .o, and f has type (7 — o), we classify (map
f xs) with the dotted pre-type o ...,. Thus, in the definition of fold-left (map
car bss) is classified as the dotted pre-type (3 ...5 because car is instantiated at
((Listof 8) — ) and bss is classified as the dotted pre-type (Listof ) .. ..

One way to use such processed rest parameters is in conjunction with apply.
Specifically, if apply is passed a variable-arity function f, then its final argument
[, which must be a list, must match up with the rest parameter of f. If the
function is a uniform variable-arity procedure and the final argument is a list,
typing the use of apply is straightforward. If it is a non-uniform variable-arity
function, the number and types of parameters must match the elements and
types of .

Here is an illustrative example from the definition of fold-left:

(apply f ¢ (car as) (map car bss))

By the type of fold-left, f has type (y a 8 ... — 7). The types of ¢ and (car
as) match the types of the initial parameters to f. Since the map application
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p :== | plus | minus | mult | car | cdlnull?
vae=mn | b | p | null, &nsf vo) | (A (x: T]&J (A (@) e)
| A(@a.)e) | W(z:7 . [z:7]De) | W(z:7] . [x:7.wa]) €)
ex=v | x| (e€) | (if eee) | (cons, ee) | errory,
| @e7T) | (@eT T..a) | (apply e € e)
| (map ee) | (ormap e e) | (andmap e e)
7 ::= Integer | Boolean | a | (Listof 7) | (7 — 7)
| T =7 | (T1ea—7 | V@)1 | V@ a..)7)

Fig. 1. Syntax

has dotted pre-type (Listof 3) ...s and since the rest parameter position of f is
bounded by 3, we are guaranteed that the length of the list produced by (map
car bss) matches f’s expectations about its rest argument. In short, we use the
type system to show that we cannot have an arity mismatch, even in the case of

apply.

4 A Variable-Arity Type System

The development of our formal model starts from the syntax of a multi-arity
version of System F [10], enriched with variable-arity functions. An accompany-
ing technical report [9] contains the full set of type rules as well as a semantics
and soundness theorem for this model.

4.1 Syntax

We extend System F with multiple-arity functions at both the type and term
level, lists, and uniform rest-argument functions. The use of multiple-arity func-
tions establishes the proper problem context. Lists and uniform rest-argument
functions suffice to explain how both kinds of variable-arity functions interact.

The grammar in figure [Il specifies the abstract syntax. We use a syntax close
to that of Typed Scheme, including the use of @ to denote type application. The
use of the vector notation e denotes a (possibly empty) sequence of forms (in
this case, expressions). In the form e;”, n indicates the length of the sequence,
and the term ey, is the ¢th element. The subforms of two sequences of the same
length have the same subscript, so ex™ and 7," are identically-sized sequences
of expressions and types, respectively, whereas e_j?m is unrelated. If all vectors
are the same size the sizes are dropped, but the subscripts remain. Otherwise
the addition of starred pre-types, dotted type variables, dotted pre-types, and
special forms is needed to operate on non-uniform rest arguments.

A starred pre-type, which has the form 7*, is used in the types of uniform
variable-arity functions whose rest parameter contains values of type 7. It only
appears as the last element in the domain of a function type or as the type of a
uniform rest argument.
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A dotted type variable, which has the form « ..., serves as a placeholder in a
type abstraction. Its presence signals that the type abstraction can be applied to
an arbitrary number of types. A dotted type variable can only appear as the last
element in the list of parameters to a type abstraction. We call type abstractions
that include dotted type variables dotted type abstractions.

A dotted pre-type, which has the form 7 ...,, is a type that is parameterized
over a dotted type variable. When a type instantiation associates the dotted
type variable o ... with a sequence 7," of types, the dotted pre-type 7T ...o is
replaced by n copies of 7, where « in the ith copy of 7 is replaced with 7%,. In the
syntax, dotted pre-types can appear only in the rightmost position of a function
type, as the type of a non-uniform rest argument, or as the last argument to @.

In this model the special forms ormap, andmap, and map are restricted to appli-
cations involving non-uniform rest arguments, and apply is restricted to applica-
tions involving rest arguments. In Typed Scheme, they also work for applications
involving lists.

