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Abstract. The operational semantics of interactive systems is usually
described by labeled transition systems. Abstract semantics is defined
in terms of bisimilarity that, in the finite case, can be computed via the
well-known partition refinement algorithm. However, the behaviour of in-
teractive systems is in many cases infinite and thus checking bisimilarity
in this way is unfeasible. Symbolic semantics allows to define smaller,
possibly finite, transition systems, by employing symbolic actions and
avoiding some sources of infiniteness. Unfortunately, the standard parti-
tion refinement algorithm does not work with symbolic bisimilarity.

1 Introduction

The operational semantics of interactive system is usually specified by labeled
transition systems (LTSs). Behavioural equivalence is often defined as bisimi-
larity, namely the largest bisimulation. Many efficient algorithms and tools for
bisimulation checking in the finite case have been developed [2II7I8]. Among
these, the partition refinement algorithm [11I18] is the best known: first it gener-
ates the state space of the LTS (i.e., the set of reachable states); then, it creates
a partition equating all the states and then, iteratively, refines this partitions
by splitting non equivalent states. At the end, the resulting partition equates all
and only the bisimilar states.

Most importantly, the same algorithm can be used to construct the minimal
automaton, that is the smallest (in terms of states and transitions) LTS amongst
all those bisimilar. Construction of minimal automata allows to model check
efficiently for several properties by eliminating redundant states once and for
all. In fact most model checking logics are adequate w.r.t. bisimilarity, namely a
formula holds in the given system iff it holds in its minimal representative.

In practical cases, compositionality is also very relevant, since it is the key
to master complexity. Then a fundamental property is that bisimilarity be a
congruence. When this is not the case, behavioural equivalence is defined either
as the largest congruence contained into bisimilarity [I3] or as the largest bisim-
ulation that is also a congruence [I7]. In this paper we focus on the latter and
we call it saturated bisimilarity. Indeed it coincides with ordinary bisimilarity on
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the saturated transition system, that is obtained by the original LTS by adding
the transition p =5 q, for every context ¢, whenever c¢(p) 4 q.

Many interesting abstract semantics are defined in this way. For example, since
late and early bisimilarity of m-calculus [I4] are not preserved under substitution
(and thus under input prefixes), in [20] Sangiorgi introduces open bisimilarity
as the largest bisimulation on 7w-calculus agents which is closed under substitu-
tions. Other noteworthy examples are asynchronous m-calculus [IJT0] and mo-
bile ambients calculus [6/12]. The definition of saturated bisimilarity as ordinary
bisimulation on the saturated LTS, while in principle operational, often makes
infinite state the portion of LTS reachable by any nontrivial agent, and in any
case is very inefficient, since it introduces a large number of additional states
and transitions. Inspired by [9], Sangiorgi defines in [20] a symbolic transition
system and symbolic bisimilarity that efficiently characterizes open bisimilarity.
After this, many formalisms have been equipped with a symbolic semantics.

In [], we have introduced a general model that describes at an abstract level
both saturated and symbolic semantics. In this abstract setting, a symbolic tran-
sition p c’—o:g p’ means that c(p) % p/ and c is a smallest context that allows p
to performs such transition. Moreover, a certain derivation relation F amongst
the transitions of a systems is defined: p R p1 FEop 2 p2 means that the
latter transition is a logical consequence of the former. In this way, if all and
only the saturated transitions are logical consequences of symbolic transitions,
then saturated bisimilarity can be retrievied via the symbolic LTS.

However, the ordinary bisimilarity over the symbolic transition system differs
from saturated bisimilarity. Symbolic bisimilarity is thus defined with an asym-
metric shape. In the bisimulation game, when a player proposes a transition,

the opponent can answer with a move with a different label. For example in the
L. [a=b],7 T,
open w-calculus, a transition p —— p’ can be matched by ¢ — ¢'. Moreover,

the bisimulation game does not restart from p’ and ¢/, but from p’ and ¢'{b/a}.

For this reason, algorithms and tools developed for bisimilarity cannot be
reused for symbolic bisimilarity. Inspired by [I9/15] who developed ad hoc parti-
tion refinement algorithm for open and asynchronous bisimilarity, in this paper
we introduce a generical symbolic partition refinement algorithm, relying on the
theoretical framework presented in [4]. The algorithm is based on the notion of
redundant symbolic transitions. Intuitively, a symbolic transition p CZ’—Q% q is
redundant if there exists another symbolic transition p Cl’—m>[3 p1 that logically
implies it, that is p Lalm p1Ep 2 p2 and ¢ is bisimilar to ps. Now, if we
consider the LTS having only not-redundant transitions, the ordinary notion of
bisimilarity coincides with saturated bisimilarity. Thus, in principle, we could
remove all the redundant transitions and then check bisimilarity with the stan-
dard partition refinement algorithm. But, how can we decide which transitions
are redundant, if redundancy itself depends on bisimilarity?

Our solution consists in computing bisimilarity and redundancy at the same
time. In the first step, the algorithm considers all the states bisimilar and all
the transitions (that are potentially redundant) as redundant. At any iteration,
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states are distinguished according to (the current estimation of) not-redundant
transitions and then not-redundant transitions are updated according to the new
computed partition. The main peculiarity of the algorithm is that in the initial
partition, we have to insert not only the reachable states, but also those that
are needed to check redundancy. An extended version of the paper is in [5].

