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Abstract. The metro-line crossing minimization (MLCM) problem was
recently introduced as a response to the problem of drawing metro maps
or public transportation networks, in general. According to this problem,
we are given a planar, embedded graph G = (V, E) and a set L of simple
paths on G, called lines. The main task is to place the lines on GG, so that
the number of crossings among pairs of lines is minimized.

Our main contribution is two polynomial time algorithms. The first
solves the general case of the MLCM problem, where the lines that tra-
verse a particular vertex of G are allowed to use any side of it to either
“enter” or “exit”, assuming that the endpoints of the lines are located
at vertices of degree one. The second one solves more efficiently the re-
stricted case, where only the left and the right side of each vertex can be
used.

To the best of our knowledge, this is the first time where the general
case of the MLCM problem is solved. Previous work was devoted to the
restricted case of the MLCM problem under the additional assumption
that the endpoints of the lines are either the topmost or the bottommost
in their corresponding vertices, i.e., they are either on top or below the
lines that pass through the vertex. Even for this case, we improve a
known result of Asquith et al. from O(|E|*/?|L|*) to O(|V|(|E| + |L])).

1 Introduction

A metro map can be modeled as a tuple (G, L), which consists of a connected
graph G = (V| E), referred to as the underlying network, and a set L of simple
paths on G. The nodes of G correspond to train stations, an edge connecting
two nodes implies that there exists a railway track connecting them, whereas
the paths illustrate the lines connecting terminal stations. Then, the process of
constructing a metro map consists of a sequence of steps. Initially, one has to
draw the underlying network nicely. Then, the lines have to be properly added
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into the visualization and, finally, a labeling of the map has to be performed
over the most important features.

In the graph drawing and computational geometry literature, the focus so far
has been nearly exclusively on the first and the third step. Closely related to the
first step are the works of Hong et al. [5], Merrick and Gudmundsson [6], Nol-
lenburg and Wolff [7] and Stott and Rodgers [§]. The map labeling problem has
also attracted the interest of several researchers. An extensive bibliography on
map labeling is maintained on-line by Strijk and Wolff [9]. Interestingly enough,
the intermediate problem of adding the line set into the underlying network was
recently introduced by Benkert et al. [3], followed by [2]. Since crossings within a
visualization are often considered as the main source of confusion, the main goal
is to draw the lines, so that they cross each other as few times as possible. This
problem is referred to as the metro-line crossing minimization problem (MLCM).

1.1 Problem Definition

The input of the metro-line crossing minimization problem consists of a con-
nected, embedded, planar graph G = (V,E) and a set L = {l3,ls...l5} of
simple paths on G, called lines. We will refer to G as the underlying network
and to the nodes of G as stations. We also refer to the endpoints of each line as
its terminals. In this paper, we study the case where all line terminals are located
at stations of degree one, which are referred to as terminal stations. Stations of
degree greater than one are referred to as internal stations. The stations are rep-
resented as particular shapes (usually as rectangles but in general as polygons).
The sides of each station that each line may use to either “enter” or “exit” the
station are also specified as part of the input. Motivated by the fact that a line
cannot make a 180° turn within a station, we do not permit a line to use the
same side of a station to both “enter” and “exit”.

The output of the MLCM problem should specify an ordering of the lines at
each side of each station, so that the number of crossings is minimized.

Each line [; consists of a sequence of edges e; = (v, v1),---,€q = (Vg—1,V4)-
Stations vy and vy are the terminals of line [;. Equivalently, we say that [;
terminates or has terminals at vy and vg. By |l;| we denote the length of line [;.

Each line that traverses a station u has to touch two of the sides of u at
some points (one when it “enters” u and one when it “exits” u). These points are
referred to as tracks (see the dark-gray colored bullets on the boundary of each
station in Fig.[IH)). In general, we may permit tracks to all sides of each station,
(see Fig. [[a). In the case where the stations are represented as rectangles, this
model is referred to as the 4-side model. In the general case where the stations
are represented as polygons of at most k sides, this model is referred to as the
k-side model. A more restricted model, referred to as the 2-side model, is the one
where 1) the stations are represented as rectangles and ii) all lines that traverse
a station may use only its left and right side (see Fig. [ID).

