
The Security of All Bits Using List Decoding

Paz Morillo and Carla Ràfols

Dept. Matemàtica Aplicada IV
Universitat Politècnica de Catalunya

C. Jordi Girona 1-3, E-08034 Barcelona, Spain
{paz,crafols}@ma4.upc.edu

Abstract. The relation between list decoding and hard-core predicates
has provided a clean and easy methodology to prove the hardness of
certain predicates. So far this methodology has only been used to prove
that the O(log log N) least and most significant bits of any function with
multiplicative access —which include the most common number theo-
retic trapdoor permutations— are secure. In this paper we show that
the method applies to all bits of any function defined on a cyclic group
of order N with multiplicative access for cryptographically interesting N .
As a result, in this paper we reprove the security of all bits of RSA, the
discrete logarithm in a group of prime order or the Paillier encryption
scheme.

Keywords: bit security, list decoding, one-way function.

1 Introduction

One-way functions are one of the most fundamental cryptographic primitives
and it is not an overstatement to say that they are behind most of modern
cryptography. If some reasonable computational assumptions hold, a one-way
function is easy to compute but hard to invert. In some cases, this security
requirement may not be enough: in particular, the definition of one-way function
does not say anything about how much information it can leak. A predicate of
the preimage, P , is a hard-core of f if f does not give away any information
about P , that is, if there exists a polynomial time reduction from guessing P to
inverting f .

The study of hard-core predicates is of interest for various reasons, not only
because it strengthens our understanding of the real hardness of the considered
one-way function, but also because of its applications, which include the con-
struction of secure bit commitment schemes or cryptographically strong pseu-
dorandom generators. Further, the study of bit security has led to important
techniques and insights which have found other applications. For instance, the
study of the security of the least significant bit of RSA led to the two-point
based sampling technique introduced in [2], later used to prove the well known
result of the Goldreich and Levin bit — GL from now on — which states that
every one-way function has a hard-core bit. We emphasize that the importance

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 15–33, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

16 P. Morillo and C. Ràfols

of the GL result reaches far beyond the domain of bit security, and many works
in other lines of research are in some way indebted to it, for instance in learning
theory [4],[7].

Many bit security results have very technical and sophisticated proofs. Al-
though many proofs for different one-way functions have a similar structure,
they have to be adapted to each particular case. In contrast, Akavia, Gold-
wasser and Safra [1] give a very elegant and general methodology to prove bit
security results. In particular, they show how this methodology applies to prove
the security of O(log log N) least and most significant bits of any function with
multiplicative access - such as RSA and DL, for instance.

Akavia et al. raised the question whether this methodology applies to prove
the security of internal bits, a question which we answer in the affirmative in
this paper. Since the existing security proofs for the hardness of internal bits of
RSA and DL are particularly technical and cumbersome to follow in all detail —
we refer the reader to [8] for an example— , we feel that a more readable proof
should contribute much to the public discussion of the results and thus also to
their credit and diffusion.

1.1 Previous Work

The GL result, which gives a hard-core predicate for any one-way function,
can be reinterpreted as a list decoding algorithm for the Hadamard code. This
suggested the possibility of a general methodology to prove bit security results.
This methodology was formalized by Akavia et al. in 2003, where it was used to
prove (or often reprove known results) the hardness of certain predicates for one
way functions defined on a cyclic group G of order N and having the property
of multiplicative access, that is, functions f for which given f(x), f(x · y) can be
computed for any known y in almost all of the cases.

The most common number theoretic trapdoor permutations in cryptography,
such as RSAN,e(x) = xe mod N , Rabin(x) = x2 mod N , EXPp,g(x) = gx

mod p and ECLp,a,b,Q(x) = xQ — exponentiation in the group of Fp- rational
points of an elliptic curve Ep,a,b(Fp) — have this property.

A part from the formalization of the list decoding methodology, one of the
key contributions of Akavia et al. is to give a learning algorithm for functions
f : ZN → C, which is a necessary piece to provide the aforementioned results.

The security of the internal bits had already been proved for some one-way
functions with multiplicative access such as RSA and the discrete logarithm in
[8] and the Paillier encryption scheme in [3].

1.2 Organization

Sections 2, 3 and 4 are introductory: in section 2 we define the concept of hard-
core predicate and give some of the results of Akavia et al. Sections 3 and 4
are devoted to basics of Fourier analysis and list decodable codes and to the
relation between hard-core predicates and list decoding. We stress that many
of the results and definitions given in these sections are taken from the work of

The Security of All Bits Using List Decoding 17

Akavia et al. but are necessary to introduce our contributions. In section 5 we
prove one of our main results concerning the security of all bits of any one-way
function with multiplicative access for special N , while in section 6 we prove it
for all N of cryptographic interest. Next, in section 7 we prove the security of
all bits of the Paillier encryption scheme. Possible extensions of these results are
discussed in section 8. In section 9 we summarize our contribution.

2 Parts That Are as Hard as the Whole

Informally, a hard-core bit for a one-way function f : D → R is a boolean
predicate P : D → {±1} which does not leak from f . Obviously, we cannot
prevent an adversary from taking a random guess, but the point is that there
should not be any strategy to predict P which works significantly better than
the random one. Define

Definition 1. majP
def
= maxb∈{±1}Pr

(
P (x) = b : x ← D

)
and minorP

def
=

1 − majP .

We write x ← D to indicate that we choose an element x in D according to the
uniform distribution.

Definition 2. A function ν(·) is negligible if for any constant c ≥ 0 there exists
n0 ∈ Z, s.t ν(n) < n−c for all integers n ≥ n0.

This definition of hard-core predicate is taken from [1].

Definition 3. For each n ∈ N, let In be a countable index set, and set I =
(In)n∈N . Let F = (fi : Di → Ri)i∈I be a family of one-way functions and
P = (Pi : Di → {±1})i∈I a family of Boolean predicates, where w.l.o.g. if i ∈ In

Di ⊂ {0, 1}n. We will say that P is a family of hard-core predicates for F if
and only if, for all n ∈ N and i ∈ In:

– Pi can be computed by means of a Monte-Carlo algorithm A1(i, x).
– Pi(x) is not computable by means of any efficient algorithm from fi(x); that

is, for any PPT algorithm A2,

Pr(A2(i, fi(x)) = Pi(x) : x ← Di) ≤ majPi + ν(n),

where ν(·) is a negligible function.

