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Abstract. In this paper, we present a dynamic algorithm that checks if a single-
source embedded digraph is upward planar in the presence of edge insertions and
edge deletions. Let Gφ be an upward planar single-source embedded digraph and
let G′

φ ′ be a single-source embedded digraph obtained by updating Gφ . We show

that the upward planarity of G′
φ ′ can be checked in O(logn) amortized time when

the external face is fixed.

1 Introduction

Assume we have a solution of a graph theoretic problem P on a graph G. A dynamic
graph algorithm tries to solve P after G is updated in less time than recomputing P from
scratch [5]. Dynamic graph algorithms are useful when a graph has discrete changes like
the addition or deletion of vertices or edges. A practical example of a dynamic graph
algorithm is the maintenance shortest paths in a communication network as links are
added or deleted.

In this paper, we present a dynamic algorithm to check if a single-source embedded
digraph remains upward planar after an edge is inserted or deleted. An planar embed-
ding is an equivalence class of planar drawings for a graph G, such that each drawing
of this class has the same circular order of edges around each vertex of G. A graph G
with a given planar embedding is denoted by Gφ and we call it an embedded digraph. A
digraph G is upward planar if it has a planar drawing with all edges pointing monotoni-
cally upward [6]. It is NP-hard to test if a digraph G is upward planar [9], hence upward
planarity testing is either done for a fixed embedding [3,7], or for special classes of di-
graphs like single-source digraphs [10,4], series-parallel digraphs [8], and outer planar
digraphs [11].

Let Gφ be an upward planar embedded digraph with the single-source sG. We let G′
φ ′

be an embedded digraph with the single-source sG′ , such that G′
φ ′ is obtained from Gφ

by performing one of the following update operations:

– insert-edge(e,u,v): Insert an edge e = (u,v) between two existing vertices in Gφ .
– attach-vertex(e,u,v): Add a new vertex and insert an edge between an existing

vertex and the new vertex.
– delete-edge(e): Delete the edge e from Gφ . We also delete a vertex if it results in

no incident edge.
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An update operation is illegal if the resulting digraph is not single-source. In case
of an edge insertion, this happens if an edge e = (u,v) is inserted between existing
vertices such that v = sG, or when edge e = (u,v) is inserted between a new vertex u
and v �= sG. An edge deletion is illegal if an edge e = (u,v) is deleted such that G′

φ ′
becomes disconnected.

It is generally believed that upward planar drawings of a digraph are more compre-
hensible to humans. Hence, it is reasonable to say that a non-upward planar digraph H
is more readable if the largest possible subgraph of H is drawn in an upward planar
fashion. In this paper, we present a dynamic algorithm to test the upward planarity of
G′

φ ′ . Our dynamic algorithm can be used to compute a maximal upward planar subgraph
for a single-source digraph H by incrementally building an upward planar embedding
of H and discarding a new edge if it results in a non-upward planar embedded digraph.

In the remainder of this section, we define some basic terminology and review some
relevant results. In Sec. 2, we discuss how to obtain a bimodal and embedded G′

φ ′ .
In Sec. 3, we give a characterization of upward planarity of G′

φ ′ with respect to the
update operations. In Sec. 4, we present our algorithm and its complexity analysis. We
conclude by identifying some related open problems.

1.1 Preliminaries

We assume basic familiarity with graph theory. Let G be a graph. We denote the set
of vertices of G by V (G) and we denote the set of edges of G by E(G). In a digraph,
a source vertex has only outgoing edges, a sink vertex has only incoming edges, and
an internal vertex has both incoming and outgoing edges. A planar drawing Γ divides
the plane into non-overlapping regions called faces; the unique unbounded region is
called the external face and each bounded region is called an internal face. The facial
boundary of a face f is the path enclosing f in the clockwise direction, all drawings
of an embedded graph have the same set of facial boundaries. An embedded digraph
Gφ is bimodal when φ(v) can be partitioned into two sets of consecutive incoming and
outgoing edges for every vertex v ∈ Gφ .

