
An Algorithm to Construct
Greedy Drawings of Triangulations�

Patrizio Angelini1, Fabrizio Frati1, and Luca Grilli2

1 Dipartimento di Informatica e Automazione - Roma Tre University
{angelini,frati}@dia.uniroma3.it

2 Dipartimento di Ingegneria Elettronica e dell’Informazione - Perugia University
luca.grilli@diei.unipg.it

Abstract. We show an algorithm to construct greedy drawings of every given
triangulation.

1 Introduction

In a greedy routing setting, a node forwards packets to a neighbor that is closer to
the destination’s geographic location. Different distance metrics define different mean-
ings for the word “closer”, and consequently define different routing algorithms for the
packet delivery. The most used and studied metric is of course the Euclidean distance.

The efficiency of the greedy routing algorithms strongly relies on the geographic co-
ordinates of the nodes. This is a drawback of such algorithms, for the following reasons:
(i) Nodes of the network have to know their locations, hence they have to be equipped
with GPS devices, which are expensive and increase the energy consumption of the
nodes; (ii) geographic coordinates are independent of the network obstructions, i.e. ob-
stacles making the communication between two close nodes impossible, and, more in
general, they are independent of the network topology; this could lead to situations in
which the communication fails because a void has been reached, i.e., the packet has
reached a node whose neighbors are all farther from the destination than the node itself.

A brilliant solution to such weaknesses has been proposed by Rao et al. who in [9]
proposed a scheme in which nodes decide virtual coordinates and then apply the greedy
routing algorithm relying on such coordinates rather than on the real geographic ones.
Since virtual coordinates do not need to reflect the nodes actual positions, they can be
suitably chosen to guarantee that the greedy routing algorithm delivers packets with
high probability. Experiments have shown that such an approach strongly improves the
reliability of greedy routing [9,8]. Further, it has been proved that virtual coordinates
guarantee greedy routing to work for every connected topology when they can be cho-
sen in the hyperbolic plane [5], and that some modifications of the routing algorithm
guarantee that Euclidean virtual coordinates can be chosen so that the packet delivery
always succeeds [1], even if the coordinates need to be locally computed [2].

� Work partially supported by MUR under Project “MAINSTREAM: Algoritmi per strutture
informative di grandi dimensioni e data streams” and by the Italian Ministry of Research,
Grant number RBIP06BZW8, project FIRB “Advanced tracking system in intermodal freight
transportation”.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 26–37, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Algorithm to Construct Greedy Drawings of Triangulations 27

Subsequent to the Rao et al. paper [9], an intense research effort has been devoted
to determine on which network topologies the Euclidean greedy routing with virtual
coordinates is guaranteed to work. From a graph-theoretic point of view, the problem
is as follows: Which are the graphs that admit a greedy embedding, i.e., a straight-line
drawing Γ such that, for every pair of nodes u and v, there exists a distance-decreasing
path in Γ ? A path (v0, v1, . . . , vm) is distance-decreasing if d(vi, vm) < d(vi−1, vm),
for i = 1, . . . , m. In [8] Papadimitriou and Ratajczak conjectured the following:

Conjecture 1. (Papadimitriou and Ratajczak [8]) Every triconnected planar graph ad-
mits a greedy embedding.

Papadimitriou and Ratajczak showed that Kk,5k+1 has no greedy embedding, for k ≥ 1.
As a consequence, both the triconnectivity and the planarity are necessary, because
there exist planar non-triconnected graphs, such as K2,11, and non-planar triconnected
graphs, such as K3,16, that do not admit any greedy embedding. Further, they observed
that, if a graph G has a greedy embedding, then any graph containing G as a spanning
subgraph has a greedy embedding. It follows that Conjecture 1 extends to all graphs
which are spanned by a triconnected planar graph. Related to such an observation, they
proved that every triconnected graph not containing a K3,3-minor has a triconnected
planar spanning subgraph.

For a few classes of triconnected planar graphs the conjecture is easily shown to
be true, for example graphs with a Hamiltonian path and Delaunay Triangulations. At
SODA’08 [3], Dhandapani proved the conjecture for the first non-trivial class of tri-
connected planar graphs, namely he showed that every triangulation admits a greedy
embedding. The proof of Dhandapani is probabilistic, namely the author proves that
among all the Schnyder drawings of a triangulation [10], there exists a drawing which
is greedy. Although such a proof is elegant, relying at the same time on an old Com-
binatorial Geometry theorem, known as the Knaster-Kuratowski-Mazurkievicz Theo-
rem [6], and on standard Graph Drawing techniques, as the Schnyder realizers [10]
and the canonical orderings of a triangulation [4], it does not lead to an embedding
algorithm.