2 Partition Refinement and Minimal Automaton

In CCS [13], bisimilarity (~) is defined as the largest bisimulation relation, i.e.,
the largest relation R such that R C F(R) where F is a function such that for
each relation R, pF(R) q iff

— if p % p/ then ¢ = ¢ and p'Rq/,
— if ¢ % ¢ then p % p' and p'Rq’.

Since F is monotonic for set inclusion, ~ = |J{R | R C F(R)} follows from
standard results on fixed point theory. Moreover, ~ is itself a fix point of F,
i.e., ~= F(~). Alternatively, bisimilarity can be characterized as the limit of
a decreasing chains of relations (none of them is a bisimulation) starting with
the universal relation. Hereafter, we use k to denote ordinals numbers, x4+ 1 for
successor of k, A for limits ordinals and O for the class of all ordinals. Formally,
the terminal sequence is defined for each ordinal k as follow,

K<

where P is the set of all CCS processes.
Bisimilarity coincides with the limit of the terminal sequence.

Proposition 1. ~=[), . ~"

Given a set S, a partition of S is a set of blocks, i.e. subsets of S, that are
all disjoint and whose union is S. A partition on S represents an equivalence
relation, where equivalent elements belong to the same block. In the following,
given a function G on equivalence relations, we denote by G the corresponding
function on partitions.

The characterization of bisimilarity through the terminal sequence suggests
a procedure for checking bisimilarity of a set of initial states I.S. First of all,
we compute 1.5*, i.e., the set of all states that are reachable from I.S. Then we
create the partition PY where all the elements of I.5* belongs to the same block.
After the initialization, we iteratively refine the partitions by using the function
F (i.e., the function equivalent to F on partitions): two states p and ¢ belong to
the same block in P"*1, if and only if whenever p = p’ then ¢ — ¢’ with p’ and
¢’ in the same block of P™ and viceversa.The algorithm terminates whenever two
consecutive partitions are equivalent. In such partition two states belong to the
same block if and only if they are bisimilar. Notice that since F is monotonic,
any iteration splits blocks and never fuse them. For this reason if 1.5* is finite,
the algorithm terminates in at most |I.5*| iterations.
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Algorithm 1. Partition-Refinement (/5)
Initialization

1. IS* is the set of all processes reachable from IS,
2. P%:={IS*},

Iteration P"™' := F(P"),
Termination If P* = P™*! then return P".

Proposition 2. If [S* is finite, then the algorithm terminates and the resulting
partition equates all and only the bisimilar state.

The partition refinement algorithm allows not only to check bisimilarity of a set
of states, but also to build the minimal automaton of a certain state p. Intuitively,
the minimal automaton is a labeled transition systems where all the bisimilar
states are identified. Hereafter, given a set A and an equivalence relation R, we
write A|r to denote the set of equivalence classes of A w.r.t. R. Moreover, given
p € A, [p]r denotes the equivalence class of p w.r.t. R.

Definition 1 (Minimal Automaton). Let {p}* be the set of states reachable
from the state p. The minimal automaton of p (denoted by MA(p)) is a triple
<ia Ma tTM) :

— the initial state i is equal to [p]~,
- M= {p}TN is the set of equivalence classes of ~,
— trpr is the transition relation defined according to the following rule.

g
[q]~ =M [r]~
Proposition 3. p ~ q if and only if M A(p) is isomorphic to M A(q).

If the set of states reachable from p is finite, we can employ the partition refine-
ment algorithm to build the minimal automaton of p. We have just to quotient
the set of reachable states {p}* with the partition returned by the Partition-
Refinement ({p}).

3 Saturated and Symbolic Semantics

In this section we recall the general framework for symbolic bisimilarity that
we have introduced in [4]. As running example, we will use open Petri nets
[2]. However, our theory has as special cases the abstract semantics of several
formalisms such as open [20] and asynchronous [I] 7-calculus.

3.1 Saturated Semantics

A closed many-sorted unary signature (S, X') consists of a set of sorts S, and an
S x S sorted family X' = {X; ;| s,t € S} of sets of operation symbols which are
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closed under composition, that is if f € X5, and g € X4, then go f € X, .
Given f € Xy v, 9 € Xy, h € Xsy, fo(goh) = (fog)oh and moreover Vs € S,
Jids € X5 s such that Vf € X4, idio f = f and foids = f. A (S, X)-algebra
A consists of an S sorted family |[A| = {45 | s € S} of sets and a function
fa 1 As — Ay for all f € X, such that (go f)a = ga(fa(—)) and ids, is the
identity function on AS. When A is clear from the context, we will write f to
mean fy, and we will write A5 to mean the set of sort s of the family [A|.

The first definition of the theoretical framework presented in [4] is that of con-
text interactive systems. In our theory, an interactive system is a state-machine
that can interact with the environment (contexts) through an evolving interface.