While there are predicates which are a hard-core of any one-way function, like
the GL bit [6] or all the bits of ax+b mod p [9], there are also many results con-
cerning the security of a certain bit of the binary representation of the preimage
for a specific one-way function (e.g. the least significant bit of RSA or Rabin,
see for instance [2]).

Given an element x ∈ ZN , define [x] as the representative of the class of x in
[0, N) and absN (x) = min{[x], N − [x]}. The i-th bit of an element x ∈ ZN is

18 P. Morillo and C. Ràfols

defined as Bi(x) = 1 if the i-th bit of the binary representation of [x] is 0 and
as −1 otherwise.

Akavia et al. prove the security of any basic t-segment predicate, t ∈ poly(n),
for any one-way function with multiplicative access having domain in ZN , where
n

def= �log N�.
Definition 4. A predicate PN : ZN → {±1} is said to be a basic t-segment
predicate if there are at most t values of x ∈ ZN for which PN (x + 1) �= PN (x).

In particular, their result implies that the predicate Bn−i, where i ∈ poly(log n),
is a hard-core of any one-way function with multiplicative access, since trivially
Bn−i is a basic t-segment predicate, where t = 2i+1.

Further, there is a correspondence between Bi, where i ∈ O(log n) and some
t-basic segment predicate with t ∈ poly(n). For instance, it is easy to verify that
lsbN(x) = halfN(x

2), where halfN(x) is a basic 2-segment predicate which is
equal to 1 if [x] ≤ N/2 and is −1 otherwise. This correspondence allows to prove
that the predicates Bi, where i ∈ O(log n) are also hard-core of any one-way
function with multiplicative access when N is odd (see [1] for details).

3 Preliminaries

Before sketching the list decoding methodology of [1], we begin with some basic
concepts.

3.1 Fourier Analysis in ZN

In the space of functions from ZN to C it is possible to define the inner product

〈g, h〉 def=
1
N

∑
x∈ZN

g(x)h(x).

For each α ∈ ZN , the α-character is defined as a function χα : ZN → C such that
χα(x) = wαx

N , where wN
def= e

2πj
N . It is easy to check that Bα

def= {χα : α ∈ ZN}
is an orthonormal basis of the space of functions going from ZN to C.

If Γ is a subset of ZN , it is natural to consider the projection of g in the set
of Γ characters, that is,

g|Γ =
∑
α∈Γ

ĝ(α)χα,

where ĝ(α) = 〈g, χα〉 are the Fourier coefficients. Observe that, if h(y) = g(ay)
for some a ∈ Z∗

N , then ĥ(α) = ĝ(α/a).
Because Bα is an orthonormal basis,

||g||22 =
∑

α∈ZN

|ĝ(α)|2 and ||g|Γ ||22 =
∑
α∈Γ

|ĝ(α)|2.

Finally, define

The Security of All Bits Using List Decoding 19

Definition 5. (Fourier Concentrated) A function g : ZN → C is Fourier con-
centrated if for every ε > 0 there exists a set Γ consisting of poly(n/ε) characters,
so that

||g − g|Γ ||22 =
∑
α/∈Γ

|ĝ(α)|2 ≤ ε.

In the following, this condition will be referred to as g is ε-concentrated on the
set Γ .

The heavy characters of g are the characters for which the projection of g has
a greater modulus, that is, given τ > 0 and g : ZN → C, define

Heavyτ (g) def= {χα : |ĝ(α)|2 ≥ τ}.

3.2 Codes

A binary code is a subset of {±1}∗. To encode the elements of ZN we will limit
ourselves to codewords of length N , in this case the code is a subset C ⊂ {±1}N .
Each codeword Cx can be seen as a function Cx : ZN → {±1}, expressed as
(Cx(0), Cx(1), . . . , Cx(N − 1)).

Definition 6. The normalized Hamming distance between two functions g, h :
ZN → {±1} is Δ(g, h) = Pr

(
g(x) �= h(x) : x ← ZN

)
.

The next definition is a natural extension of the concept of error correcting codes.

Definition 7. A code C = {Cx : ZN → {±1}} is list decodable if there exists a
PPT algorithm which given access to a corrupted codeword w and inputs δ, ε, 1n

returns a list L ⊇ {x : Δ(Cx, w) ≤ minorCx − ε} with probability 1 − δ.

Remark 1. In this definition it says “given access to w” because in our examples
it will be computationally infeasible to read the whole word w due to its size.

3.3 List Decodable Codes

In this section we give sufficient conditions for a code to be list decodable, for a
detailed explanation we refer the reader to [1].

Definition 8. A code C is concentrated if each of its codewords Cx is Fourier
concentrated.

Definition 9. A code C is recoverable, if there exists a recovery algorithm,
namely, a polynomial time algorithm that, given a character χα (for α �= 0),
a threshold τ and 1n, where n = �log N� returns a list Lα containing

{x ∈ ZN : χα ∈ Heavyτ (Cx)}.
One of the main contributions of Akavia et al. is to prove that on input a
threshold τ and given access to any function g : G → C where G is any abelian
group with known generators of known orders, it is computationally feasible to
obtain a list of all the Fourier coefficients in Heavyτ (g). In particular, in the ZN

case — which is enough for our purposes — they prove that

20 P. Morillo and C. Ràfols

Theorem 1. There is an algorithm which, given query access to g : ZN →
{±1}, 0 < τ and 0 < δ < 1, outputs a list L, of O(1/τ) characters s.t.
Heavyτ (g) ⊂ L with probability at least 1 − δ; and the running time of the
algorithm is Õ(n · ln2(1/δ)/τ5.5), where the Õ() notation indicates that terms
with complexity polynomial in log(1/τ), log n or ln ln(1/δ) have been eliminated.