A particularly interesting case that arises under the 2-side model is the one
where the lines that terminate at a station occupy its topmost and bottommost
tracks, in the following referred to as top and bottom station ends, respectively
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Fig. 1. The underlying network is the gray colored graph

(see Fig.[[H). This is to emphasize that the line terminates at that station. The
variant of the MLCM problem that fulfills this restriction is referred to as the
metro-line crossing minimization problem with station ends (MLCM-SE). If ad-
ditionally, the information whether a line terminates at a top or at a bottom
station end in its terminal station is specified as part of the input, the corre-
sponding problem is referred to as metro-line crossing minimization problem with
fized station ends (MLCM-FizedSE).

A further refinement of the MLCM problem concerns the location of the
crossings among pairs of lines. If the relative order of two lines changes between
two consecutive stations, then the two lines must intersect between these stations
(see Fig. [[H). We call this an edge crossing. As opposed to an edge crossing, a
station crossing occurs inside a station. For aesthetic reasons, we want to avoid
station crossings whenever this is possible (e.g. in the case of 4-side model this
is not always feasible; see Fig. [Ial).

1.2 Previous Work and Our Results

The first results on the MLCM problem were presented by Benkert et al. in
[3], who devised a dynamic-programming algorithm that runs in O(|L|?) time
for the restricted case where the crossings are minimized along a single edge
of G. Bekos et al. [2] proved that the MLCM-SE problem is NP-complete even
in the case where the underlying network is a path. They also proved that the
MLCM-FixedSE problem can be solved in O(|V| + logdZLill [;]), in the case
where the underlying network is a tree of degree d. Extending the work of Bekos
et al., Asquith et al. [1] proved that the MLCM-FixedSE problem is also solvable
in polynomial time in the case where the underlying network is an arbitrary
planar graph. The time complexity of their algorithm was O(|E|%/?|L|?). They
also proposed an integer linear program which solves the MLCM-SE problem.
This paper is structured as follows: In Section [2, we present a polynomial
time algorithm, which runs in O((|E| + |L|?)|E|) time for the MLCM prob-
lem under the k-side model, assuming that the line terminals are located at
stations of degree one. To the best of our knowledge no results are currently
known regarding this general model. In Section [, we present a faster algorithm
for the special case of 2-side restriction. The time complexity of the proposed
algorithm is O(|V||E| 4+ Zml |I;])- It can also be employed to solve the MLCM-

1=

FixedSE problem, which drastically improves the running time of the algorithm
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of Asquith et al. [I] from O(|E|*/2|L|?) to O(|V||E| + |V]|L|). We conclude in
Section ] with open problems and future work.

2 The MLCM Problem under the k-Side Model

To simplify the description of our algorithm and to make the accompanying
figures simpler, we restrict our presentation to the MLCM problem under the 4-
side model, i.e., we assume that each station is represented as a rectangle and we
permit tracks to all four sides of each station. Our algorithm for the case of k-side
model is identical, since it is based on recursion over the edges of the underlying
network. Recall that all line terminals are located at stations of degree one, the
lines can terminate at any track of their terminal stations, and, finally, the sides
of each station that each line may use to either “enter” or “exit” are specified
as part of the input. We further assume that an internal station always exists
within the underlying network, otherwise the problem can be solved trivially.

The basic idea of our algorithm is to decompose the underlying network by
removing an arbitrary edge out of the edges that connect two internal stations
(and, consequently, appropriately partitioning the set of lines that traverse this
edge ), then recursively solve the subproblem and, finally, derive a solution of
the initial problem by i) re-inserting the removed edge and ii) connecting the
partitioned lines along the re-inserted edge.