In this paper we show an algorithm for constructing greedy drawings of triangu-
lations. The algorithm relies on a different and maybe more intuitive approach with
respect to the one used in [3]. We define a simple class of graphs, called binary cac-
tuses, and we provide an algorithm to construct a greedy drawing of any binary cactus.
Finally, we show how to find, for every triangulation, a binary cactus spanning it. It
is clear that the previous statements imply an algorithm for constructing greedy draw-
ings of triangulations. Namely, consider any triangulation G, apply the algorithm to
find a binary cactus S spanning G, and then apply the algorithm to construct a greedy
drawing of S. As already observed, adding edges to a greedy drawing leaves the draw-
ing greedy, hence S can be augmented to G, obtaining the desired greedy drawing
of G.

Theorem 1. Given a triangulation G, there exists an algorithm to compute a greedy
drawing of G.

28 P. Angelini, F. Frati, and L. Grilli

ν

μ1

μ2

μ3

μ4

μ5

μ6

μ7

r(μ1)

r(μ2)

r(μ3)

r(μ4)

r(μ5)

r(μ6)

r(μ7)
r(ν) ν

μ1

μ2

μ3

μ4

μ5

μ6

μ7

r(μ1)

r(μ2)

r(μ6)

r(μ3)

r(μ4)

r(μ5)
r(μ7)

(a) (b)

Fig. 1. (a) A binary cactus S. (b) The block-cutvertex tree of S. White (resp. black) circles repre-
sent C-nodes (resp. B-nodes).

2 Preliminaries

A graph G is connected if every pair of vertices of G is connected by a path. A cutver-
tex is a vertex whose removal increases the number of connected components of G. A
connected graph is biconnected if it has no cutvertices. The maximal biconnected sub-
graphs of a graph are its blocks. Each edge of G falls into a single block of G, while
cutvertices are shared by different blocks. The block-cutvertex tree, or BC-tree, of a
connected graph G is a tree with a B-node for each block of G and a C-node for each
cutvertex of G. Edges in the BC-tree connect each B-node μ to the C-nodes associated
with the cutvertices in the block of μ.

The BC-tree of G may be thought as rooted at a specific block ν. When the BC-tree
T of a graph G is rooted at a certain block ν, we denote by G(μ) the subgraph of G
induced by all vertices in the blocks contained in the subtree of T rooted at μ. In a
rooted BC-tree T of a graph G, for each B-node μ we denote by r(μ) the cutvertex
of G parent of μ in T . If μ is the root of T , i.e., μ = ν, then we let r(μ) denote any
non-cutvertex node of the block associated with μ. In the following, unless otherwise
specified, each considered BC-tree is meant to be rooted at a certain B-node ν such that
the block associated with ν has at least one vertex r(ν) which is not a cutvertex. It is
not difficult to see that such a block exists in every planar graph.

A rooted triangulated binary cactus S, in the following simply called binary cactus,
is a connected graph such that (see Fig 1): (i) the block associated with each B-node of
T is either an edge or a triangulated cycle, i.e., a cycle (r(μ), u1, u2, . . . , uh) triangu-
lated by the edges from r(μ) to each of u1, u2, . . . , uh; (ii) every cutvertex is shared by
exactly two blocks of S.

A planar drawing of a graph is a mapping of each vertex to a distinct point of the
plane and of each edge to a Jordan curve between its endpoints such that no two edges
intersect except, possibly, at common endpoints. A planar drawing of a graph deter-
mines a circular ordering of the edges incident to each vertex. Two drawings of the same
graph are equivalent if they determine the same circular ordering around each vertex. A
planar embedding is an equivalence class of planar drawings. A planar drawing parti-
tions the plane into topologically connected regions, called faces. The unbounded face
is the outer face. The outer face of a graph G is denoted by f(G). A chord of a graph
G is an edge connecting two non-adjacent vertices of f(G). A graph together with a
planar embedding and a choice for its outer face is called plane graph. A plane graph is
a triangulation when all its faces are triangles. A plane graph is internally-triangulated

An Algorithm to Construct Greedy Drawings of Triangulations 29

ai

C

bi

pi*
l1* l2*

t(pi)*

R(Γi)

W(pi)*

βi

αi

βi

p0 ph

C

p*

W(p)*

β β

p1

p

ph-1

(a) (b)

Fig. 2. (a) Illustration for Properties 1–3 of Γ . (b) Base case of the algorithm. The light and dark
shaded region represents R(Γ) (the angle of R(Γ) at p∗ is α). The dark shaded region represents
the intersection of W (p∗, α/2) with the circle delimited by C.

when all its internal faces are triangles. An outerplane graph is a plane graph such that
all its vertices are incident to the outer face. A Hamiltonian cycle of a graph G is a sim-
ple cycle passing through all vertices of G. Notice that a biconnected outerplane graph
has only one Hamiltonian cycle, the one delimiting its outer face.

3 Greedy Drawing of a Binary Cactus

In this section, we give an algorithm to compute a greedy drawing of a binary cactus S.
Such a drawing is constructed by a bottom-up traversal of the BC-tree T of S.

Consider the root μ of a subtree of T corresponding to a block of S, consider the k
children of μ, which correspond to cutvertices of S, and consider the children of such
cutvertices, say μ1, μ2, . . . , μk. Notice that each C-node child of μ is parent of exactly
one B-node μi of T , by definition of binary cactus. For each i = 1, . . . , k, inductively
assume to have a drawing Γi of S(μi) satisfying the following properties. Let αi and
βi be any two angles less than π/4 such that βi ≥ αi. Refer to Fig. 2.a.