Definition 2 (Context Interactive System). A context interactive system
T is a quadruple (S, X), A, O, tr) where:

(S, X)) is a closed many-sorted unary signature,

— A is a (S, X)-algebra,

O is a set of observations,

tr C |A|xOx|A| is a labeled transition relation (p ~ p' means (p,0,p’) € tr).

Roughly speaking sorts are interfaces of the system, while operators of X' are
contexts. Every state p with interface s (i.e. p € Ag) can be inserted into the
context ¢ € X 4, obtaining ca (p) that has interface ¢. Every state can evolve into
a new state (possibly with different interface) producing an observation o € O.

The abstract semantics of interactive systems is usually defined through be-
havioural equivalences. In [4] we proposed a general notion of bisimilarity that
generalizes the abstract semantics of a large variety of formalisms. The idea is
that two states of a system are equivalent if they are indistinguishable from an
external observer that, in any moment of their execution, can insert them into
some environment and then observe some transitions.

Definition 3 (Saturated Bisimilarity). Let 7 = ((S,X), A, O,tr) be a con-
text interactive system. Let R = {Rs C As X As | s € S} be an S sorted family
of symmetric relations. R is a saturated bisimulation iff, Vs,t € S, Vc € X4,
whenever pRsq:

— ca(p) Rea(q),
—ifp > p', then ¢ 2 ¢ and p'Rq’.

We write p ~3 q iff there is a saturated bisimulation R such that pR.q.

An alternative but equivalent definition can be given by defining the saturated
transition system (SATTS) as follows: p 23 ¢ if and only if ¢(p) > . Trivially
the ordinary bisimilarity over SATTS coincides with ~*.

Proposition 4. ~° is the coarsest bisimulation congruence.

1 A closed many-sorted unary signature (S, X) is a category C and a (S, X)-algebra is
a presheaf on C. We adopt the above notation to be accessible to a wider audience.
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3.2 Running Example: Open Petri Nets

Differently from process calculi, Petri nets have not a widely known interactive
behaviour. Indeed they model concurrent systems that are closed, in the sense
that they do not interact with the environment. Open nets [2] are P/T Petri
nets that can interact by exchanging tokens on input and output places.

Definition 4 (Open Net). An open net is a tuple N = (S, T, pre, post, 1, I,0)
where S and T are the sets of places and transitions (SNT = &); pre,post : T —
S® are functions mapping each transition to its pre- and post-set; 1 : T — A is
a labeling function (A is a set of labels) and I,0O C S are the sets of input and
output places. A marked open net is a pair (N, m) where N is an open net and
m € S® is a marking.

FigTlshows five open nets where, as usual, circles represents places and rectangles
transitions (labeled with «, 3). Arrows from places to transitions represent pre,
while arrows from transitions to places represent post. Input places are denoted
by ingoing edges, thus the only input place of N7 is $. To make examples easier,
hereafter we only consider open input nets, i.e., open nets without output places.
The operational semantics of marked open nets is expressed by the rules on Table
[ The rule (TR) is the standard rule of P/T nets (seen as multisets rewriting).
The rule (IN) states that in any moment a token can be inserted inside an
input place and, for this reason, the LTS has always an infinite number of states.
Figll(A) shows part of the infinite transition system of (Nj,a). The abstract
semantics (denoted by ~%) is defined in [3] as the ordinary bisimilarity over
such an LTS. It is worth noting that ~ can be seen as an instance of saturated
semantics, where multisets over open places are contexts and transitions are only
those generated by the rule (TR).

In the following we formally define N' = ((SV, ZV),N, A, try) that is the
context interactive system of all open nets (labeled over the set of labels A).

The many-sorted signature (SV, Z) is formally defined as:

— SN = {I|Iis a set of places},
—VIe SN, SN, =1%, id; = @ and iy 0y =iy Dia.

Intuitively sorts are sets of input places I, while operators of XN are multisets of
tokens on the input places. We say that a marked open net (N, m) has interface
I if the set of input places of N is I. For example the marked open nets (N7, a)
has interface {$}. Let us define the (SN, £V)-algebra N. For any sort I, the
carrier set N; contains all the marked open nets with interface I. Any operator
i € Xy 1 is defined as the function that maps (N, m) into (N, m & i).

The transition structure ¢ry (denoted by — ) associates to a state (N, m)
the transitions obtained by using the rule (TR) of Table[Il In [4], it is proved that

Table 1. Operational Semantics of marked open nets

teT It)=X m="tPc (1) ieln

(TR) A e i .
N,m = N,t" @ c Nm —= Nm&i
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Fig. 1. The open nets N1, N2, N3, Ny and Ns.(A)Part of the infinite transition sys-
tem of (N1,a). (B)Part of the infinite saturated transition system of (Ni,a).(C)The
symbolic transition systems of (N1, a),(N2, c),(Ns,e),(Na, 1) and (N5, ).

saturated bisimilarity for N coincides with ~V. In the remainder of the paper
we will use as running example the open nets in Figlll Since all the places have
different names (with the exception of $), in order to make lighter the notation,
we write only the marking to mean the corresponding marked net, e.g. b*$ means
the marked net (Nq, b*$).