Another algorithm to the same purpose was given by Strauss and Mutukrishnan
[5], resulting in a running time with improved dependence in 1/τ .

This theorem is used in [1] to prove the following

Theorem 2. Let C = {Cx : ZN → {±1}} be a concentrated and recoverable
code, then C is list decodable.

The intuition behind the theorem is the following. Suppose that we have access
to a corrupted word w which is close enough to a codeword Cx, then:

– Because of the concentration of the code and the closeness of w and Cx,
there exists an explicit threshold τ — non-negligible in n— such that χβ is a
τ -heavy coefficient of both w and Cx, that is, there exists a β ∈ ZN , β �= 0,
such that

χβ ∈ Heavyτ (w) ∩ Heavyτ (Cx).

This is proven in the Concentration and agreement lemma of [1].
– Because of theorem 1, on input this threshold τ , we can recover a list L with

all the Fourier coefficients in Heavyτ (w) with probability 1−δ. We emphasize
that if δ is non-negligible in n, both the running time of the algorithm and
the length of the list — which is 1/τ— is polynomial in n.

– For each of these coefficients χβ the recovery algorithm will output a list of
codewords and Cx will be in at least one of those lists.

4 The Relation between List Decoding and Hard-Core
Predicates

In this section we summarize the connection between list decoding and hard-core
predicates from [1].

Suppose we want to prove that P : ZN → {±1} is a hard-core of f : ZN → R.
As it is standard in cryptography, the security of P is proved by a reduction
argument. The proof consists in trying to invert f (recover x) given a challenge
f(x) and assuming we have access to an oracle predicting P (y) from f(y) with
non-negligible advantage over a random guess.

When f has multiplicative access, the connection between list decoding and
hard-core predicates comes from encoding each element x ∈ ZN as CP

x =
(CP

x (0), CP
x (1), . . . , CP

x (N − 1)), where CP
x (j) = P (jx). This is the so-called

multiplication code. An oracle predicting P (y) from f(y) without errors would
give us access to CP

x , but since the oracle gives incorrect answers we have access
to a corrupted codeword w instead. If the code is list decodable we can find a
list of codewords containing CP

x , thus inverting f .

The Security of All Bits Using List Decoding 21

Now, in general, for any function f — not necessarily with multiplicative
access— to prove that P is a hard-core predicate of f following the list decoding
methodology, it would suffice to somehow encode the elements of ZN in such a
way that,

– The code is concentrated and recoverable (that is, list decodable).
– Given the challenge f(x) and an oracle predicting P we can devise access to

a corrupted codeword w close enough to the encoding of x.

This is formalized in Theorem 2 (List Decoding Approach) of [1],

Theorem 3. Assume a collection of codes CP = {CPi}i∈I s.t. ∀i ∈ I, (1) CPi

is list decodable, and (2) CPi accessible with respect to fi. Then P is hard-core
of F .

The definition of accessible code is:

Definition 10. Let P be a collection of predicates and F a family of one-way
functions. The code C is accessible with respect to F if there exists a PPT access
algorithm A, such that for all i ∈ In, CPi is accessible with respect to fi, namely

1. Code access: ∀x, j ∈ Di, A(i, fi(x), j) returns fi(x′) such that CPi
x (j) =

Pi(x′)
2. Well spread: For uniformly distributed CPi

x ∈ CPi and j ∈ Di, the distribu-
tion of x′ satisfying fi(x′) = A(i, fi(x), j) is statistically close to the uniform
distribution on Di

3. Bias preserving: For every codeword CPi
x ∈ CPi ,

|Pr
(
CPi

x (j) = 1 : j ← Di

) − Pr
(
Pi(z) = 1 : z ← Di

)| ≤ ν(n),

where ν is a negligible function.

Lemma 3 of [1] proves that if CP is accessible with respect to F and an algorithm
B that predicts P from F with probability at least majP + ε is given, then, for
a non-negligible fraction of the codewords CP

x ∈ CP , given f(x) we have access
to a corrupted codeword wx close enough to CP

x .
Akavia et al. prove that the multiplication code CP is accessible with respect

to RSA and EXPp,g and they state that it also holds for Rabin and ECL. In
section 7 we prove that CP is accessible with respect to the Paillier one-way
function.

Once the accessibility of the code with respect to a one-way function f is
stablished, to prove that P is a hard-core of f it suffices to see that the multipli-
cation code CP

x is concentrated and recoverable. Concerning the concentration,
observe that if x ∈ Z∗

N , from the definition of multiplication code, there is a

simple relation between the Fourier coefficients of CP
x and P , ĈP

x (β) = P̂
(
β/x

)
.

As a consequence,

Lemma 1. For all ε > 0, if P is ε-concentrated in Γ then CP
x is ε-concentrated

in Γ ′ = {χβ : β = αx mod N, χα ∈ Γ}.

22 P. Morillo and C. Ràfols

5 The Security of All Bits for Special N

The purpose of this section is to prove that the predicate P (x) = Bi(x), defined
in section 2, is a hard-core predicate of any one-way function defined over ZN

for which the multiplication code is accessible, for N of special form. Because of
theorem 3 it suffices to prove that the multiplication code CBi is concentrated
and recoverable.

The organization of this section is the following: to prove that P is concen-
trated, we begin giving an explicit formula for the Fourier coefficients of the
ith bit in subsection 5.1. This formula is used in subsection 5.2 to study the
asymptotic behavior of |P̂ (α)|2.

In subsection 5.3 we prove that P is concentrated for all N of a special form.
Theorem 6 of subsection 5.4 proves one of the main results of the paper namely
that the predicate ith bit is hard-core of any one-way function defined over ZN

for which the multiplication code is accessible, for N of special form. To do this
we prove the recoverability of the code CBi in theorem 5. It turns out that these
partial results are enough to reprove the hardness of O(log n) most and least
significant bits.

5.1 The Fourier Representation of the ith Bit

Let P (x) = Bi(x) be the ith bit as defined in section 2 and N = r2i+1 ± m,

where 0 < m < 2i. Define the function g(x) =
P (x + 2i) + P (x)

2
.