– Property 1. Γi is a greedy drawing.
– Property 2. Γi is entirely contained inside a region R(Γi) delimited by an arc

(ai, bi) of a circumference C and by two segments (p∗i , ai) and (p∗i , bi), such that
p∗i is a point of C and the diameter through p∗i cuts (ai, bi) in two arcs of the same

length. The angle ̂aip∗i bi is αi.
– Property 3. Consider the tangent t(p∗i) to C in p∗i . Consider two half-lines l∗1 and

l∗2 incident to p∗i , lying on the opposite part of C with respect to t(p∗i), and forming
angles equal to βi with t(p∗i). Denote by W (p∗i) the wedge centered at p∗i , delimited
by l∗1 and l∗2, and not containing C. Then, for every vertex v in S(μi) and for every
point p internal to W (p∗i), a distance-decreasing path (v = v0, v1, . . . , vl = r(μi))
from v to r(μi) exists in Γi such that d(vj , p) < d(vj−1, p) for j = 1, . . . , l.

In the base case, block μ has no child. Denote by (r(μ) = u0, u1, . . . , uh−1) the
block of S corresponding to μ. If h = 2, i.e., μ corresponds to an edge, draw such an
edge as a vertical segment, with u1 above u0. A region R(Γi) can be easily constructed,
for every angles α and β, with β ≥ α, satisfying the above properties. If h > 2, i.e.,
μ corresponds to a triangulated cycle of S, place r(μ) at any point p∗ and consider a

30 P. Angelini, F. Frati, and L. Grilli

wedge W (p∗, α/2) that has an angle equal to α/2, that is incident to r(μ), and that is
bisected by the vertical half-line incident to r(μ) and directed upward (see Fig. 2.b).
Denote by p′a and p′b the intersection points of the half-lines delimiting W (p∗, α/2)
with a circumference C through r(μ), properly intersecting the border of W (p∗, α/2)
twice. Denote by A the arc of C between p′a and p′b not containing p∗. Consider points
p′a = p0, p1, . . . , ph = p′b on A such that the distance between any two consecutive
points pi and pi+1 is the same. Place vertex ui at point pi, for i = 1, 2, . . . , h − 1.

We show that the constructed drawing Γ satisfies Property 1. Consider any two
vertices ui and uj , with i < j. If i = 0, then u0 and uj are joined by an edge,
which provides a distance-decreasing path among them. Otherwise, we claim that path
(ui, ui+1, . . . , uj) is distance-decreasing. In fact, for each l = i, i + 1, . . . , j − 2, an-
gle ̂ulul+1uj is greater than π/2, because triangle (ul, ul+1, uj) is inscribed in less than
half a circumference with ul+1 as middle point. Hence, (ul, uj) is the longest side of tri-
angle (ul, ul+1, uj) and d(ul+1, uj) < d(ul, uj) follows. Drawing Γ satisfies Property
2 by construction. In order to prove that Γ satisfies Property 3, we have to show that, for
every vertex ui, with i ≥ 1, and for every point p in W (p∗), d(u0, p) < d(ui, p). How-
ever, angle ̂pp∗pi is at least β+(π

2 − α
4), which is more than π/2. It follows that segment

ppi is the longest side of triangle (p, p∗, pi), thus proving that d(u0, p) < d(ui, p).
Now suppose μ is a node of T having k children. We show how to construct a

drawing Γ of S(μ) satisfying Properties 1–3 with parameters α and β. Denote by
(r(μ) = u0, u1, . . . , uh−1) the block of S corresponding to μ. Consider any circum-
ference C with center c. Let p∗ be the point of C with smallest y-coordinate. Consider
wedges W (p∗, α) and W (p∗, α/2) with angles α and α/2, respectively, incident to
p∗ and such that the diameter of C through p∗ is their bisector. Region R(Γ) is the
intersection region of W (p∗, α) with the closed circle delimited by C.

Consider a circumference C′ with center c intersecting the two lines delimiting

W (p∗, α/2) in two points p′a and p′b such that angle ̂p′acp′b = 3α/2. Denote by p′

the intersection point between C′ and (c, p∗). Observe that angle ̂p′ap′p′b = 3α/4. De-
note by A the arc of C′ delimited by p′a and p′b not containing p′. Consider points
p′a = p0, p1, . . . , ph = p′b on A such that the distance between any two consecu-
tive points pi and pi+1 is the same. Observe that, for each i = 0, 1, . . . , h − 1, angle
p̂icpi+1 = 3α

2h .
First, we draw the block of S corresponding to μ. As in the base case, place vertex

u0 = r(μ) at p∗ and, for i = 1, 2, . . . , h − 1, place ui at point pi. Recursively construct
a drawing Γi of S(μi) satisfying Properties 1–3 with αi = 3α

16h and βi = 3α
8h .