The marked net a (i.e., (N1, a)) represents a system that provides a service
(3. After the activation «, it provides § whenever the client pay one $ (i.e.,
the environment insert a token into $). The marked net ¢ instead requires five
$ during the activation, but then provides the service 3 for free. The marked
net e, requires three $ during the activation. For three times, the service 3 is
performed for free and then it costs one $. It is easy to see that all these marked
nets are not bisimilar. Indeed, a client that has only one $ can have the service
(3 only with a, while a client with five $§ can have the service 3 for six times only
with ¢. The marked net r represents a system that offers the behaviour of both
a and ¢, i.e. either the activation « is for free and then the service 3 costs one,
or the activation costs five and then the service is for free. Also this marked net
is different from all the others.

Now consider the marked net [. It offers the behaviour of both a and e, but
it is equivalent to a, i.e. [ ~" a. Roughly, the behaviour of e is absorbed by the
behaviour of a. This is analogous to what happens in asynchronous m-calculus
[1] where it holds that a(z).(ax | p) + 7.p ~ T.p.
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3.3 Symbolic Semantics

Saturated bisimulation is a good notion of equivalence but it is hard to check,
since it involves a quantification over all contexts. In [4], we have introduced a
general notion of symbolic bisimilarity that coincides with saturated bisimilarity,
but it avoids to consider all contexts. The idea is to define a symbolic transition
system where transitions are labeled both with the usual observation and also
with the minimal context that allows the transition.

Definition 5 (Symbolic Context Transition System). A symbolic context
transition system (SCTS for short) for a system T = ((S, X), A, O, tr) is a tran-
sition system B C |A] x X x O x |A|.

In [E], we have introduced a SCTS for open nets. Intultlvely the symbolic tran-

sition N, m —> N,m’ is possible if and only if N,m @ 1 —’N N,m’ and 1 is
the smallest multlset (on input places) allowing such transition. This SCTS is
formally defined by the following rule.

teT It)=X m=mnN*)dn iCI¥ *t=(mnN°t)ai
N,mEnN,VEBn

The marking m N *¢ contains all the tokens of m that are needed to perform the
transition ¢. The marking n contains all the tokens of m that are not useful for
performing ¢, while the marking ¢ contains all the tokens that m needs to reach
*t. Note that 7 is exactly the smallest multiset that is needed to perform the
transition ¢. Indeed if we take 47 strictly included into ¢, m @ i; cannot match
*t. As an example consider the net Ny in Fig[ll with marking c¢d$? and let ¢ be
the only transition labeled with . We have that cd$? N *t = ¢$2, n = d and

i = $3. Thus Ny, cd$? —> N, dd. Figll{C) shows symbolic transition systems
of marked open nets dlscussed in the previous subsection.

Definition 6 (Inference System). An inference system R for a context in-
teractive system I = ((S,X), A, O,tr) is a set of rules of the following format,
where s,t € 5, 0,0 €0, c€ X andd € Xy .

ps i) Qt
c(ps) = d(qr)

The above rule states that all processes with sort s that perform a transition with
observation o going into a state ¢; with sort ¢, when inserted into the context ¢
can perform a transition with the observation o’ going into d(q;).

In the following, we write ¢ O, d to mean a rule like the above. The rules
o

/
o o
c ~ candd

d’ derive the rule doc 7, d'oc ifdocand d’ oc are
o o o

defined. Given an inference system R, #(R) is the set of all the rules derivable
from R together with the identities rules (Vo € O and Vs, t € S, id; Z idy).



Minimization Algorithm for Symbolic Bisimilarity 275

Definition 7 (Derivations, soundness and completeness). Let Z be a con-
text interactive system, 3 an SCTS and R an inference system.

We say that p @ p1 derives p 2% p2 in R (written p i PR D 2% p2)
if there exist d,e € X such that d

We say that 8 and R are sound and complete w.r.t. Z if

o1

e € ®(R), doci = co and ex(p1) = pa.

c,o . c o c o c,0
p>sqiffp—pq andp —3 ¢ Frp>sq.

A sound and complete SCTS could be considerably smaller than the saturated
transition system, but still containing all the information needed to recover ~%.
Note that the ordinary bisimilarity over sCTS (hereafter called syntactical bisim-
ilarity and denoted by ~") is usually stricter than ~°. As an example con-

sider the marked open nets a and [. These are not syntactically bisimilar, since

3
l $—’>a7, m while a cannot (Figll(C)). However, they are saturated bisimilar, as
discussed in the previous subsection. In order to recover ~* through the symbolic
transition system we need a more elaborated definition of bisimulation.

Definition 8 (Symbolic Bisimilarity). Let Z = ((S, X),A, O, tr) be an in-
teractive system, R be a set of rules and (3 be a symbolic transition system. Let
R={R; C As x A5 | s € S} be an S sorted family of symmetric relations. R is
a symbolic bisimulation iff Vs € S, whenever pRsq:

—ifp ggp’, L‘henqcl—’olyg q; andqcl—’ol>5 q }—ngq’ and p'Rq'.

SY M
s

We write p ~ q iff there exists a symbolic bisimulation R such that pRq.