2.1 Base of Recursion

The base of the recursion corresponds to the case of a graph G p consisting of a
“central station” u containing no terminals and a particular number of terminal
stations, say v1,v2 ...vq, incident to u (see Fig. Zd). To cope with this case, we
first group all lines that have exactly the same terminals into a single line, which
is referred to as bundle. The notion of bundles corresponds to the fact that lines
with same terminals are drawn in a uniform fashion, i.e., occupying consecutive
tracks at their common stations. So, in an optimal solution once a bundle is
drawn, it can be safely replaced by its corresponding lines without affecting the
optimality of the solution. In Fig. Bd lines belonging to the same bundle have
been drawn with the same type of non-solid line. Note that single lines are also
treated as bundles in order to maintain a uniform terminology (refer to the solid
lines of Fig.[2d). Then, the number of bundles of each terminal station is bounded
by the degree of the “central station” w.

In order to route the bundles along the edges of Gg, we will make use of the
Euler tour numbering that was proposed by Bekos et al. [2]. Let v be a terminal
station of Gp. The Euler tour numbering of the terminal stations v, ve, ..., vg
of Gp with respect to v is a function ETN,, : {v1,v2,...,vq} — {0,1,...,d — 1}.
More precisely, given a terminal station v of G, we number all terminal stations
of Gp according to the order of first appearance when moving clockwise along
the external face of Gp starting from station v, which is assigned the zero value.
Note that such a numbering is unique with respect to v and we refer to it as
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Fig. 2. Illustration of the base of the recursion. The numbering of the lines is arbitrary.

the Euler tour numbering starting from station v or simply as ETN,. Also, note
that the computation of only one numbering is enough in order to compute the
corresponding Euler tour numberings from any other terminal station of Gp,
since ETN,/ (w) = (ETN, (w) — ETN,(v')) mod d.

Our approach is outlined as follows: We first sort in ascending order the
bundles at each terminal station v based on the Euler tour numbering ETN,, of
their destinations (see Fig. [2al). This implies the desired ordering of the bundles
along the side of each terminal station that is incident to the “central station” u.
We will denote by BND(v) the ordered set of bundles of each terminal station v.
Then, we pass these bundles from each terminal station to the “central station”
u along their common edge without introducing any crossings (see Fig. Bh)). This
will also imply an ordering of the bundles at each side of the “central station” u.
To complete the routing procedure, it remains to connect equal bundles in the
interior of the “central station” w, which may imply crossings (see Fig. [2d). Note
that only necessary station crossings are created, since the underlying network
is planar and from the Euler tour numbering it follows that no edge crossings
will eventually occur. So, the optimality of the solution follows trivially.

2.2 Description of the Recursive Algorithm

Having specified the base of the recursion, we now proceed to describe our recur-
sive algorithm in detail. Let e = (v, w) be an edge which connects two internal
stations v and w of the underlying network. If no such edge exists, then the
problem can be solved by employing the algorithm of the base of the recursion.

Let L. be the set of lines that traverse e. Any line l.; € L. originates from
a terminal station, passes through a sequence of edges, then enters station v,
traverses edge e, exits station w and, finally, passes through a second sequence
of edges until it terminates at another terminal station. Let p: E x L — N be a
function, such that p(e,!) denotes the position of edge e along line . Formally,

L. = {le,lyle,27~-~7le,|Le|}7 where [.; denotes the i-th line of L.. Since each
line of L. consists of a sequence of edges, set L, can be written in the form
_ le.s .

{lei=el; e, ... e’;il e e}(fgl eLyi k= ple,lei), i =1,2,...,|L|}. We

proceed by removing edge e from the underlying network and by inserting two
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Fig. 3. Illustration of the removal of an edge that connects two internal stations

new terminal stations ¢7 and ¢ incident to the stations v and w, respectively
(see the dark-gray colored stations of the right drawing of Fig.B]). Let G* = (VU
{t2,t¥}, (E — {e}) U{(v,t?), (t¥,w)}) be the new underlying network obtained
in this manner.