We are going to place each drawing Γi of S(μi) together with the drawing of the
block of S corresponding to μ, thus obtaining a drawing Γ of S(μ). Not all h nodes ui

are cutvertices of S. However, with a slight abuse of notation, we suppose that block
S(μi) has to be placed at node ui. Refer to Fig 3. Consider point pi and its “neighbors”
pi−1 and pi+1. Consider lines t(pi−1) and t(pi+1) tangent to C′ through pi−1 and
pi+1, respectively. Further, consider circumferences Ci−1 and Ci+1 centered at pi−1
and pi+1, respectively, and passing through pi. Moreover, consider lines hi−1 and hi+1
through pi and tangent to Ci−1 and Ci+1, respectively. For each point pi, consider two
half-lines ti1 and ti2 incident to pi, cutting C′ twice, and forming angles βi = 3α

8h with
t(pi). Denote by W (pi) the wedge delimited by ti1 and ti2 and containing c.

An Algorithm to Construct Greedy Drawings of Triangulations 31

pi

li

pi+1pi-1

hi-1

to c

hi+1

Ci-1 Ci+1

t(pi-1)t(pi+1)t1
i+1

t2
i-1

C

C’

to cto c

Fig. 3. Lines and circumferences in the construction of Γ . The shaded region is Ri.

We place Γi inside the bounded region Ri intersection of the half-plane Hi−1 de-
limited by hi−1 and not containing Ci−1, of the half-plane Hi+1 delimited by hi+1 and
not containing Ci+1, of W (pi−1), of W (pi+1), and of the circle delimited by C.

First, we show that Ri is “large enough” to contain Γi, namely we claim that there
exists an isosceles triangle T that has an angle larger than αi = 3α

16h incident to pi and
that is completely contained in Ri. Such a triangle will have the further feature that the
angle incident to pi is bisected by the half-line li incident to c and passing through pi.

Lines hi−1 and hi+1 are both passing through pi; we prove that they have different
slopes and we compute the angles they form at pi. Line hi−1 forms an angle of π/2 with
segment pi−1pi; angle ̂cpipi−1 is equal to π

2 − 3α
4h , since p̂icpi−1 = 3α

2h and since triangle
(pi−1, c, pi) is isosceles. Hence, the angle delimited by hi−1 and li is π − π/2 − (π

2 −
3α
4h) = 3α

4h . Analogously, the angle between li and hi+1 is 3α
4h . Hence, the intersection of

Hi−1 and Hi+1 is a wedge W (pi, hi−1, hi+1) centered at pi, with an angle of 3α
2h , and

bisected by li. We claim that each of ti−1
2 and ti+1

1 cuts the border of W (pi, hi−1, hi+1)
twice. The angle between t(pi−1) and pi−1pi is 3α

4h , namely the angle between t(pi−1)
and cpi−1 is π/2, and angle ̂cpi−1pi is π

2 − 3α
4h . The angle between t(pi−1) and ti−1

2 is
βi = 3α

8h by construction. Hence, the angle between ti−1
2 and pi−1pi is 3α

4h − 3α
8h = 3α

8h .
Since the slope of both hi−1 and hi+1 with respect to pi−1pi is greater than 3α

8h and
less than π − 3α

8h , namely the slope of hi−1 and hi+1 with respect to pi−1pi is π
2 and

π
2 + 3α

2h , respectively (notice that α ≤ π/4 and h ≥ 2), then ti−1
2 intersects both hi−1

and hi+1. It can be analogously proved that ti+1
1 intersects hi−1 and hi+1. It follows

that the intersection of Hi−1, Hi+1, W (pi−1), and W (pi+1) contains a triangle T as
required by the claim (the angle of T incident to pi is 3α

2h). Considering circumference
C does not invalidate the existence of T , since C is concentric with C′ and has a bigger
radius, hence T can be chosen sufficiently small so that it completely lies inside C.

Now Γi can be placed inside T , by scaling Γi down till it fits inside T (see Fig. 4.a).
The scaling always allows Γi to be placed inside T , since the angle of R(Γi) incident
to p is αi = 3α

16h , that is smaller than the angle of T incident to pi, which is 3α
2h . In

32 P. Angelini, F. Frati, and L. Grilli

pi

li
t1

i+1

hi-1 hi+1

t2
i-1

C

C’

pa
αa

t10

t20
βi

βi ’C

c

p*

W(p)*

β β
ββ

hc

’
’h(pa)’

t(p)*

t(pa)

(a) (b)

Fig. 4. (a) Placement of Γ inside Ri. Region R(Γ) is the darkest, triangle T is composed of
R(Γ) and of the second darkest region, Ri is composed of T and of the light shaded region. (b)
Illustration for the proof of Lemma 1.

particular, we choose to place Γi inside T so that li bisects the angle of R(Γi) incident
to pi. This concludes the construction of Γ . We have the following lemmata.

Lemma 1. The closed wedge W (p∗) is completely contained inside the open wedge
W (pi), for each i = 0, 1, . . . , h.