Recall that wN = e
2πj
N . From the definitions given in section 3.1 and using

some properties of the Fourier coefficients, we have the following relation

ĝ(α) =
(w2iα

N + 1)
2

P̂ (α).

We consider two different situations:

– Case 1 N = r2i+1 − m. In this case g(x) = 1 if and only if x ∈ I1
def=

[(r − 1)2i+1 + 2i − m, (r − 1)2i+1 + 2i − 1], else g(x) = 0.
– Case 2 N = r2i+1 + m. In this case g(x) = 1 if and only if x ∈ I2

def=
[r2i+1, r2i+1 + m − 1], else g(x) = 0.

In either of the two cases it is easy to compute the Fourier coefficients of P

explicitly. Indeed, it suffices to find ĝ(α) since w2iα
N +1 �= 0 because m �= 0. Note

that in both Case 1 and Case 2, g(x) is only different from 0 in an interval of
length m. As a result the non-zero summands in the expression of ĝ(α) form a
geometric progression with exactly m terms and ĝ(α) can be computed explicitly.
If α �= 0, in Case 1:

ĝ(α) =
1
N

∑
y∈I1

χα(y) =
1
N

w
−α((r−1)2i+1+2i−m)
N

(w−αm
N − 1)

(w−α
N − 1)

.

The Security of All Bits Using List Decoding 23

Analogously, in Case 2, ĝ(α) =
1
N

w
−α(r2i+1)
N

(w−αm
N − 1)

(w−α
N − 1)

. Moreover, in both

cases, ĝ(0) =
m

N
.

Taking the modulus, we obtain that in both cases, for any α �= 0

|ĝ(α)|2 =
1

N2

sin2(mαπ
N)

sin2(απ
N)

.

Using the fact that |w2iα
N + 1|2 = 4 cos2(2iαπ

N), we obtain

|P̂ (α)|2 = |ĝ(α)|2 1
cos2(2iαπ

N)
=

1
N2

sin2(mαπ
N)

sin2(απ
N) cos2(2iαπ

N)
. (1)

Remark. There is an alternative trick to compute |P̂ (α)|2, it suffices to consider

the function G(x) =
P (x + 1) − P (x)

2
. In this case,

|P̂ (α)|2 = |Ĝ(α)|2 1
sin2(απ

N)
. (2)

Define Case 1 and Case 2 as above. Note that in either one of the cases the
function takes values in {±1} whenever x = k2i − 1, for k ∈ Z. Additionally, in
Case 1, G(N −1) = 1. As a consequence, in both cases the function takes exactly
2r non-zero values. This remark will be useful in subsections 5.2 and 5.3.

5.2 Asymptotic Behaviour of the Fourier Coefficients of the ith Bit

We have just seen how to compute the coefficients P̂ (α). In this section we use
basic calculus techniques to study its asymptotic behavior.

Proposition 1

|P̂ (α)|2 = Θ

(
absN (mα)2

absN (α)2absN(2iα − N/2)2

)
The proof essentially follows from the following lemma.

Lemma 2. π2(1 − π2

12)(absN (y))2 ≤ N2 sin2(yπ
N) ≤ π2(absN(y))2

Proof. We use the fact that x2 − x4

3 ≤ sin2 x ≤ x2, for any x ∈ [−π, π], then:

– Left inequality: Let j be the only integer such that |y − jN | ≤ N
2 , then

N2 sin2(yπ
N) = N2 sin2(yπ

N − jπ) ≥ N2(yπ
N − jπ)2(1 − 1

3 (yπ
N − jπ)2) ≥

≥ π2(1 − π2

12)(absN (y))2
.

– Right inequality: Similarly, N2 sin2(
yπ

N
) ≤ N2(

yπ

N
− jπ)2 = π2(absN(y))2.�

24 P. Morillo and C. Ràfols

To prove proposition 1, we first define j as the unique odd integer in [−2i, 2i]
such that |2iα − j N

2 | ≤ N
2 . Since cos2(2iαπ

N) = sin2(2iαπ
N − j π

2), proposition 1

is derived from expression (1) of |P̂ (α)|2 and lemma 2 for y = α, y = mα and
y = 2iα − N/2.

Summarizing, we have proven proposition 1 and the constants implied in the
symbol Θ() can be found explicitly, indeed,

K1 · absN (mα)2

absN(α)2absN(2iα − N
2)2

≤ |P̂ (α)|2 ≤ K2 · absN (mα)2

absN(α)2absN (2iα − N
2)2

,

where K1
def= (1

π2 − 1
12) and K2

def=
1

π2(1 − π2

12)2
.

Finally, if K3
def=

1
π2(1 − π2

12)
, we prove

Lemma 3. |P̂ (α)|2 ≤ K3 · min

{
m2

absN (2iα − N
2)2

,
4r2

absN(α)2

}
.

Proof. The function g is equal to 0 in all but m elements of the domain and

therefore |ĝ(α)|2 ≤ m2

N2 , since each coefficient is the sum of m terms in the unit

circle. The inequalities of lemma 2 and expression (1) imply that |P̂ (α)|2 ≤
K3 · m2

absN (2iα − N
2)2

. To prove the other bound observe that |Ĝ(α)|2 ≤ 4r2

N2

and use expression (2) and lemma 2.
�

5.3 The Concentration of the ith Bit for Certain N

In the previous section we found an expression of the asymptotic behavior of the
coefficients of P which is hard to interpret. It is clear that the heavy coefficients
of P will be around the points that annihilate the denominator, but otherwise
it is not trivial to show that there exists a set Γ of size poly(n/ε) such that
||P − P|Γ ||22 ≤ ε.

In this section we prove that if N = r2i+1 ± m and either r ∈ poly(n) or
m ∈ poly(n) then P is concentrated. The result is a consequence of the two
following lemmas.

Lemma 4. For any ε > 0, ||P − P|Γ2i
||22 ≤ ε, where

Γ2i
def
= {χα : absN(2iα − N/2) ≤ O(

m2

ε
)}.