Since the edge e has been removed from the underlying network, the lines of
L. cannot traverse it any more. So, we force them to terminate at ¢t. and t¥, as
it is depicted in the right drawing of Fig. Bl This is done by splitting the set L.
into two new sets LY and LY (see Fig.[]), which are formally defined as follows:

- LY = {eé)i ez) e];;l (v,t2); k=ple,leq), i =1,2,...,|Le|}

— Ly ={(tv,w) eft el = (e le), i =1,2,.. ., |Le|}}

e, ezt )

The new set of lines that it is obtained after the removal of the edge e is
L* = (L—L.)U(LYULY). Observe that the removal of edge e from the underlying
network may disconnect it. In the case where G* is connected, we recursively
solve the MLCM problem on (G*, L*). Otherwise, since G* was obtained from
G by the removal of a single edge, it has exactly two connected components, say
G7 and G5. Let L(G7) denotes the lines of L* induced by Gf. In this case, we
recursively solve the MLCM problem on (GF, L(GY)) and (G5, L(G3)).

The recursion will lead to a solution of (G*, L*). Part of the solution consists
of two ordered sets of bundles BND(t?) and BND(t¥) at each of the terminal
stations ¢ and tY, respectively. Recall that, in the base of the recursion, all lines
in a bundle have exactly the same terminals. In the recursive step, a bundle
corresponds to a set of lines whose relative positions cannot be determined. In
order to obtain a solution of (G, L), we restore the removed edge e and remove
the terminal stations ¢? and tY. The bundles BND(¢Y) and BND(t¥) of ¢¥ and t¥
have also to be connected appropriately along the edge e. Note that the order
of the bundles of t¥ and t¥ is equal to those of v and w, due to the base of the
recursion. Thus, the removal of 2 and t¥ will not produce unnecessary crossings.

We now proceed to describe the procedure of connecting the ordered bundle
sets BND(tY) and BND(t¥) along edge e. We say that a bundle is of size k iff
it contains exactly k lines. We also say that two bundles are equal iff they
contain the same set of lines, i.e., the parts of the lines that each bundle contains
correspond to the same set of lines. First, we connect all equal bundles. Let
b € BND(¢?) and &’ € BND(t?) be two equal bundles. The connection of b and b’
will result into a new bundle which i) contains the lines of b (or equivalently of
b') and ii) its terminals are the terminals of b and o’ that do not participate in
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Fig. 4. Splitting the largest bundle. Note that no equal bundles exist.

the connection. Note that a bundle is specified as a set of lines and a pair of
stations, that correspond to its terminals. When the connection of b and b’ is
completed, we remove both b and b’ from BND(tY) and BND(t¥).

If both BND(¢?) and BND(t¥) are empty, all bundles are connected. In the case
where they still contain bundles, we determine the largest in size bundle, say
bmaz, of BND(t¥) U BND(t¥). W.lLo.g. we assume that b,,., € BND(t¥) (see the
left drawing of Fig. H). Since by,q, is the largest bundle among the bundles of
BND(#Y) U BND(t¥) and all equal bundles have been removed from both BND(tY)
and BND(t?), bya contains at least two lines that belong to different bundles of
BND(t¥). So, it can be split into smaller bundles, each of which contains a set of
lines belonging to the same bundle in BND(t¥) (see the right drawing of Fig. []).
Also, the order of the new bundles in BND(t?) should follow the order of their
corresponding bundles in BND(¢¥) in order to avoid unnecessary crossings (refer
to the order of the bundles within the dotted rectangle of Fig. ). In particular,
the information that a bundle was split should be propagated to all stations that
this bundle traverses, i.e., splitting a bundle is not a local procedure that takes
place along a single edge but it requires greater effort. Note that the crossings
between lines of b,,,4, and bundles in BND(¢¥) cannot be avoided. In addition, no
crossings among lines of b4, occur.

We repeat these two steps (i.e. connection of equal bundles and splitting the
largest bundle) until both BND(¢%) and BND(t¥) are empty. Since we always split
the largest bundle into smaller ones, this guarantees that our algorithm regarding
the connection of the bundles along the edge e will eventually terminate.

Theorem 1. Given a graph G = (V, E) and a set of lines L on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
4-side model can be solved in O((|E| + |L|?)|E|) time.

Proof. The base of the recursion trivially takes O(|V] + Ziill |;]), or simply,
O(|JV||L|) total time. The complexity of our algorithm is actually determined
by the connection of the bundles along a particular edge, which is performed at
most O(]E|) times, since we always remove an edge that connects two internal
stations. The previous steps of our algorithm (i.e., the construction of graph G*
and the necessary recursive calls) need a total of O((|V|+ |E|)|E|+ |V ||L|) time.