Proof: Consider any point pi. Observe that pi is contained inside the wedge W (p∗)
obtained by reflecting W (p∗) with respect to t(p∗). Namely, pi is contained inside
W (p∗, α/2), which is in turn contained inside W (p∗), since α/2 < π − 2β, as a con-
sequence of the fact that π/4 > β ≥ α. Hence, in order to prove the lemma, it suffices
to show that the absolute value of the slope of each of ti1 and ti2 is less than the absolute
value of the slope of the half-lines delimiting W (p∗). Such latter half-lines form angles
of β, by construction, with the x-axis.

The slope of ti1 can be computed by summing up the slope of ti1 with respect to t(pi)
with the slope of t(pi). The former slope is equal to βi = 3α

8h , by construction. Recalling
that t(pi) is the tangent to A in pi, the slope of t(pi) is bounded by the maximum
among the slopes of the tangents to points of A. Such a maximum is clearly achieved
at p′a and p′b and is equal to 3α/4. Namely, refer to Fig. 4.b and consider the horizontal
lines h(c) and h(p′a) through c and p′a, respectively, that are traversed by radius (c, p′a).
Such a radius forms angles of π/2 with t(p′a); hence, the slope of t(p′a), that is equal
to the angle between t(p′a) and h(p′a), is π/2 minus the angle αa between h(p′a) and
(c, p′a). Angle αa is the alternate interior of the angle between h(c) and (c, p′a), which

is complementary to the half of angle ̂p′acp′b, which is equal to 3α/2, by construction.
It follows that αa is equal to π

2 − 3α
4 and the slope of t(p′a) is 3α

4 .
Hence, the slope of ti1 is at most 3α

4 + 3α
8h , which is less than α, since h ≥ 2, and

hence less than β. Analogously, the slope of ti2 is less than β, and the lemma follows. �

Corollary 1. Point p∗ is inside the open wedge W (pi), for each i = 1, 2, . . . , h.

Lemma 2. For every pair of indices i and j such that 1 ≤ i < j ≤ k, the drawing of
S(μj) is contained inside W (pi) and the drawing of S(μi) is contained inside W (pj).

Proof: If S(μi) and S(μj) are consecutive, i.e., the cutvertices parents of S(μi) and
S(μj) are ui and uj and j = i + 1, then the statement is true by construction. Suppose

An Algorithm to Construct Greedy Drawings of Triangulations 33

S(μi) and S(μj) are not consecutive. Consider the triangle Ti delimited by (p∗, pi), by
ti2, and by the line through p∗ and p′b. Ti contains the triangle delimited by (p∗, pi+1),
by ti+1

2 , and by the line through p∗ and p′b, which in turn contains the triangle delimited
by (p∗, pi+2), by ti+2

2 , and by the line through p∗ and p′b. Repeating such an argument
shows that Ti contains the triangle Tj−1 delimited by (p∗, pj−1), by tj−1

2 , and by the
line through p∗ and p′b. By construction, Γj lies inside Tj−1, and the lemma follows. �
We prove that the constructed drawing Γ satisfies Properties 1–3.

Property 1. We show that, for every pair of vertices w1 and w2, there exists a distance-
decreasing path between them in Γ . If both w1 and w2 are internal to the same
graph S(μi), the property follows by induction. If one of w1 and w2, say w1, is
r(μ) and the other one, say w2, is a node in S(μi) then, by Property 3, there exists
a distance-decreasing path (w2 = v0, v1, . . . , vl = r(μi)) from w2 to r(μi) such
that, for every point p in W (pi), d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l. By
Corollary 1, p∗ is contained inside W (pi). Hence path (w2 = v0, v1, . . . , vl =
r(μi), w1 = r(μ)) is a distance-decreasing path between w1 and w2. If w1 belongs
to S(μi) (possibly w1 = ui) and w2 belongs to S(μj) (possibly w2 = uj) then
suppose, w.l.o.g., that j > i. We show the existence of a distance-decreasing path
P in Γ , composed of three subpaths P1, P2, and P3. By Property 3, Γj is such
that there exists a distance-decreasing path P1 = (w1 = v0, v1, . . . , vl = r(μi))
from w1 to r(μi) such that, for every point p in W (pi), d(vj , p) < d(vj−1, p),
for j = 1, 2, . . . , l. By Lemma 2, drawing Γj , and hence vertex w2, is contained
inside W (pi), hence path P1 decreases the distance from w2 at every vertex. Path
P2 = (ui = r(μi), ui+1, . . . , uj = r(μj)) is easily shown to decrease the distance
from w2 at every vertex. In fact, for each l = i, i + 1, . . . , j − 2, angle ̂ulul+1uj

is greater than π/2, because triangle (ul, ul+1, uj) is inscribed in less than half a
circumference with ul+1 as middle point. Angle ̂ulul+1w2 is strictly greater than

̂ulul+1uj , hence it is the biggest angle in triangle (ul, ul+1, w2) and d(ul+1, w2) <
d(ul, w2) follows. By induction, there exists a distance-decreasing path P3 from
r(μj) to w2, thus obtaining a distance-decreasing path P from w1 to w2.