Proof. Let Γ c
k

def= {χα : absN (2iα − N/2) > k} then, using one of the bounds of
lemma 3 ∑

χα∈Γ c
k

|P̂ (α)|2 ≤ O(m2)
∑

χα∈Γ c
k

1
absN(2iα − N/2)2

< O
(m2

k

)
.

The Security of All Bits Using List Decoding 25

Taking k ∈ O(m2

ε), ||P − P|Γ2i
||22 ≤ ε. �

Similarly, using the other bound of lemma 3.

Lemma 5. For any ε > 0, ||P − P|Γ0 ||22 ≤ ε, where

Γ0
def
= {χα : absN (α) ≤ O(

r2

ε
)}.

That is, P is concentrated in Γ
def= Γ0 ∩ Γ2i and in case either r ∈ poly(n) or

m ∈ poly(n), the cardinal of this set is poly(n/ε). Because of lemma 1, we have
proven the following theorem.

Theorem 4. The code CBi is concentrated for all N = r2i+1 ± m, 0 < m < 2i,
with either r ∈ poly(n) or m ∈ poly(n).

5.4 The Hardness of the ith Bit for Certain N

We study the recoverability of CP . The recovery algorithm is adapted from
lemma 5 of [1] which proved that if B is a t-segment predicate, CB is recov-
erable. Combined with the concentration proven in theorem 4, the recoverability
of CP will prove the main result about the hardness of the ith bit for certain N.

Theorem 5. The code CBi is recoverable for all N = r2i+1 ± m with either
r ∈ poly(n) or m ∈ poly(n) for N a prime or an RSA modulus.

Proof. We first consider the case r ∈ poly(n). In this case, because of lemma 1
and lemma 5, CP

x is τ -concentrated in Γ ′
0

def= {χβ : β = αx mod N, absN (α) ≤
O(r2

τ)}.
The inputs of the recovery algorithm are a character χβ and a threshold

parameter τ (where 1/τ ∈ poly(n)). The output is a list containing x ∈ ZN such
that χβ ∈ Heavyτ (CP

x).
Since, CP

x is τ -concentrated in Γ ′
0, χβ ∈ Heavyτ (CP

x) implies χβ ∈ Γ ′
0 and

thus β = αx mod N for absN(α) ≤ poly(n/τ). The algorithm outputs the union
of the lists Lα such that Lα contains all x so that x = β/α mod N . If α ∈ Z∗

N

there is a single solution to this equation. If gcd(N, α) = d �= 1, the solution of
α

d
x = β mod

N

d
is either empty or a list

Lα =
{
x + i · N

d
mod N

}
i=0,...,d−1.

The union of the lists Lα (over all α such that abs(α) ≤ O(r2

τ)) contains
all x such that Heavyτ(CP

x) � χβ . For the length of the lists and the time of
constructing them be poly(n/τ), it must be that d ∈ poly(n), since Lα has length
d. This condition is trivially satisfied if N is a prime. If N is an RSA modulus,
gcd(N, α) �= 1 implies factoring N . So, for an RSA modulus N = r2i+1±m with
r ∈ poly(n), either the code CBi is recoverable or P is concentrated in a known

26 P. Morillo and C. Ràfols

set Γ0 of polynomial size which contains some element which allows to factorize
N , contradicting the unfeasibility of factoring RSA modulus.

The case m ∈ poly(n) is proven in a similar way but now taking into account
CP

x is τ -concentrated in Γ ′
2i

def= {χβ : β = αx mod N, absN (2iα − N/2) ≤
O(m2

τ)}. �

Theorem 2 states that, as a consequence of theorems 4 and 5, the code CBi is
list decodable for all N = r2i+1 ±m with either r ∈ poly(n) or m ∈ poly(n) and
N a prime or an RSA modulus.

Finally, we conclude

Theorem 6. The predicate Bi, ith bit, is a hard-core predicate for any one-way
function defined over ZN for which the multiplication code CBi is accessible, for
all N = r2i+1 ± m prime or RSA modulus such that either r ∈ poly(n) or
m ∈ poly(n).

This theorem is a consequence of the list decodability of the code CBi and
theorem 3.

This proves the hardness of all bits for N with a special binary representation,
but it also reproves the hardness of the O(log n) most and least significant bits
for all N of cryptographic interest.

– Most significant bits If n − i ∈ O(log n), then r ∈ poly(n). Theorem 6
proves the security of the first O(log n) most significant bits for all N prime
or RSA modulus for any one-way function defined over ZN for which the
multiplication code CBi is accessible.

– Least significant bits If i ∈ O(log n) then m ∈ poly(n). Theorem 6 proves
the security of the first O(log n) most significant bits for all N prime or RSA
modulus for any one-way function defined over ZN for which the multiplica-
tion code CBi is accessible.

6 The Security of All Bits for All N

This section is devoted to prove the hardness of all bits for all cryptographically
relevant N . First of all in subsection 6.1 we study the bounds given in section 5.2
more accurately. In subsection 6.2 we proceed to prove that P is concentrated
for N prime or RSA modulus. This result, together with the recovery algorithm
given in subsection 6.3 and the accessibility of CP , implies the security of the
internal bits for all N of cryptographic interest. This is summarized in theorem 9.

6.1 A Closer Look at the Asymptotic Behavior of |P̂ (α)|2

The bounds of section 5.2 are not enough to prove the concentration in the
general case. Therefore, in this section we will study the asymptotic behavior of
|P̂ (α)|2 in more detail.

The Security of All Bits Using List Decoding 27

As it was proven in proposition 1

|P̂ (α)|2 = Θ

(
absN(mα)2

absN(α)2absN (2iα − N/2)2

)
.

We introduce some notation to express the elements α ∈ ZN as a function of
some parameters useful to describe absN(α) and absN (2iα − N/2). Recall that
N = r2i+1 ± m, where 0 < m < 2i.