4.2 Type System

The type system is an extension of the type system of System F to handle
the new linguistic constructs. We start with the changes to the environments
and judgments, plus the major changes to the type validity relation. Next we
present relations used for dotted types and expressions that have dotted pre-
types instead of types. Then we discuss the changes to the standard typing
relation, and finally we discuss the metafunctions used to define the new typing
judgments.

The environments and judgments used in our type system are similar to those
used for System F except as follows:

— The type variable environment (A) includes both dotted and non-dotted
type variables.

— There is a new class of environments (X'), which map non-uniform rest pa-
rameters to dotted pre-types.

— There is also an additional validity relation A 7 ..., for dotted pre-types.

— The use of X makes typing relation I, A, X' F e : 7 a five-place relation.

— There is an additional typing relation I A, X' F e>7 ..., for assigning dotted
pre-types to expressions.

The type validity relation checks the validity of two forms—types and dotted
type variables. The additional rules for establishing type validity of non-uniform
variable-arity types are provided below, along with an additional relation which
checks the validity of dotted pre-types.

TE-DFuUN TDE-PRETYPE
TE-DVAR AP Trva TE-DALL Aba ..
a..eA Al T AFT Au{a;,pB ...} kT AU{a} b1

AFa.. AF(T] Tr veea — 7) AR (af B...)7) A>T wiia
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When validating a dotted pre-type 7 ...,, the bound « is checked to make sure
that it is indeed a valid dotted type variable. Then 7 is checked in an environment
where the bound is allowed to appear free. It is possible for a dotted pre-type to
be nested somewhere within a dotted pre-type over the same bound, e.g.

VM(a...) (... @ @) ...q = (..., — (Listof Integer))))

To illustrate how such a type might be used, we instantiate this sample type
with the sequence of types Integer Boolean:

((Integer Boolean — Integer) (Integer Boolean — Boolean)
— (Integer Boolean — (Listof Integer)))

There are two functions in the domain of the type, each of which corresponds to
an element in our sequence. All functions have the same domain—the sequence
of types; the ith function returns the ith type in the sequence.

TD-VAR TD-Map
X(@X) =T eenr F'AYXEe DT g Auvf{ae}, XFes: (1, — 1)
FAYEZDT g I''A, Y (map e €,)>T wuuq

The preceding rules are the typing rules for the two forms of expressions that
have dotted pre-types. The TD-VAR rule just checks for the variable in X'. The
TD-MAP rule assigns a type to a function position. Since the function needs to
operate on each element of the sequence represented by e,., not on the sequence
as a whole, the domain of the function’s type is the base 7, instead of the dotted
type 7T, ...o. This type may include free references to the bound «, however.
Therefore, we must check the function in an environment extended with « as a
regular type variable.

As expected, most of the typing rules are simple additions of multiple-arity
type and term abstractions and lists to System F. For uniform variable-arity
functions, the introduction rule treats the rest parameter as a variable whose
type is a list of the appropriate type. There is only one elimination rule, which
deals with the special form apply; other eliminations such as direct application
to arguments are handled via the coercion rules.

The type rules in figure 2l concern non-uniform variable-arity functions. These
functions also have one introduction and one elimination rule. The rule T-
ORMAP and its absent counterpart T-ANDMAP are similar to that of TD-MAP
in that the dotted pre-type bound of the second argument is allowed free in
the type of the first argument. In contrast to uniform variable-arity functions,
non-uniform ones cannot be applied directly to arguments in this calculus.

While T-DTABS, the introduction rule for dotted type abstractions, follows
from the rule for normal type abstractions, the elimination rules are quite dif-
ferent. There are two elimination rules: T-DTAPP and T-DTApPPDOTS. The
former handles type application of a dotted type abstraction where the dotted
type variable corresponds to a sequence of types, and the latter deals with the
case when the dotted type variable corresponds to a dotted pre-type.
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T-DABs
Al 1 ADTr veen Nz = 1), A, Xlzr — T ceia] Fexr

LA EO ([on 7k [2r i Tr ena]) €)1 (TR Tr eeva — 7)

T-DApPLY T-ORMAP
DA D Fep: (TE Troveea = 7) LAY erdTr
LAY eg: T A YXFe bt wa I,AU{a}, Xt es: (7 — Boolean)
A, X\ (apply ef ex er): T I''A, X I (ormap ey er): Boolean
T-DTABs

rAuviag,p..},Xke:r
rAYS-A@B..)e):(V(ar B...)T)
T-DTAPP .
AFT AFT B fresh A SrFe: (VY ("B ...) 1)
LA SE(@eT™ 7™ td(ra; = 7", 8, B Bk — 7]

T-DTAprpDOTS

pelinieaket .