Property 2. Such a property holds for Γ by construction.
Property 3. Consider any node v in S(μi) and any point p internal to W (p∗). By

Lemma 1, p is internal to W (pi). By induction, there exists a distance-decreasing
path (v = v0, v1, . . . , vl = r(μi)) such that d(vj , p) < d(vj−1, p), for j =
1, 2, . . . , l. Hence, path (v = v0, v1, . . . , vl = r(μi), vl+1 = r(μ)) is a distance-
decreasing path such that d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l + 1, if and

only if d(r(μ), p) < d(r(μi), p). However, angle ̂pr(μ)r(μi) is at least β + (pi
2 −

3α
8), which is more than π/2. Hence, (p, r(μi)) is the longest side of triangle

(p, r(μ), r(μi)), thus proving that d(r(μ), p) < d(r(μi), p), and Property 3 holds
for Γ .

When the induction on T is performed with μ = ν, we obtain a greedy drawing of S,
thus proving the following:

Theorem 2. There exists an algorithm that constructs a greedy drawing of any binary
cactus.

34 P. Angelini, F. Frati, and L. Grilli

4 Spanning a Triangulation with a Binary Cactus

In this section we prove the following theorem:

Theorem 3. Given a triangulation G, there exists a spanning subgraph S of G such
that S is a binary cactus.

Consider any triangulation G. We are going to construct a binary cactus S spanning G.
First, we outline the algorithm to construct S. Such an algorithm has several steps. At
the first step, we choose a vertex u incident to f(G) and we construct a triangulated
cycle CT composed of u and all its neighbors. We remove u and its incident edges from
G, obtaining a biconnected internally-triangulated plane graph G∗. At the beginning of
each step after the first one, we suppose to have already constructed a binary cactus S
whose vertices are a subset of the vertices of G (at the beginning of the second step,
S coincides with CT), and to have a set G of subgraphs of G (at the beginning of
the second step, G∗ is the only graph in G). Each of such subgraphs is biconnected,
internally-triangulated, has an outer face whose vertices already belong to S, and has
internal vertices. All such internal vertices do not belong to S and each vertex of G
not belonging to S is internal to a graph in G. Only one of the graphs in G may have
chords (at the beginning of the second step, G∗ is such a graph). During each step,
we perform the following two actions: (1) We partition the only graph GC of G with
chords, if any, into several biconnected internally-triangulated chordless plane graphs;
we remove GC from G and we add to G all graphs with internal vertices into which GC

has been partitioned; (2) we choose a graph Gi from G, we choose a vertex u incident
to the outer face of Gi and already belonging to exactly one block of S, and we add
to S a block composed of u and of all its neighbors internal to Gi. We remove u and
its incident edges from Gi, obtaining a biconnected internally-triangulated plane graph
G∗

i . We remove Gi from G and we add G∗
i to G. The algorithm stops when G is empty.

Now we give the details of the above outlined algorithm. At the first step of the algo-
rithm, choose any vertex u incident to f(G). Consider the neighbors (u1, u2, . . . , ul) of
u in clockwise order around it. Since G is a triangulation, C = (u, u1, u2, . . . , ul) is a
cycle. Let CT be the triangulated cycle obtained by adding to C the edges connecting u
to its neighbors. Let S = CT . Remove vertex u and its incident edges from G, obtain-
ing a biconnected internally-triangulated graph G∗. If G∗ has no internal vertex, then
all the vertices of G belong to S and we have a binary cactus spanning G. Otherwise,
let G = {G∗}. For each graph Gi ∈ G, consider the vertices incident to f(Gi). Each of
such vertices can be either forbidden for Gi or assigned to Gi. A vertex w is forbidden
for Gi if the choice of not introducing in S any new block incident to w and spanning a
subgraph of Gi has been done. Conversely, a vertex w is assigned to Gi if a new block
incident to w and spanning a subgraph of Gi could be introduced in S. For example, w
is forbidden for Gi if there exist two blocks of S sharing w as a cutvertex. At the end
of the first step of the algorithm, choose any two vertices incident to f(G∗) as the only
forbidden vertices for G∗. All other vertices incident to f(G∗) are assigned to G∗. At
the beginning of the i-th step, with i ≥ 2, we assume that each of the following holds:

– Invariant A: Graph S is a binary cactus spanning all and only the vertices that are
not internal to any graph in G.

An Algorithm to Construct Greedy Drawings of Triangulations 35

– Invariant B: Each graph in G is biconnected, internally-triangulated, and has inter-
nal vertices.

– Invariant C: Only one of the graphs in G may have chords.
– Invariant D: No internal vertex of a graph Gi ∈ G belongs to a graph Gj ∈ G.
– Invariant E: For each graph Gi ∈ G, all vertices incident to f(Gi) are assigned to

Gi, except for two vertices, which are forbidden.
– Invariant F: Each vertex v incident to the outer face of a graph in G is assigned to

at most one graph Gv ∈ G. The same vertex is forbidden for all graphs Gv ∈ G
such that v is incident to f(Gv) and Gv �= Gv.