Some parameters. We define some parameters depending on α ≥ 0 or α < 0.
First consider the case α ∈ [0, N−1

2]. Denote δα ≡ α2i − N−1
2 mod N , where

δα ∈ [−N−1
2 , N−1

2] and let λα be the integer in [0, 2i−1 − 1] such that

α2i = (N − 1)/2 + δα + λαN. (3)

Let α be an integer in [−N−1
2 , 0). Denote δα ≡ α2i + N+1

2 mod N , where δα ∈
[−N−1

2 , N−1
2] and let λα be the integer in [0, 2i−1 − 1] such that

α2i = −(N + 1)/2 + δα − λαN. (4)

Finally, for any α ∈ [−N−1
2 , N−1

2] we define μα ∈ [0, r] as the only integer such
that absN(2iα − (N − 1)/2) = μα2i + δ̃α with δ̃α ∈ [0, 2i − 1].

From equations 3 and 4, if α ≥ 0,

α = ((N − 1)/2 + δα + λαN)/2i, (5)

and if α < 0,

α = (−(N + 1)/2 + δα − λαN)/2i. (6)

We emphasize that equations 3, 4, 5 and 6 are integer equalities.

The parameters μα and δ̃α are determined by δα. Indeed,

Lemma 6. For all α ∈ ZN , μα2i + δ̃α = |δα|.
Proof. We will prove that absN(2iα − (N − 1)/2) = |δα|. This is obvious when
α ≥ 0, since α2i − (N −1)/2 ≡ δα mod N and δα ∈ [−N−1

2 , N−1
2]. When α < 0,

note that

α2i − (N − 1)/2 ≡ α2i + (N + 1)/2 ≡ δα mod N.

Since δα ∈ [−N−1
2 , N−1

2], absN(α2i − (N − 1)/2) = |δα| by definition of absolute
value. �

Note that lemmas 4 and 5 in section 5.3 imply that ||P − P|Γ2i∩Γ0 ||22 ≤ ε. That
is, if there exists a set Γ where P is concentrated, then Γ ⊂ Γ0∩Γ2i . The choice
of these parameters is motivated by the remark that points α ∈ Γ0 ∩ Γ2i should
be close to small odd multiples of N/2i+1, that is, observing that N/2i+1 ≈ r,
we will have that absN (α) ≈ (2λα + 1)r ± μα, with λα and μα small. Indeed,

28 P. Morillo and C. Ràfols

Lemma 7. For all α ∈ ZN , absN (α) = (2λα + 1)r ± μα + R, with |R| ≤ λα.

Proof. First of all we consider the case α ∈ [0, N−1
2]. In this case absN (α) = α.

Suppose δα ∈ [0, N−1
2] and N = r2i+1 − m (i.e., Case 1 of section 5.1). Since

δα ≥ 0, lemma 6 implies δα = δ̃α + μα2i. Substituting in equation 5, we get

absN(α) = (2λα + 1)r + μα +
−(2λα + 1)m + 2δ̃α − 1

2i+1 .

Similarly for the rest of cases, that is: (1) δα ∈ [−N−1
2 , 0) and N = r2i+1−m,

(2) δα ∈ [0, N−1
2] and N = r2i+1+m and (3) δα ∈ [−N−1

2 , 0) and N = r2i+1+m,
we obtain

absN(α) = (2λα + 1)r ± μα +
±(2λα + 1)m ± 2δ̃α − 1

2i+1 .

On the other hand, in the case α < 0, absN(α) = −α. Considering all the
possible combinations for the sign of δα and Case 1 and Case 2, as above, and
substituting in equation 6, we obtain

absN(α) = (2λα + 1)r ± μα +
±(2λα + 1)m ± 2δ̃α + 1

2i+1 .

If λα = 0 it is easy to see that R = 0 and the lemma is true. Indeed, λα = 0
implies ±m±2δ̃α±1 = 0 mod 2i+1 due to the fact that equations 3 and 4 were
integer equalities. Because of the range of definition of m and δ̃α, this congruence
is equivalent to the equality ±m ± 2δ̃α ± 1 = 0 and therefore R = 0. Now, to
prove the lemma proceed by induction over λα. �
Corollary 1. For all α ∈ ZN , absN(α) ≥ λα(2r − 1).

Proof. Simply note that μα ∈ [0, r] and |R| ≤ λα. Then,

absN (α) = (2λα + 1)r ± μα + R ≥ 2λαr + R ≥ λα(2r − 1). �

From these lemmas we can easily prove the following:

Lemma 8. absN (α)2absN(2iα − N−1
2)2 ≥ λ2

αμ2
αr222i+2 1

4
.

Proof. As we have seen in corollary 1, absN(α) ≥ λα(2r − 1), therefore

absN(α)2absN (2iα − N−1
2)2≥λ2

α(2r − 1)2(μα2i + δ̃α)2≥λ2
α(2r − 1)2(μα2i)2 ≥

≥ λ2
α

(2r − 1)2

(2r)2
(2r)2(μα2i)2 ≥ λ2

αμ2
αr222i+2 1

4
. �

Now it is easy to characterize the asymptotic behavior of |P̂ (α)|2 in terms of λα

and μα.

Proposition 2. For all α ∈ ZN such that λα > 0 and μα > 0

|P̂ (α)|2 < O
(1
λ2

αμ2
α

)
.

The Security of All Bits Using List Decoding 29

Proof. Since absN(mα) ≤ N/2, from proposition 1 and the lemma 8, if λα > 0
and μα > 0,

|P̂ (α)|2 < O

(
absN (mα)2

absN (α)2absN(2iα − N/2)2

)
< O

(N2

λ2
αμ2

αr222i+2

)
< O

(1
λ2

αμ2
α

)
.�

Before proceeding to prove our main theorem, we note that elements in ZN have
a convenient representation in these parameters.

Lemma 9. The following map is injective

π : [−N−1
2 , N−1

2] −→ [0, 2i−1 − 1] ×[0, r] × {±1} × {±1}
α
−→ (λα, μα, sα, sδ)

where sα = 1 if α ≥ 0 and −1 otherwise and sδ = 1 if δα ≥ 0 and −1 otherwise.