Theorem 1. Let T be a context interactive system, B an SCTS and R an infer-
ence system. If 3 and R are sound and complete w.r.t. T, then ~°YM=~5,

In the remainder of this section we focus on open Petri nets. The inference system
R is defined by the following parametric rule.

N,mLNN,m'
Nom@i Sy Nom' @i

The intuitive meaning of this rule is that for all possible observations A and
multiset 7 on input places, if a marked net performs a transition with observation
A, then the addition of i preserves this transition.

Now, consider derivations between transitions of open nets. It is easy to see
i1,A1 i2,A2

that N,m —— N,m; Fr,, N,m —— N,mq if and only if A\ = A; and there
exists a multiset x on input places such that io = i; ®x and my = m; @ z. For all

the nets N of our example, this just means that for all observations A and for all
i it ,
multisets m, n, we have that (Nj,m) $—’/\>n (Nk,n) Fry (Ng, m) ¥ (Nk, n$7).

In [4] we have shown that R and 7 are sound and complete w.r.t. A". For this
reason, we can prove that two marked nets are bisimilar, by showing a symbolic
bisimulation that relates them.
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4 Saturated Terminal Sequences

In this section we introduce the terminal sequence for saturated and symbolic

bisimilarity. They are almost straightforward adaptation of the terminal se-

quence for ordinary bisimilarity presented in Section [2l Hereafter we always

implicitly refer to a context interactive system Z = ((S, X)), A, O, tr), a SCTS [

and an inference system R, such that 5 and R are sound and complete w.r.t. Z.
The saturated terminal sequence is defined as follows,

Ng‘: {As x As|s € S} Ng—H: SAT(~%) Ng: m ~
K<

where SAT is a function on S indexed families of relations such that, for all
R={Rs; C A; x As | s € S}, pPSAT(R)q iff

— if p 235 p/, then ¢ =g ¢’ and p'Rq/,
— if ¢ 285 ¢/, then p 225 p’ and p'Rq’.

The only difference w.r.t. the terminal sequence of ordinary bisimilarity is in the
fact that we consider S indexed families of relations (recall that S is the set of
sorts, and A is carrier set of sort s of the algebra A).

It is easy to see that SAT is monotonic w.r.t. (indexed) set inclusion. From
classical results of fixed point theory (analogously to ordinary bisimilarity), we
have that saturated bisimilarity is the limit of the saturated terminal sequence.

Proposition 5. ~%=( _, ~%
The following lemma is fundamental to prove the correctness of our algorithm.
Lemma 1. Vs € O, ~% is a congruence.

In Section [2, we have shown that the terminal sequence for ordinary bisimi-
larity provides an effective procedure for computing bisimilarity. We would like
to apply the same intuition to the saturated terminal sequence but, unfortu-
nately, the saturated transition system is usually infinite, since it considers all
possible contexts. Instead of using the SATTS, we could define the symbolic ter-
minal sequence relying just on the symbolic transition system. However, also
this approach immediately leads to work with infinitely many states.

5 Redundant Transitions

In Section 3] we have shown that syntactical bisimilarity (~"), i.e. the ordinary
bisimilarity on the symbolic transition system, does not coincide with ~°. Here
we show that this is due to the presence of redundant transitions. In order to
better explain this phenomenon, we have to show an important property of F%.

Lemma 2. ¥p,q, if p ™% p1 Fr p %3 ea(pr), then ¢ ™% ¢ Fr ¢ 25 ealqr).
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Now, consider a process p that performs only the symbolic transitions p 2% 3 D1
and p 02—’02;5 po such that p Cl—’olw p1Fr p 2B ea(pr) and py ~5 ep(p1). The
transition p 2% py is redundant and it makes ~" different from ~5. Indeed,
take a process ¢ that performs only ¢ cl—’olm q1 such that p; ~% ¢;. Clearly p and
q are not syntactically bisimilar, because p Q—’O%g p2 while ¢ cannot. However,
p ~5 ¢, because ¢ 2B ex(q1) (assuming that § and R are sound and complete
and by Lemma ) and, ps ~ e (p1) ~% ea(q1) (since ~* is a congruence).

As an example consider the symbolic transition system of | (FiglIl). %n q

$3. o, $3. 3 3 S .
and | —>,, m. Moreover, | =, ¢ Fr,, | == ¢3$° and ¢$° ~° m. Now consider a.
a %n b. Clearly [ £ @ but they are saturated bisimilar (Section ).

Definition 9 (Redundant Transition). Let 7 = ((S, X), A, O,tr) be a con-
text interactive system, R be an inference system and X be an S sorted family of
relations. Let p 23 py and p 2223 py be two different transitions. We say that the
former dominates the latter in X (written p @ pP1 <x P 2% p2) if and only
if p L b p 2B ea(p1) and pa X ea(p1). A transition is redundant w.r.t.
X if it is dominated in X by another transition. Otherwise, it is irredundant.

In the remainder of this section, we introduce another characterization of satu-
rated bisimilarity that only checks irredundant symbolic transitions. The mini-
mization algorithm that we will present in Section [@ relies on this notion.