– Invariant G: Each vertex assigned to a graph in G belongs to exactly one block
of S.

Such invariants clearly hold after the first step of the algorithm.

Action 1: If all graphs in G are chordless, go to Action 2. Otherwise, by Invariant
C, only one of the graphs in G, say GC , may have chords. We use such chords to
partition GC into k biconnected, internally-triangulated, chordless graphs Gj

C , with
j = 1, 2, . . . , k. Consider the biconnected outerplane subgraph OC of GC induced by
the vertices incident to f(GC). To each internal face f of OC delimited by a cycle c, a
graph Gj

C is associated such that Gj
C is the subgraph of GC induced by the vertices of

c or inside c. Before replacing GC with graphs Gj
C in G, we show how to decide which

vertices incident to the outer face of a graph Gj
C are assigned to Gj

C and which vertices
are forbidden for Gj

C . Since each graph Gj
C is univocally associated with a face of OC

(namely the face of OC delimited by the cycle that delimits f(Gj
C)), in the following we

assign vertices to the faces of OC and we forbid vertices for the faces of OC , meaning
that if a vertex is assigned to (forbidden for) a face of OC delimited by a cycle c then it
is assigned to (resp. forbidden for) graph Gj

C whose outer face is delimited by c.
We want to assign the vertices incident to f(OC) to faces of OC so that the following

properties are satisfied. Property 1: No forbidden vertex is assigned to any face of OC .
Property 2: No vertex is assigned to more than one face of OC ; Property 3: Each face
of OC has exactly two incident vertices which are forbidden for it; all other vertices of
the face are assigned to it.

By Invariant E, GC has two forbidden vertices. We construct an assignment of ver-
tices to faces of OC in some steps. Let p be the number of chords of OC . Consider the
Hamiltonian cycle O0

C of OC , and assign all vertices of O0
C , but for the two forbidden

vertices, to the only internal face of O0
C . At the i-th step, 1 ≤ i ≤ p, we insert into

Oi−1
C a chord of OC , obtaining a graph Oi

C . This is done so that Properties 1–3 are
satisfied by Oi

C (with Oi
C instead of OC). After all p chords of OC have been inserted,

Op
C = OC , and we have an assignment of vertices to faces of OC satisfying Properties

1–3. Properties 1–3 are clearly satisfied by the assignment of vertices to faces of O0
C .

Inductively assume Properties 1–3 are satisfied by the assignment of vertices to faces
of Oi−1

C . Let (ua, ub) be the chord that is inserted at the i-th step. Chord (ua, ub) parti-
tions a face f of Oi−1

C into two faces f1 and f2. By Property 3, two vertices u∗
1 and u∗

2
incident to f are forbidden for it and all other vertices incident to f are assigned to it.
For each face of Oi

C different from f1 and f2, assign and forbid vertices as in the same
face in Oi−1

C . Assign and forbid vertices for f1 and f2 as follows.

36 P. Angelini, F. Frati, and L. Grilli

– If vertices ua and ub are the same vertices of u∗
1 and u∗

2, assign to each of f1 and
f2 all vertices incident to it, except for ua and ub. No forbidden vertex has been
assigned to any face of Oi

C (Property 1). Vertices ua and ub have not been assigned
to any face. All vertices assigned to f belong to exactly one of f1 and f2 and so
they have been assigned to exactly one face (Property 2). The only vertices of f1
(resp. of f2) not assigned to it are ua and ub, while all other vertices are assigned
to such a face (Property 3).

– If vertices ua and ub are both distinct from u∗
1 and u∗

2 and both u∗
1 and u∗

2 are in the
same of f1 and f2, say in f1, assign to f1 all vertices incident to it, except for u∗

1 and
u∗

2, and assign to f2 all vertices incident to it, except for ua and ub. No forbidden
vertex has been assigned to any face of Oi

C (Property 1). Vertices ua and ub have
been assigned to exactly one face. All other vertices assigned to f belong to exactly
one of f1 and f2 and so they have been assigned to exactly one face (Property 2).
The only vertices of f1 (resp. of f2) not assigned to it are u∗

1 and u∗
2 (resp. ua and

ub), while all other vertices are assigned to such a face (Property 3).
– If vertices ua and ub are both distinct from u∗

1 and u∗
2 and one of u∗

1 and u∗
2, say u∗

1,
is in f1 while the other one, say u∗

2, is in f2, assign to f1 all vertices incident to it,
except for u∗

1 and ua, and assign to f2 all vertices incident to it, except for u∗
2 and

ub. No forbidden vertex has been assigned to any face of Oi
C (Property 1). Vertices

ua and ub have been assigned to exactly one face. All other vertices assigned to
f belong to exactly one of f1 and f2 and so they have been assigned to exactly
one face (Property 2). The only vertices of f1 (resp. of f2) not assigned to it are
u∗

1 and ua (resp. u∗
2 and ub), while all other vertices are assigned to such a face

(Property 3).
– If one of vertices u∗

1 and u∗
2 coincides with one of ua and ub, say u∗

1 coincides with
ua, and the other one, say u∗

2, is in one of f1 and f2, say in f1, assign to f1 all
vertices incident to it, except for u∗

2 and ua, and assign to f2 all vertices incident to
it, except for ua and ub. No forbidden vertex has been assigned to any face of Oi

C

(Property 1). Vertex ua has not been assigned to any face and vertex ub has been
assigned to exactly one face. All other vertices assigned to f belong to exactly one
of f1 and f2 and so they have been assigned to exactly one face (Property 2). The
only vertices of f1 (resp. of f2) not assigned to it are u∗

2 and ua (resp. ua and ub),
while all other vertices are assigned to such a face (Property 3).