In order to connect equal bundles, we initially sort the lines of BND(t¥) using
counting sort [4] in O(]L| + |L.|) time, assuming that the lines are numbered
from 1 to |L|, and we store them in an array, say B, such that the i-th numbered
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line occupies the i-th position of B. Then, all equal bundles can be connected by
performing a single pass over the lines of each bundle of BND(¢¥). Note that, given
a line [ that belongs to a particular bundle of BND(¢Y), say b, we can determine in
constant time to which bundle of BND(¢t¥) it belongs by employing array B. So,
in a total of O(|b]) time, we decide whether b is equal to one of the bundles of
BND(tY), which yields into an O(]L.|) total time for all bundles of BND(¢?). Thus,
the connection of equal bundles can be accomplished in O(|L| + |L.|) time.

Having connected all equal bundles, the largest bundle is then determined
in O(|me|) time, where m, = BND(¢¥) U BND(¢). Using counting sort, we can
split the largest bundle in O(|L| + |L.|) time. The propagation of the splitting of
the largest bundle needs O(|V||L.|) time. The connection of the equal bundles
and the splitting of the largest bundle will take place at most O(]L|) times.
Since |me| < 2|L| and |L.| < |L|, the total time needed for our algorithm is
O((1E| + [VI|LI)|E| + [V]|L])-

Note that the above straight-forward analysis can be improved by a factor
of |V|. This is accomplished by propagating the splitting of each bundle only
to its endpoints (i.e., not to all stations that each individual bundle traverses).
This immediately implies that some stations of G may still contain bundles after
the termination of the algorithm. So, we now need an extra post-processing step
to fix this problem. We use the fact that the terminals of G do not contain
bundles, since they are always at the endpoints of each bundle, when it is split.
This suggests that we can split —up to lines— all bundles at stations incident
to the terminal stations. We continue in the same manner until all bundles
are eventually split. Note that this extra step needs a total of O(|E||L|) time
and consequently does not affect the total complexity, which is now reduced to
O((IV|+|E|+|L|?)|E|+|V]|L|). Since G is connected, |E| > |V|—1 and therefore
our algorithm needs O((|E| 4 |L|?)|E|) time, as desired. 0

Corollary 1. Given a graph G = (V, E) and a set of lines L on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
k-side model can be solved in O((|E| + |L|?)|E|) time.

3 The MLCM Problem under the 2-Side Model

In this section, we adopt the scenario of Section 2l under the 2-side model, i.e.,
we study the MLCM problem assuming that each station is represented as a
rectangle and we permit tracks to the left and the right side of each station, i.e.,
one of the rectangle’s sides is devoted to “incoming” edges/lines while the other
is devoted to “outgoing” edges/lines (see Fig. Bal). This assumption, combined
with the fact that we do not permit a line to use the same side of a station to
both “enter” and “exit”, implies that all lines should be x-monotone.

Since the lines are z-monotone, we refer to the leftmost (rightmost) terminal
of each line as its origin (destination). We also say that a line uses the left side
of a station to enter it and the right side to exit it. Furthermore, we refer to the
edges incident to the left (right) side of each station w in the embedding of G as
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Fig. 5. (a) Incoming/outgoing edges of u. (b) Construction of graph G’ when G consists
of a single internal station u. (c¢) An edge numbering of G.

incoming (outgoing) edges of station u (see Fig. Bal). For each station u of G, the
embedding of G also specifies an order of both the incoming and outgoing edges
of u. We denote these orders by E;,(u) and E,,:(u), respectively (see Fig. [al).