Ab Ty A>Ty g A YX¢Fe:(V(ag ar oon) 7)
DA S (@ e Tg T weup) : sd(T[Ct 7 T2, ry T, B)

Fig. 2. Selected Type Rules

sd(ar, ar, Tr, ) =7,

sd(a, ar, Tr, B) =« where a # o,

sd((T7 T} vevar. = T), 0try T, B)
(sd (75, ryTr, B) sd(r,

sd((T7 T} vooa = T), r, 7, B)
(sd(7j,ar,Tr, B) $d(T), r,Tr, B) cova — $d(T,r, Tr, B)) where a #

sd((VY (o a ...) 7),ar, 7, 8) =V (af «...) sd(T,ar, 7, 5))

7aT7TT7ﬁ) B T Sd(T7aTvTT7B))

S~

td (5™ T oees — 70, 8,81 ) =

(1o, 8,50 ) e, B 55 = Bl — (5, 5)
td- (7™ T veva — T),ﬁ,gk ) =

(tdr (15,8, B0")  tde(Tr, B, Be) woea — tdo(7, 8, Bn))  where a # 3

Fig. 3. Subst-dots and trans-dots

The T-DTAPPDOTS rule is more straightforward, as it is just a substitution
rule. Replacing a dotted type variable with a dotted pre-type is more involved
than normal type substitution, however, because we need to replace the dotted
type variable where it appears as a dotted pre-type bound. The metafunction
sd performs this substitution. Selected cases of the definition of sd appear in
figure [3} the remaining clauses perform structural traversals.
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The T-DTAPP rule must first expand out dotted pre-types that use the dotted
type variable before performing the appropriate substitutions. To do this it uses
the metafunction td,; on a sequence of fresh type variables of the appropriate
length to expand dotted pre-types that appear in the body of the abstraction’s
type into a sequence of copies of their base types. These copies are first expanded
with ¢d,; and then in each copy the free occurrences of the bound are replaced
with the corresponding fresh type variable. Normal substitution is performed
on the result of ¢d,, mapping each fresh type variable to its corresponding type
argument. The interesting cases of the definition of td, also appear in figure [3l

5 Evaluation

Mining the extensive PLT Scheme code base provides significant evidence that
variable-arity functions are frequently defined and used; examining a fair number
of examples shows that our type system is able to cope with a good portion of
these definitions and uses.

5.1 Measurements of Existing Code

A simple pattern-based search of the code base for definitions of variable-arity
functions and uses of certain built-in core functions produces the following:

— There are at least 1761 definitions of variable-arity functions.
— There are 488 uses of map, for-each, foldl, foldr, andmap, and ormap with
more than the minimum number of arguments.

These numbers demonstrate the need for a type system that deals with
variable-arity functions. Programmers use those from the core library at multiple
arities. Furthermore, programmers define such functions regularly.

It is this kind of inspection of our code base that inspires a careful inves-
tigation of the issue of variable-arity functions. We cannot reasonably ask our
programmers to duplicate their code or to duplicate type cases just because our
type system does not accommodate their utilization of the expressive power of
plain Scheme.

5.2 Evaluation of Examples

Simply counting definitions and uses of variable-arity functions is insufficient.
Each definition and use demands a separate inspection in order to validate that
our type system can cope with it. This is particularly necessary for function def-
initions, because our pattern-based search does not indicate whether a definition
introduces a uniform or non-uniform variable-arity function.

Uses The sample set for uses of variable-arity functions from the core library
covers 30 cases, i.e., 10 randomly-chosen example function applications using
each of map, for-each, and andmap with at least two list arguments. For map,
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we are able to type 9 of 10, for for-each we are able to type 10 of 10, for andmap
we are able to type 10 of 10.

In short, our technique is extremely successful for the list-processing functions,
checking 29 of the 30 examples. The one failure is due to the use of a list to
represent a piece of information that comprises four pieces. In this case, our
type system simply does not preserve the length information for the list from
the input to map.

Definitions. The sample set for definitions of variable-arity functions covers some
120 cases (or some 7%) from the code base. Our findings naturally sort these
samples into three categories:

— A majority of the functions can be typed with uniform rest arguments or use
variable arity to simulate optional arguments. For the latter, we recommend
that programmers rewrite such functions using case-lambda.