In an embedded digraph Gφ , an angle is a triplet 〈e1,v,e2〉 such that the edges are
incident to the vertex v and edge e1 is immediately before edge e2 in φ(v). A vertex v is
incident to the angle 〈e,v,e〉 when e is the only edge incident to v. A switch 〈e1,v,e2〉 is
an angle with both e1 and e2 pointing either toward or away from v: it is a sink-switch
when e1 and e2 point toward v and it is a source-switch when e1 and e2 point away from
v [7]. Switches were originally defined as nodes in an embedded biconnected digraph
by Bertolazzi et al. [3], however Didimo generalized their concept to general embedded
digraphs by defining them as angles [7].

We now show that both Gφ and G′
φ ′ have at most one sink-switch incident to a vertex

v inside a particular face. This allows us to refer to a vertex v incident to a sink-switch
〈e1,v,e2〉 in a face f as sink-switch v incident to face f for simplicity and clarity.

Lemma 1. Let Gφ be an upward planar embedded digraph with a single source sG,
and let G′

φ ′ be the bimodal embedded digraph with a single source sG′ obtained after
adding an edge in Gφ . Both Gφ and G′

φ ′ have at most one sink-switch incident to a
vertex v inside a particular face.
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The face-sink graph F of Gφ is an undirected graph such that the vertices of F are the
faces of Gφ and all vertices of Gφ that are incident to a sink-switch; an edge ( f ,v) is in F
if face f is incident to a sink-switch on a vertex v in Gφ . Bertolazzi et al. [4] presented an
O(n)-time algorithm to test the upward planarity of a single-source embedded digraph
Gφ . This algorithm is based on the following theorem:

Theorem 1 (Bertolazzi et al. [4]). Let Gφ be a embedded digraph with a single-source
sG. Gφ is upward planar with face h as the external face if and only if the following
conditions are satisfied.

1. The face-sink graph F of Gφ is a forest.
2. F has exactly one tree T̂ with no internal vertices, while all other trees have exactly

one internal vertex.
3. T̂ contains the node corresponding to face h and sG is incident to face h in Gφ .

2 Maintaining Planarity and Bimodality

Theorem 1 requires a embedded single-source digraph, however bimodality is a neces-
sary condition for upward planarity and hence G′

φ ′ will have more chances to be upward
planar if it is already bimodal and planar. In this section, we see how a bimodal embed-
ded digraph G′

φ ′ can be obtained after Gφ is updated. The embedded digraph Gφ will
remain bimodal and planar after an edge is deleted, hence we only study the case when
an edge is inserted.

When an edge is inserted, a planar and bimodal embedded digraph G′
φ ′ can be ob-

tained, if it exists, by using the techniques of Bertolazzi et al. [2] and Tamassia [12].
Tamassia described a technique to incrementally build a planar embedding: it checks if
an edge can be added to the current embedded graph without introducing a crossing in
O(logn) time and it then adds the new edge to the current embedded graph in O(logn)
amortized time [12]. A technique for constructing a bimodal embedding of a digraph G
was discussed by Bertolazzi et al. [2]. It works by splitting all vertices of G with at least
2 incoming edges and at least 2 outgoing edges into a vertex va with all the incoming
edges of v and a vertex vb with all the outgoing edges of v, and adding the edge (va,vb).
We call the vertices that are split as split-vertices and we call the resulting digraph as
the split-digraph G̃ . Bertolazzi et al. showed that G has a planar bimodal embedding if
and only if G̃ has a planar embedding. We get a planar and bimodal embedded Gφ by
merging back the split vertices in a planarly embedded G̃φ̃ [2].

We obtain a bimodal and planarly embedded G′
φ ′ , if it exists, by maintaining a cor-

responding planarly embedded split-digraph G̃φ̃ . Figure 1 shows an embedded digraph

Gφ and its corresponding split-digraph G̃φ̃ . A vertex v in G has two corresponding ver-

tices ṽa and ṽb in G̃ if it is a split-vertex, and it has one corresponding vertex ṽ otherwise.
If v is a split-vertex, we let ṽb represent the vertex in G̃ with all corresponding outgoing
edges of v, and we let ṽa represent the vertex in G̃ with all corresponding incoming
edges of v. We define a function o : V (G) →V (G̃), such that o(v) = ṽb when v is a split-
vertex and o(v) = ṽ otherwise. Similarly, we define function i : V (G) → V (G̃), such
that i(v) = ṽa when v is a split-vertex and i(v) = ṽ otherwise. We also define a function
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(a) Gφ (b) G̃φ̃