A key component of our algorithm is a numbering of the edges of G, i.e.,
a function EN : F — {1,2,...,|E|}. In order to obtain this numbering, we first
construct a directed graph G’ = (V’/, E’), as follows: For each edge e € E of G, we
introduce a new vertex v in G’ (refer to the black-colored bullets of Figures [Bhl
and [Bd). Therefore, |V'| = |E|. Also, for each pair of edges e; and e;11 of G that
are consecutive in that order in Fj,(u) or E,yu:(u), where uw € V is an internal
station of G, we introduce an edge (ve,,ve,,,) in G’ (refer to the black-colored
solid edges of Fig. Bh]). Finally, we introduce an edge connecting the vertex of G’
associated with the last edge of E;,(u) to the vertex of G’ associated with the
first edge of Fout(u) (refer to the black-colored dashed edge of Fig. [Bh). Then,
|E'| = O(]E|). An illustration of the proposed construction is depicted in Fig. Bd
Note that all edges of G’ are either directed “downward” or “left-to-right” w.r.t.
an internal station. Thus there exist no cycles within the constructed graph (no
“right-to-left” edges exist to form cycles). The desired numbering of the edges of
G is then implied by performing a topological sorting on G’ (see Fig. Bd).

Since each line is a sequence of edges, it can be expressed as a sequence of
numbers based on the edge numbering EN: E — {1,2,...,|E|}. We refer to the
sequence of numbers assigned to each line as its numerical representation. Note
that the numerical representation of each line is sorted in ascending order.

Let [ and I’ be two lines that share a common path of the underlying network
G.Letalsoay...arci...cpbi...bpand g1 ...gqc1...Cmh1 ... hy be their numer-
ical representations, respectively, where the subsequence cycs ... ¢y, corresponds
to their common path. Then, [ and !” inevitably cross iff (ay —gq) X (b1 —h1) <0
(see Fig. [Ga). Note that their crossing can be placed along any edge of their
common path. This is because we aim to avoid unnecessary station crossings.

Consider now two lines [ and [’ that share only a single internal station u of
G. We assume that u is incident to —at least— four edges, say el, €2, €2 and e?,
where el and e2 are incoming edges of u, whereas e3 and e outgoing. We further
assume that [ enters u using el and exits u using e?. Similarly, I’ enters u using
e2 and exits u using €3 (see Fig.[6h)). Then, [ and I’ form a station crossing which
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(a) Edge crossing. (b) Station crossing.

Fig. 6. Crossings that cannot be avoided. Note that in Fig. Bal ar < g4 < h1 < b1,
whereas in Fig. [60] EN(e}) < EN(e2) < EN(e3) < EN(e}).

cannot be avoided iff (EN(el) —EN(e2)) x (EN(e?) —EN(e?)) < 0. In this case, the
crossing of [ and [’ can only be placed in the interior of station u.

Our intention is to construct a solution where only crossings that cannot be
avoided are present. We will draw the lines of GG incrementally by appropriately
iterating over the stations of G and by extending the lines from previously it-
erated stations to the next station. Assuming that the edges of G are directed
from left to right in the embedding of G, we first perform a topological sorting
of the stations of GG. Note that since all edges are directed from left to right,
the graph does not contain cycles (no right to left edges exist to form cycles)
and therefore a topological order exists. We consider the stations of G in their
topological order. This ensures that whenever we consider the next station, its
incoming lines have already been routed up to its left neighbors. Let u be the
next station in the order. We distinguish the following cases:

Case (a) : indegree(u) =0 (i.e. terminal station,).
A station u with indegree(u) = 0 corresponds to a station which only con-
tains the origins of some lines. In this case, we simply sort in ascending order
these lines lexicographically with respect to their numerical representations.
This implies the desired ordering of the lines along the right side of station
u. It also ensures that these lines do not cross along their first common path.

Case (b) : indegree(u) > 0.
Let el,e2,..., e be the incoming edges of station u, where k = indegree(u)
and e!, = (uj,u), i = 1,...,k. W.lLo.g. we assume that EN(e!,) < EN(el),
Vi < j. The lines that enter u from el will occupy the topmost tracks of the
left side of station u. Then, the lines that enter u from e? will occupy the
next available tracks and so on. This ensures that the lines that enter u from
different edges will not cross with each other, when entering u.