Proof. Reducing equations 3 and 4 modulo 2i it is clear that λα and sδ deter-
mine δ̃α modulo 2i and therefore δ̃α. Then α can be computed from π(α) using
equations 5 or 6. �

6.2 The Concentration of the ith Bit for All N

As a result of lemma 9 of the above section, we can describe the elements of ZN

as regions in [0, 2i−1 − 1]× [0, r]× {±1}× {±1}. Now we can present our result
about the concentration of the ith bit.

Theorem 7. P is ε-concentrated in Γ
def
= {χα : λα < O(1

ε), μα < O(1
ε)}.

Proof. Let Γk
def= {χα : λα ≤ k, μα ≤ k}, we will prove that∑

χα /∈Γk

|P̂ (α)|2 < O
(1
k

)
.

Note that ZN\Γk = {χα : λα = 0, μα > k} ∪ {χα : λα > k, μα = 0} ∪ {χα :
λα > k, μα ≥ 1} ∪ {χα : λα ≥ 1, μα > k}.

To bound the sum of |P̂ (α)|2 over the two first sets, the bounds of lemma 3
of section 5.2 will suffice, while we will need proposition for the other bounds.
Indeed, when λα = 0, using one of the bounds of lemma 3,∑

λα=0,μα>k

|P̂ (α)|2 ≤ O(m2)
∑

λα=0,μα>k

1
absN (2iα − (N − 1)/2)2

<

< O(m2)
∑

λα=0,μα>k

1

(δ̃α + μα2i)2
<

< O(m2)
∑

λα=0,μα>k

1
(μα2i)2

<

< O(1)
∑

λα=0,μα>k

1
μ2

α

< O
(1
k

)
.

30 P. Morillo and C. Ràfols

On the other hand, when μα = 0, using the other bound of lemma 3,∑
λα>k,μα=0

|P̂ (α)|2 ≤ O(r2)
∑

λα>k,μα=0

1
absN(α)2

<

< O(r2)
∑

λα>k,μα=0

1
λ2

α(2r − 1)2
<

< O(1)
∑

λα>k,μα=0

1
λ2

α

< O(
1
k

).

To conclude the proof we need to show that∑
λα>k,μα≥1

|P̂ (α)|2 +
∑

λα≥1,μα>k

|P̂ (α)|2 < O(
1
k

).

From proposition 6.2,

|P̂ (α)|2 < O
(1
λ2

αμ2
α

)
.

As a consequence,

∑
λα>k,μα≥1

|P̂ (α)|2 +
∑

λα≥1,μα>k

|P̂ (α)|2 ≤
∑

λα>k,μα≥1

1
λ2

αμ2
α

+
∑

λα≥1,μα>k

1
λ2

αμ2
α

=

=
∑

μα≥1

1
μ2

α

(∑
λα>k

1
λ2

α

)
+

∑
λα≥1

1
λ2

α

(∑
μα>k

1
μ2

α

)
< O(

1
k

).

We conclude that if k ∈ O(1
ε),

∑
χα /∈Γ

|P̂ (α)|2 ≤ ε as stated in theorem 7.

�
6.3 The Hardness of the ith Bit for All N

In the previous section we proved the concentration of the predicate Bi. To
complete the proof of the main theorem concerning its hardness, in this section
we prove the recoverability of the code CBi .

Theorem 8. The code CBi is recoverable for all N prime or RSA modulus.

Proof. This recovery algorithm is almost identical to the one given in [1].
Because of theorem 7 and lemma 1, CP

x is τ -concentrated in Γ ′ def= {χβ : β =

αx mod N, χα ∈ Γ}, where Γ
def= {χα : λα < O(1

τ), μα < O(1
τ)}.

The inputs of the recovery algorithm are a character χβ and a threshold
parameter τ , where 1/τ ∈ poly(n). The output is a list containing x ∈ ZN such
that χβ ∈ Heavyτ (CP

x).
Since, CP

x is τ -concentrated in Γ ′, χβ ∈ Heavyτ (CP
x) implies χβ ∈ Γ ′ and

thus β = αx mod N for λα < poly(n/τ) and μα < poly(n/τ). The algorithm
outputs the list L

def= {x : x = β/α mod N, χα ∈ Γ}. The length of the list and
the time of constructing it is poly(n/τ). �

The Security of All Bits Using List Decoding 31

Theorem 2 states that, as a consequence of theorems 7 and 8, the code CBi is
list decodable for all N prime or RSA modulus. We conclude

Theorem 9. If N is prime or is an RSA modulus, the predicate Bi is hard-core
for any one-way function defined over ZN for which the multiplication code is
accessible.

7 All Bits of the Paillier Encryption Scheme Are Secure

Let N = p ·q be an RSA modulus, given an element g ∈ Z∗
N2 such that N divides

the order of g, the Paillier trapdoor permutation, introduced in [10] is the map:

Eg : Z∗
N × ZN −→ Z∗

N2

(r, m)
→ rN gm

Taking r to be a random element and m the plaintext, the Paillier probabilistic
encryption scheme encrypts m as Eg(r, m) and is semantically secure under the
Decisional Composite N-th residuosity assumption.

In this section we will sketch the proof of the security of any bit P of the
message. We stress that by security of P we mean that we relate the ability of
an adversary in predicting P (m) from Eg(r, m) to the ability of recovering m
from Eg(r, m), and not to the ability of inverting Eg.

The concentration and recoverability of the multiplication code CP , where
P : ZN → {±1} is the predicate ith bit of the message, follows from our results
of section 6.3. Then, the code CP is list decodable.

The one-way function Eg has domain in Z∗
N × ZN , while the predicate has

domain in ZN , so we need to slightly change the definition of accessibility to
fit this situation. We will first give the access algorithm, then we will give the
new definition of accessible code and argue that this new definition is enough to
apply the list decoding methodology.

The access algorithm A, on input (N, g, Eg(r, x), j), chooses a random element
� ∈ Z∗

N , and outputs (Eg(r, x))j · �N . Note that

(Eg(r, x))j · �N ≡ Eg(rj · �, xj) mod N2.