Definition 10 (Irredundant Bisimilarity). Let Z = ((S, X), A, O,tr) be an
interactive system, R be a set of rules and B be a symbolic transition system.
Let R={R; C A; x A; | s € S} be an S sorted family of symmetric relations.
R is an irredundant bisimulation iff Vs € S, whenever pRsq:

— if p 285 1 is irredundant in R, then ¢ 235 ¢ and p'Rq’.
We write p ~NE q iff an irredundant bisimulation R such that pRsq exists.

Theorem [Pstates that ~f=~%_ However, in order to have such correspondence,
we have to add a constraint to our theory. Indeed, according to the actual defi-
nition of context interactive systems, there could exist infinite descending chains
like: -+ <p p 23 py <p p =2 py. In this chain, all the transitions are redun-
dant and thus none of them is considered when checking irredundant bisimilarity.

Definition 11. A context interactive system is well-founded w.r.t. R if and
only if for all relations R there are no infinite descending chains of <R.
All the examples that we have shown in [4] are well-founded. In particular N is

well founded w.r.t. Rys. Indeed, for all relations R, m et} mi <gp m cldac ma
only if there exists a multiset x # @ such that x oi; = i5. This means that
the multiset i1 is strictly included in the multiset 75, and since all multisets are
finite, there exist only finite descending chains of <.

Theorem 2. If T is well founded w.r.t. R, then ~NE=~SYM
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6 A Minimization Algorithm for Symbolic Bisimilarity

In this section we introduce the terminal sequence for irredundant bisimilarity
and we prove that it coincides with the saturated terminal sequence (Subsection
[61). Relying on this, we introduce the symbolic partition refinement algorithm
that checks saturated bisimilarity (Subsection [6.2]). Finally, we prove the exis-
tence of minimal symbolic automata and we provide a procedure to compute
them (Subsection [6:3). Hereafter, we assume that 7 is well-founded w.r.t. R.

6.1 Irredundant Terminal Sequence

The irredundant terminal sequence (~%p) is defined as the saturated terminal
sequence by replacing the function SAT with IR that is defined as follows: for
all R={R; C A; x As | s € S}, pIR(R)q iff

— if p 285 p’ is irredundant in R, then ¢ 235 ¢’ and p'R¢/,
— if ¢ 235 ¢ is irredundant in R, then p 235 p’ and p'Rq’.

The function IR is clearly different from SAT, but they are equivalent when
restricting to congruences.

Proposition 6. Let R = {R; C A, x A; | s € S} be an S sorted family of
symmetric relations. If R is a congruence, then SAT(R) = IR(R).

Since by Lemma [Tl all the relations of the saturated terminal sequence are con-
gruences, then the two terminal sequences coincide.

Theorem 3. Vk € O, ~§=~"p.

6.2 Symbolic Partition Refinement

In Section 2] we have shown how the terminal sequence can be employed in order
to have an effective procedure to compute bisimilarity. In this section we apply
the same intuition to the irredundant terminal sequence. At the iteration n,
instead of computing F(P™), we compute IR(P"™): two processes p and ¢ belong
to the same block in P™t!, if and only if whenever p Eiﬁ p’ is not redundant in
P™ then ¢ gg q' with p’ and ¢’ in the same block of P™.

It is worth noting that in the computation of IR(P™) are involved also states
that could be not reachable from the initial states [.5. As an example consider
the symbolic transition system of a and r (FiglI{C)). The set of reachable states
is 1S* = {a,b,r,s,t}. Recall that r %n thRry T $5—’(>¥n t$5. Thus, at the generic

. . . . . 85, .
iteration n + 1, we need to check if the tramsition j —5, s is redundant. In

order to do that we have to check if t$° and s belong to the same block in P™.
However, the state t$° is not reachable from IS = {a,r}.

Thus, we have to change the initialization step of our algorithm, by including
in the set 1.5* all the states that are needed to check redundancy. This is done,
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Table 2. Closure rules

pelS;

p € IS* pggq q € As
qeIS;

(15)

(RS)
* €1,01 €2,02 C1,01 €2,02
peEIS” p==pq p—"5q p——pgqFrp == culq1) ea(q) € As

(RD) ea(q1) € 1SS

by using the closure rules in Table 2l The rule (RD) adds all the states that are
needed to check redundancy. Indeed, if p can perform p 01;01}6 q1 and p 02—’035 q2

such that p Cl—’ol>5 qFrp 2% ea(q1), the latter could be redundant whenever
g2 ~° ea(q1). Thus also the state es(q1) is needed. As an example, the closure of
IS ={a,r}is IS* = {a,b,r, s,t,t$1 t$%,¢$3 t$1,¢$°} (FigA(B)). Usually, I15* is
not just a set, but an S indexed family of sets of states and for this reason the

closure rules in Table 2] insert states in 1.5* according to their sorts.

Algorithm 2. Symbolic-Partition-Refinement (IS)
Initialization

1. Compute IS* with the rules in Table 2]
2. P°:={IS}|s € S},

Iteration P"*' := IR(P"),
Termination if P* = P"*! then return P".