Fig. 1. An embedded digraph Gφ (a); and its embedded split digraph G̃φ̃ (b)

e : E(G) → E(G̃), which maps the edges in G to their corresponding edges in G̃. When
we want to add an edge e = (u,v) in Gφ , we first try to add the edge ẽ = (o(u), i(v)) in
G̃φ̃ . The embedded digraph G′

φ ′ is not planar or bimodal if ẽ cannot be added in G̃φ̃ us-

ing Tamassia’s method. Lets assume that we get a planar G̃′
φ̃ ′ , with ẽ inserted between

ẽ1 and ẽ2 at o(u), and ẽ inserted between ẽ′
1 and ẽ′

2 at i(u). In this case, we get a planar
and bimodal G′

φ ′ by adding e between e−1(ẽ1) and e−1(ẽ2) at u, and adding e between

e−1(ẽ′
1) and e−1(ẽ′

2) at v. Figure 1 shows that we can bimodally add the edge (v5,v4) in
Gφ but not the edge (v4,v5).

The split-digraph G̃φ̃ takes O(n) space. If the addition of edge e makes a vertex v

a split-vertex then we will need to construct the corresponding ṽa and ṽb in G̃φ̃ . This
can be done in constant time because there will be either one incoming edge or one
outgoing edge incident to v before the new edge is added. Hence we have the following
lemma.

Lemma 2. Let Gφ be an upward planar embedded digraph and let e be an edge that
we want to insert in Gφ . We can perform the following two operations.

1. Check if an edge e can be added to Gφ such that the resulting graph has a bimodal
and planar embedding in O(logn) time.

2. If the previous test is true then we can obtain a planar and bimodal embedded
digraph G′

φ ′ in O(logn) amortized time.

The insertion of an edge e = (u,v) bisects an angle αu = 〈e1,u,e2〉 at vertex u into
two new angles 〈e1,u,e〉 and 〈e,u,e2〉. The new edge e similarly bisects the angle
αv at vertex v into two new angles. The insert-face f is divided into two new faces
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f1 and f2 when a new edge e = (u,v) is inserted when both u and v already exist.
Let the facial boundary of f be w0,e0, . . . ,ei,u,ei′ , . . . ,e j,v,e j′ , . . . ,ek,wk = w0. After
e is inserted, let 〈ei,u,ei′ 〉 and 〈e j,v,e j′ 〉 be the angles that are bisected at u and v re-
spectively, then f1 has the facial boundary e,u,ei′ , . . . ,e j,v,e and f2 has the boundary
w0,e0, . . . ,u,e,v, . . . ,ek,wk = w0. If both u and v exist and αv is not a switch then either
f1 or f2 will have a sink-switch at v. We assume, without the loss of generality, that the
new sink-switch will be created at f1. Similarly, when a new edge e = (u,v) is inserted
in f and one of the vertices is new, then the facial boundary of f will change. Let the
facial boundary of f be w0,e0, . . . ,ei,w′,ei′ , . . . ,ek,wk = w0, such that w′ is the existing
vertex and 〈ei,w′,ei′ 〉 is the angle bisected at w′. After e is inserted, the facial boundary
will change to w0,e0, . . . ,ei,w′,e,w′′,e,w′, . . . ,ek,wk = w0, where w′′ is the new vertex.
Hence, we can maintain the facial boundaries in a linked list which can be updated in
constant time by keeping pointers to nodes in the linked list.

3 Maintaining Upward Planarity

In this section, we characterize the upward planarity of G′
φ ′ after an update operation.

We will only study the case of inserting an edge because G′
φ ′ remains upward planar

when an edge is deleted. We will however need to update our datastructures when an
edge is deleted, this is discussed in the next section. We assume that G′

φ ′ is bimodal and
planar because we construct it by using the method described in Sec. 2.