It is not hard to see that for this access algorithm A the code satisfies the
following properties:

1. Code access: ∀x, j ∈ ZN , A(N, g, Eg(r, x), j) returns Eg(r′, x′) such that
C

PN,g
x (j) = PN,g(x′)

2. Well spread: For uniformly distributed C
PN,g
x ∈ CPN,g and j ∈ ZN , the

distribution of (r′, x′) ∈ Z∗
N × ZN satisfying Eg(r′, x′) = A(N, g, Eg(r, x), j)

is statistically close to the uniform distribution on Z∗
N × ZN

3. Bias preserving: For every codeword C
PN,g
x ∈ CPN,g ,

|Pr
(
CPN,g

x (j) = 1 : j ← ZN

) − Pr
(
PN,g(z) = 1 : z ← ZN

)| ≤ ν(n),

where ν is a negligible function.

32 P. Morillo and C. Ràfols

Compare these properties with the ones that an accessible code must verify
(see definition 10 of section 4). Both definitions are almost identical but now the
property that the code is well spread is for (r′, x′) ∈ Z∗

N × ZN and not on the
domain of the definition of the code.

Lemmas 2 and 3 of [1] prove that if the code CP is accessible with respect
to F , an oracle B predicting P from F with probability exceeding majP + ε
implies access to a corrupted codeword w such that Δ(Cx, w) ≤ minorCx − ε.
The property that the code is well spread is used in the proofs of these lemmas.
It is immediate to see that to do the same reasoning in the Paillier case we need
to require precisely the second condition above.

Summarizing, the definition we gave above is exactly the one we need to
prove that an oracle predicting P (x) from Eg(r′, x) gives access to a corrupted
codeword w sufficiently close to x. But to prove theorem 3 which states that
list decodability of CP plus accessibility implies that P is a hard-core of F ,
accessibility was only necessary to prove access to a corrupted codeword w.
Therefore, the argument we gave in this section with the concentration and
recoverability of the multiplication code CPN,g of section 6.3 implies the security
of all bits of the message of the Paillier trapdoor permutation.

We emphasize that the security of all bits of the Paillier encryption scheme
was only known based on a non-standard computational assumption [3].

8 Other Predicates

We note that theorem 6 is enough to reprove the hardness of segment predicates.
Recall from section 2 that a t-segment predicate is a predicate which changes
value t ∈ poly(n) number of times. Define G as

G(x) =
P (x + 1) − P (x)

2
,

and note that G(x) �= 0 for exactly t values of x. Although in this case we
cannot compute Ĝ(α) explicitly as before, we still have |Ĝ(α)|2 ≤ t2/N2. The
same arguments as in lemma 5 prove that P is concentrated up to ε in Γ0

def=
{χα : absN(α) ≤ O(t2

ε)} - this corresponds to claim 4.1 of [1].
In the last section we proved the security of all bits in the binary representation

of the preimage for any one-way function defined over ZN with multiplicative
access provided that N is odd. Note that the same proof would do for any other
“almost periodic” predicate. Indeed, for any d ∈ N define Pd : ZN → {±1} as 1
if [x] ∈ [kd, (k + 1)d − 1], k even, and −1 otherwise. Write N = r2d ± m, with
0 < m < d. Then all the results proven in the last section are also valid for Pd

just writing d instead of 2i.

9 Conclusion

In our opinion the list decoding methodology formalized in [1] has not received
enough attention. Because of the elegance and generality of the method and the

The Security of All Bits Using List Decoding 33

power of the different tools it uses it should be considered the starting point of
any bit security proof. In this paper we have extended the number of predicates
to which the list decoding methodology applies. As a result we prove the security
of all bits of any of the usual cryptographic one-way functions with multiplicative
access defined on a cyclic group of order N .

Acknowledgements

The authors would like to thank Eike Kiltz for his comments and suggestions
that contributed to make the paper more readable.

References

1. Akavia, A., Goldwasser, S., Safra, S.: Proving Hard-Core Predicates Using List
Decoding. In: Proc. of the 44th Symposium on Foundations of Computer Science
(2003)

2. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin functions: certain
parts are as hard as the whole. SIAM J.Comp. 17(2) (1988)

3. Catalano, D., Gennaro, R., Howgrave-Graham, N.: Paillier’s Trapdoor Function
Hides up to O(n) Bits. J.Cryptology 15(4) (2002)

4. Kushilevitz, E., Mansour, Y.: Learning Decision Trees Using the Fourier Spectrum.
In: Proc. of the 23rd Annual ACM Symposium on Theory of Computing (1991)

5. Gilbert, A.C., Muthukrishnan, S., Strauss, M.: Improved time bounds for near-
optimal sparse Fourier representation via sampling. In: Proc. of SPIE Wavelets XI
(2005)

6. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Proc.
of the 21st Annual ACM Symposium on Theory of Computing (1989)

7. Goldreich, O., Rubinfeld, R., Sudan, M.: Learning Polynomials with Queries: The
Highly Noisy Case. SIAM J. Discrete Math. 13(4) (2000)

8. H̊astad, J., Näslund, M.: The security of all RSA and discrete log bits. J. ACM 51(2)
(2004)

9. Näslund, M.: All Bits ax+b mod p are Hard. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 114–128. Springer, Heidelberg (1996)

10. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

	The Security of All Bits Using List Decoding
	Introduction
	Previous Work
	Organization

	Parts That Are as Hard as the Whole
	Preliminaries
	Fourier Analysis in \mathbb{Z}_N
	Codes
	List Decodable Codes

	The Relation between List Decoding and Hard-Core Predicates
	The Security of All Bits for Special N
	The Fourier Representation of the ith Bit
	Asymptotic Behaviour of the Fourier Coefficients of the ith Bit
	The Concentration of the ith Bit for Certain N
	The Hardness of the ith Bit for Certain N

	The Security of All Bits for All N
	A Closer Look at the Asymptotic Behavior of $|\widehat{P(\alpha)}|^2$
	The Concentration of the ith Bit for All N
	The Hardness of the ith Bit for All N

	All Bits of the Paillier Encryption Scheme Are Secure
	Other Predicates
	Conclusion
	References