Let Li be the lines that enter u from edge €/, i = 1,2,...,k, ordered
according to the order of the lines along the right side of station w;. In
order to specify the order of all lines along the left side of station w, it
remains to describe how the lines of L! are ordered when entering u, for
each i = 1,2,..., k. We stably sort in ascending order the lines of L! based
on the numbering of the edges that they use when exit station u. Note
that in order to perform this sorting we only consider the number following
EN(e!,) in the numerical representation of each line. Also, the stable sorting
ensures that only unavoidable edge crossings will occur along e,. To see this
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consider two lines [,1’ € Lf, which use the same edge to exit station u. Since
the sorting is stable their relative position will not change when they enter
u, which implies that they will not cross along the edge e?,.

Up to this point, we have specified the order of the lines along the left
side of station u, say L} . In order to complete the description of this case
it remains to specify the order, say LY ,, of these lines along the right side
of u. Again, the desired order LY, is implied by stably sorting the lines
of L} based on the numbering of the edges that they use when they exit
station u. Note that also in this case the sorting of the lines is performed
by considering only the EN-number of the edges used by the lines when exit
station u. Again, the stable sorting ensures that only unavoidable station
crossings will occur in the interior of station w.

Note that the stable sortings that are performed at each terminal station
ensure that only unavoidable station and edge crossings eventually occur. Also,
an unavoidable edge crossing between two lines is always placed along the last
edge of their common path.

Theorem 2. Given a graph G = (V, E) and a set of lines L on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
2-side model can be solved in O(|V||E| + Zii‘l |I;]) time.

Proof. The topological sorting on G needs O(|V| + |E|) time. The construction
of graph G’ and the computation of a topological sorting on it need O(|E|) time,
since both the number of nodes and the number of edges of G’ are bounded
by |E|. Having computed the EN-number of each individual edge of the under-
lying network, the numerical representations of all lines can be computed in
O(Zlill |l;]) time. Using radix sort [4], we can lexicographically sort all lines
at each terminal station v of indegree zero in O((|E| + |Ly|)|I%,,.|) total time,
where L, is the set of lines that originate at v and [, .. is the longest line of
L,,. Therefore, the sorting of all lines at stations of indegree zero needs a total of
O((JE|+|L|)|V]) time, since the length of the longest line of L is at most |[V|. We
can —stably— sort the lines of each set Li,i = 1,2,...,k based on the numbering
of the edges that they use when exit u, using counting sort. This can be done in
O(|E| + |L,|) total time, where L,, denotes the set of lines that traverse station
u. Recall that counting sort is stable. Similarly, can —stably— sort the lines of
each set L} based on the numbering of the edges they use when exit station u
in O(JE| + |Ly|) time. Summing over all internal stations, our algorithm needs

O(VIIE| + SIE 11). O

As already stated, our algorithm can be employed to solve the MLCM-FixedSE
problem. Our approach is as follows: For each station u of G, we introduce four
new stations, say uf, u?, u’ and u?, adjacent to u. Station u! (u?) is placed on
top (below) and to the left of v in the embedding of G and contains all lines that
originate at u’s top (bottom) station end. Similarly, station u!. (u?) is placed on

top (below) and to the right of u in the embedding of G and contains all lines
that are destined for u’s top (bottom) station end. In the case where some of the
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newly introduced stations contain no lines, we simply ignore their existence. So,
instead of restricting each line to terminate at a top or at a bottom station end
in its terminal stations, we equivalently assume that it terminates to one of the
newly introduced stations. The following theorem summarizes this result.

Theorem 3. Given a graph G = (V, E) and a set of lines L on G, the metro-
line crossing minimization problem with fized station ends under the 2-side model

can be solved in O(|VI||E| + Zy;ll [l;]) time.

4 Conclusions

In this paper, we studied the MLCM problem under the k-side model for which
we presented an O((|E| + |L|?)|E|) algorithm, and a more efficient algorithm
for the special case of 2-side model. Possible extensions would be to study the
problem where the lines are not simple, and/or the underlying network is not
planar. Our first approach seems to work even for these cases, although the
time complexity is harder to analyze and cannot be estimated so easily. The
focus of our work was on the case where all line terminals are located at specific
stations of the underlying network. Allowing the line terminals anywhere within
the underlying network would hinder the use of the proposed algorithms in both
models. Therefore, it would be of particular interest to study the computational
complexity of this problem.
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