Notice that in the initial partition P° there is one block for each sort s € S.
Thus PY equates all and the only the elements of I.5* with the same interface.
Figl2[(A) shows the sequence of partitions computed by the algorithm taking
as initial state IS = {a,r}. It is important to note now that in the symbolic
transition system of IS* (Figl2(B)) the only possibly redundant transition is

8%, 2, $°, .
r —>a7, s (because —(>X,, thry T =9 t$5). Thus, in order to check redundancy,

at any iteration we have only to check if t$° and s belong to the same block.
In the initial partition all the states are equivalent since they all have the same
interface (recall that all the marked nets presented in Section Bl have interface $).
In P! there are three blocks. The states a and r are in the same block because

the transition r $—’%, s is redundant since s and t$° belong to the same block in
PY. In the second iteration, the state t$! is separated from {t$2,¢$3 ¢$4 ¢$° s}

because the former can perform g—’q,, {r,b} while all the others cannot. Note
that @ and r are still in the same block because s and t$° belong to the same
block in P'. In each of the following iteration, a state t$’ is separated from s.
In P, the state t$° is separated from s and thus in P” the states a and r are

5
divided because the transition r $—’(>X,, s is not redundant anymore. Then P8 is
equivalent to P” and the algorithm returns such partition.
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P° = {a,b,7,s,t,t$,1$% 133, 184 1$°}

P! = {a,7}{b, t}{t$", t$°,t$>,t$* 1$°, s} 2.8 $.5
P? = {a,r}{b, t}{t$}, {t$?,1$3,1$*,1$°, s} $5.a0 za Y

P? = {a,r}{b, t}{t$"}, {t$2} {t$°, 13", 1$°, s} r . > a >b

P* = {a,7}{b, t}{t$'}, {t$2}{t$f’)}{t$4,t$57 s} g, 28 g1 187

P® = {a,7}{b, t}{t$'}, {t$>}{t$>} {t$* 1 {$°, s} Nss Ay 5 s
PO = {a,r}{b t}{t8'}, {t8°}{t$°}{t8* 1{18° }{s} ’ o5 os v

PT = {a}{r}{b, t}{t8" {8 }{t8” } {t8" } {8° }{s} 182 <" 183 <" 18t

P = {a}{rHp, t}{t$1](*it)$2}{t$3}{t$4}{t$"}{s} ®)

Fig. 2. (A)The partitions computed by Symbolic-Partition-Refinement ({a, r}).(B)
The symbolic transition systems of {a,r}*.

In order to prove the soundness of our algorithm we define the irredundant
terminal sequence for the set of initial states IS,

N(I)SZN,%1 1s* N%rl: IR(~7s) N?s: ﬂ ~Ts
K<

where R 1 A denotes the restriction of the relation R to the set A, I5* is the
closure of IS w.r.t. rules in Table

The only difference with respect to the irredundant terminal sequence is in the
first element. Here instead of taking the whole state space of Z, we restrict to I.5*.
The following theorem guarantees that this is enough in order to characterize
the restriction of the irredundant terminal sequence to I.S*. This is not trivial
and it strongly relies on the fact that we close IS w.r.t. the rule (RD) in Table
2l Indeed whenever we remove such rule, it does not hold anymore.

Theorem 4. Vk € O, ~{pl IS* =~fg.
Theorem 5. If ~fg=~b531 then VK > k+ 1, ~fg=~'s.

Corollary 1. If 15™ is finite, then the algorithm terminates and the resulting
partition equates all and only saturated bisimilar states.

Since the algorithm applies to a lot of different formalisms, it is hard to provide a
meaningful complexity analysis. However, we want to remark that the operation
of checking redundancy is not expensive, since all the possible redundancies can
be computed during the initialization (when using the rule (RD) of Table [
and at any iteration, only those redundancies must be checked. Instead, the
closure IS* can be much larger than the set of reachable states (that is used by
the ordinary partition refinement). Even worst, in our theory, nothing guarantees
that if the set of reachable states (through the SCTS) is finite then also the closure
15* is finite. However, we conjecture that this holds for many formalisms. The
following proposition states that this holds in our running example.

Proposition 7. Let N, n and Ry be the context interactive system, the sym-
bolic transition system and the inference system for open nets that we have
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P°={l,p,q,48", 08,4%*, n,q8°, m}
56 P ={I{{p,qH{d8", 08,¢8% 1, 48>, m}

3 o y ,
1 TEm e Tl g T P2 = {I}{p, q}{g8", 0$}{$>, n, ¢$°, m}
0N os o wp ws . PP={Hp.aHas' 0$Hg$ n}{a$®,m}
' ‘;7\< q$* g% <" ¢$3 P* = {I}p, ¢}{q$", 0$}{q$?, n}{q$*, m}
$,8

Fig. 3. The partions computed by Symbolic-Partition-Refinement ({l})

introduced in Section[d. Let (N, m) be a marked open net. If the symbolic tran-
sition system of (N, m) is finite, then also the closure w.r.t. rules in Table[d is
finite.