— Twelve of the 120 inspected definitions are non-uniform and require variable-
arity polymorphism. Our type checker can assign types to all of them. Re-
turning to our example in section 3.2 verbose can be given the type

V@Ba...)(a.... = 08)—=(a...a = 0))).
— The small remainder cannot be typed using our system.

These inspections demonstrate two important points. First, all of the vari-
ous ways in which Typed Scheme handles varying numbers of arguments are
important for type-checking existing Scheme code. Second, our design choices
for variable-arity polymorphism mostly capture the programming style used in
practice by working PLT Scheme programmers. In conclusion, we conjecture that
our type system can validate more than 95% of the uses of heterogeneous library
functions such as map, that it can check 70% of the close to 1800 definitions,
10% of which require the heterogeneous version of variable-arity polymorphism.

6 Related Work

Variable-arity functions are nearly ubiquitous in the world of programming lan-
guages, but no typed language supports them in a systematic and principled
manner. Here we survey existing systems as well as several theoretical efforts.

ANSI C provides “varargs,” but the functions that implement this function-
ality serve as a thin wrapper around direct access to the stack frame. Java [11]
and C# are two statically typed languages that have only uniform variable-arity
functions, since access occurs via a homogeneous array.

Dzeng and Haynes [12] come close to our goal of providing a practical type
system for variable-arity functions. As part of the Infer system for type-checking
Scheme [13], they use an encoding of “infinitary tuples” as row types for an ML-
like type inference system that handles optional arguments and uniform and
non-uniform variable-arity functions.
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By comparison to our work, Dzeng and Haynes’ system has several limitations.
Most importantly, since their system does not support first-class polymorphic
functions, they are unable to type many of the definitions of variable-arity func-
tions, such as map or fold. Additionally, their system requires full type inference
to avoid exposing users to the underlying details of row types, and it is also
designed around a Hindley-Milner style algorithm. This renders it incompatible
with the remainder of the design of Typed Scheme, which is based on a system
with subtyping.

Gregor and Jarvi [I4] propose an extension for variadic templates to C++ for
the upcoming C++0x standard. This proposal has been accepted by the C++
standardization committee. Variadic templates provide a basis for implementing
non-uniform variable-arity functions in templates. Since the approach is grounded
in templates, it is difficult to translate their approach to other languages without
template systems. The template approach addresses a simpler problem, since tem-
plate expansion is a pre-processing step and types are only checked after template
expansion. It also significantly complicates the language, since arbitrary computa-
tion can be performed during template expansion. Further, the template approach
prevents checking of variadic functions at the definition site, meaning that errors
in the definition are only caught when the function is used.

Tullsen [15] attempts to bring non-uniform variable-arity functions to Haskell
via the Zip Calculus, a type system with restricted dependent types and special
kinds that serve as tuple dimensions. This work is theoretical and comes without
practical evaluation. The presented limitations of the Zip Calculus imply that it
cannot assign a variable-arity type to the definition of zipWith (Haskell’s name
for Scheme’s map) without further extension, whereas Typed Scheme can do so.

Similarly, McBride [I6] and Moggi [17] present restricted forms of dependent
typing in which the number of arguments is passed as a parameter to variadic
functions. Our system, while not allowing the expression of every dependently-
typable program, is simpler than dependent typing, suffices for most examples
we have encountered, and does not require an extra function parameter.

7 Conclusion

In this paper, we have presented a design for polymorphic functions with variable
arity. Our system accommodates both uniform and non-uniform variadic func-
tions. We also validated our design against existing Scheme and Typed Scheme
code. Typed Scheme with variable-arity polymorphism is part of the latest re-
lease of PLT Scheme (4.1), available from http://plt-scheme.org/.

In closing, we leave the reader with a final observation on the nature of
variable-arity polymorphism. Many existing languages allow functions that ac-
cept a variable number of arguments, all of a uniform type. Such functions have
types of the form 7 — 7. To accommodate variable-arity polymorphism, how-
ever, we must lift this abstraction one level up. For example, given the type (V
(a...) (a..., — Boolean)), the kind of this type is simply x* — *. So we see
that non-uniform variable arity at the type level is reflected in uniform variable
arity at the kind level.
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