Graph GC is removed from G. All graphs Gj
C having internal vertices are added to G.

It is easy to see that Invariants A–G are satisfied after Action 1.

Action 2: After Action 1 all graphs in G are chordless. There is at least one graph Gi

in G, otherwise the algorithm would have stopped before Action 1. By Invariant B,
Gi has internal vertices. Choose any vertex u incident to f(Gi) and assigned to Gi.
Since Gi is biconnected and has internal vertices, f(Gi) has at least three vertices.
Since each graph in G has at most two forbidden vertices (by Invariant E), a vertex u
assigned to Gi exists. Consider all the neighbors (u1, u2, . . . , ul) of u internal to Gi,
in clockwise order around u. Since G is biconnected, chordless, internally triangulated,
and has internal vertices, then l ≥ 1. If l = 1 then let CT be edge (u, u1). Otherwise, let
CT be the triangulated cycle obtained by adding to cycle (u, u1, u2, . . . , ul) the edges
connecting u to its neighbors. Add CT to S. Remove u and its incident edges from Gi,

An Algorithm to Construct Greedy Drawings of Triangulations 37

obtaining a graph G∗
i . Assign to G∗

i all vertices incident to f(G∗
i), except for the two

vertices forbidden for Gi. Remove Gi from G and insert G∗
i , if it has internal vertices,

in G. It is easy to see that Invariants A–G are satisfied after Action 2.
When the algorithm stops, i.e., when there is no graph in G, by Invariant A graph S

is a binary cactus spanning all vertices of G, hence proving Theorem 3.

5 Conclusions

In this paper we have shown an algorithm for constructing greedy drawings of triangu-
lations. The algorithm relies on two main results. The first one states that every binary
cactus admits a greedy drawing. The second result, that may be of its own interest, is
that, for every triangulation G, there exists a binary cactus S spanning G.

After this paper was submitted, the authors realized that a slight modification of the
two main arguments, presented in Sect. 3 and 4, proves Conjecture 1. Namely, it can be
shown that every triconnected planar graph can be spanned by a rooted non-triangulated
binary cactus, i.e. a connected graph such that the block associated with each B-node
of T is either an edge or a cycle and every cutvertex is shared by exactly two blocks. A
greedy drawing of such a graph can be constructed by the drawing algorithm presented
for rooted triangulated binary cactuses (the proof that the drawings constructed by the
algorithm are greedy is slightly more involved due to the absence of edges (r(μ), ui),
for i = 2, 3, · · · , h − 2). However, two reviewers of our paper made us aware that the
conjecture has been positively settled by Leighton and Moitra in a paper to appear at
FOCS’08 [7]. The approach used by Leighton and Moitra is surprisingly similar to ours.

References

1. Ben-Chen, M., Gotsman, C., Gortler, S.J.: Routing with guaranteed delivery on virtual coor-
dinates. In: CCCG 2006 (2006)

2. Ben-Chen, M., Gotsman, C., Wormser, C.: Distributed computation of virtual coordinates.
In: Erickson, J. (ed.) SoCG 2007, pp. 210–219. ACM Press, New York (2007)

3. Dhandapani, R.: Greedy drawings of triangulations. In: Huang, S.-T. (ed.) SODA 2008, pp.
102–111. SIAM, Philadelphia (2008)

4. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-
ica 10(1), 41–51 (1990)

5. Kleinberg, R.: Geographic routing using hyperbolic space. In: INFOCOM 2007, pp. 1902–
1909. IEEE, Los Alamitos (2007)

6. Knaster, B., Kuratowski, C., Mazurkiewicz, C.: Ein beweis des fixpunktsatzes fur n dimen-
sionale simplexe. Fundamenta Mathematicae 14, 132–137 (1929)

7. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. In: FOCS
2008 (2008)

8. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor.
Comput. Sci. 344(1), 3–14 (2005)

9. Rao, A., Papadimitriou, C.H., Shenker, S., Stoica, I.: Geographic routing without location
information. In: Johnson, D.B., Joseph, A.D., Vaidya, N.H. (eds.) MOBICOM 2003, pp. 96–
108. ACM Press, New York (2003)

10. Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990, pp. 138–148. SIAM,
Philadelphia (1990)

	An Algorithm to Construct Greedy Drawings of Triangulations
	Introduction
	Preliminaries
	Greedy Drawing of a Binary Cactus
	Spanning a Triangulation with a Binary Cactus
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