6.3 Minimal Symbolic Automaton

Now we introduce minimal symbolic automata, i.e. automata having only ir-
redundant symbolic transitions. We show that they are canonical representa-
tives for equivalence classes of saturated bisimilar states. Moreover, we pro-
vide an algorithm to compute them. Hereafter, given an .S sorted family of sets
X ={X,|s €S} and an S sorted family of equivalence relations R = {Rs C
Xs x X5 | s € S}, we write X |r to mean the set of equivalence classes of X
w.r.t. Rs; and for each p € X, [p|r to mean the equivalence class of p w.r.t. R.

Definition 12 (Minimal Symbolic Automaton). Let Z = ((S, X), A, O, tr)
be a context interactive system, 3 a symbolic transition system and R an infer-
ence system. Let p be a state of T and {p}* = {{p}: | s € S} be the S sorted
family of sets of states obtained by closing {p} with the rules in Table A The
minimal symbolic automaton of p (denoted by MSA(p)) is a triple (i, M, tryr):

— the initial state i is equal to [pl.s,

- M ={M, C {p}:|~s | s € S} is an S indexed family of set of equivalence
classes of ~*,

—tryy €M x X x O x M is a transition relation,

defined according to the following two rules.

pE A, [qls € M q 2551 is irredundant in ~° 1 € A,
[p}NS (S MS [q]NS gM [’I"]NS [T]NS S MS

The leftmost rule states that the equivalence class of the initial state p belongs
to the states of the minimal automaton. The other rule adds all the equivalence
classes that are reachable from p trough symbolic irredundant transitions. Notice
that in the minimal automaton for standard bisimilarity (Def[l) the set of states
consisted of all the equivalence classes of reachable states, and thus in order to
compute the minimal automata, we just needed to quotient the set of reachable
states. For minimal symbolic automata we have also to remove all those states
that are not reachable through irredundant symbolic transitions. As an example



282 F. Bonchi and U. Montanari

Algorithm 3. Symbolic-Minimization(p)
P :=Symbolic-Partition-Refinement ({p}),
. Quotient {p}* w.r.t. P,

. Remove the redundant transitions,

. Remove the states that are not reachable.

AW o

consider the symbolic transition system of | (FiglI(C)). Figl3l shows the closure
{l}* and the partitions computed by Symbolic-Partition-Refinement ({l}).
The minimal automata of [ can be constructed as follows. First, we quotient the
states in {/}* with respect to the partition P* returned by the algorithm.

$2.a

1 7L g <77 {g8%, 08y 27 (g8, 0y <7 {g8%, m)
Ns g

Then we remove the redundant transitions.

W 72 pah <" (a8t 08} <7 {as2n} < (8% m)

N $.8 5.8
V )
Finally we take the set of states reachable from I: {I} 72 {p,q} . This is the
minimal symbolic automaton of [. Notice that it is isomorphic to the symbolic
transition system of a (Fig{I(C)). This is an alternative proof of a ~° I. Indeed,
for minimal symbolic automata, analogously to minimal automata, two states p
and ¢ are saturated bisimilar if and only if their minimal symbolic automata are
isomorphic, where by isomorphism we mean a bijection on states that preserves
sorts, transitions and initial states.

Proposition 8. p ~° ¢ if and only if MSA(p) is isomorphic to MSA(q).

7 Conclusions and Related Works

Relying on the framework of [4], we have introduced a symbolic partition re-
finement algorithm that allows to efficiently check saturated bisimilarity. Our
approach is absolutely general and it can be applied to many formalisms. How-
ever, when considering nominal calculi where systems are able communicate
names, the symbolic transition system is often infinite. Indeed, every time that
a system generates a new name and extrudes it, the system goes in a new state
that is different from all the previous. HD-Automata [I6] are peculiar LTSs that
allow to garbage collect names and avoid this other source of infiniteness. As
future work, we will extend our framework to HD-Automata, so that we will be
able to handle systems that generates infinitely many names. In particular we
conjecture that this algorithm will generalize both [I9] and [I5] that provide a
partition refinement algorithm for open [20] and asynchronous [I] bisimilarity.
Indeed, both our approach and [T9I15] rely on irredundant transitions. In all
these algorithms, first the closure of the set of initial states is computed by
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adding, not only the reachable states, but also those states that are needed
to check redundancy. Then, at any iteration, only irredundant transitions are
considered. In [19], the closure is called saturated state graph and it is computed
analogously to our approach. Instead, in [I5], the closure is computed by adding
negative transitions whenever there is a possible redundancy. Roughly, if p <> ¢ is
a negative transition, then a transition p — ¢’ is redundant whenever the arriving
state ¢ and ¢’ are the same. A novel notion of bisimilarity is introduced for these
kind of transition systems, but it fails to be transitive. In our context interactive
systems we just rely on the algebraic structure of contexts and irredundant
bisimilarity coincides with the saturated one.

Moreover, the functions @ and @ 4, that are used during the iteration of the
algorithms in [T9JT5], are not monotone and, as a consequence, the convergency
of the corresponding terminal sequences have to be proven by hand. Instead in
our approach the function IR generates exactly the same sequence of saturated
bisimilarity and thus convergence and coincidence with saturated bisimilarity are
for free. Moreover, we have shown that the correspondence between irredundant
bisimilarity and saturated bisimilarity is not by chance, but because IR and
SAT behaves exactly in the same way when restricted to congruences.
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