Let F be the face-sink graph corresponding to Gφ and let F ′ be the face-sink graph
corresponding to G′

φ ′ . Since Gφ is upward planar, F will satisfy Theorem 1. Further,
G′

φ ′ will be upward planar if and only if F ′ satisfies Theorem 1. In this section, we
show that we can check if F ′ satisfies Theorem 1 by considering a small subset of F ′.
This will lead to an efficient dynamic single-source upward planarity testing algorithm,
which is presented in the next section.

We first present some definitions that will be used later in this section. An edge e is
inserted in one particular face of Gφ , which we call the insert-face and denote it by f .
Every face g in Gφ has a corresponding vertex ḡ in F . Let Tf = (VTf ,ETf ) be the tree that
contains f̄ , i.e. the vertex corresponding to f . Let T be a tree in F , we define f aces(T )
to be the set of faces such that a face g is in f aces(T ) if and only if ḡ ∈ V (T ). We also
define a set of vertices, denoted by nodes(T ), that contains all vertices of Gφ that are in
V (T ). Let T̂ denote the tree of F with no internal vertices, and let HGφ denote the set of

faces in Gφ that are incident to the single-source sG. Then HGφ ∩ f aces(T̂ ) is the set of
all possible external faces in an upward planar drawing of Gφ .

Our results in this section rely on observing how F changes into F ′. We define a tree
T1 to be different from a tree T2 if it has at least one different vertex or one different
edge. We claim that either F \ F ′ = {Tf } or F \ F ′ = /0. This is because a tree T in
F will transform to a new tree T ′ in F ′ only if a new sink-switch is added in a face
g ∈ f aces(T ) or a sink-switch is removed from g or when g is divided into two new
faces. This can happen only for the insert-face f , hence at most Tf will be transformed
by the edge insertion.

We now have a closer look at the structure of Tf . If we traverse f in the clockwise
direction, we will encounter some vertices that are incident to a sink-switch in f . Let
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Fig. 2. The tree Tf with respect to face f such that both u and v already exist (a); and the tree Tf
with respect to face f when only u is the existing vertex (b)

W = {w1,w2, . . . ,wl} be all such vertices. We define a subtree Ti as the part of Tf that
is reachable from f̄ through the vertex wi, where 1 ≤ i ≤ l. We call wi ∈ Ti the access-
vertex of Ti with respect to f̄ . This is shown in Fig. 2 for both type of edge insertions
discussed in Sec. 1. When both end vertices of e = (u,v) already exist in Gφ then the
partitioning of Tf is shown in Fig. 2(a): the access-vertex for T1, . . . ,Ti is between u
and v in the clockwise direction, the access-vertex of Tj+1, . . . ,Tk is between v and u
in the clockwise direction, the access-vertex of Tj is v, and the access-vertex of Tl is u.
Note that Tj and Tl will be empty subgraphs if u and v are not incident to a sink-switch
in f . When e = (u,v) has one existing vertex u then the partitioning is shown in Fig.
2(b): the access-vertex at u ( if it exists) is Tl , and the access-vertices for T1, . . . ,Tk are
encountered as we traverse f in the clockwise direction after u.

The next lemma is easily derived from the illegal operations described in Sec. 1 and
the fact that G′

φ ′ is bimodal.

Lemma 3. If edge e = (u,v) is added in Gφ such that both u and v already exist, then
αv, the bisected angle at v, cannot be a source-switch.

Proof. Assume that v is incident to a source-switch in f . We know from Sec. 1 that
v �= sG hence v has at least one incoming edge. This implies that G′

φ ′ is not bimodal,
which is a contradiction. 
�

We now come to the main results of this section, presented as a series of theorems. We
divide the analysis into two main cases: Tf �= T̂ and Tf = T̂ . When Tf �= T̂ , the tree T̂
is in F ′ and all other trees in F ′ ∩ F have one internal vertex. In this case, G′

φ ′ will be
upward planar if all trees of F ′ \ F have one internal vertex. The single internal vertex
of Tf is denoted by wTf when Tf �= T̂ . On the other hand, all trees in F ′ ∩ F have one

internal vertex when Tf = T̂ . In this case, G′
φ ′ will be upward planar if F ′ \ F has one

tree T with no internal vertex, all other trees trees in F ′ \ F have exactly one internal
vertex and f aces(T )∩HG′

φ ′
�= /0.
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In some cases, G′
φ ′ will always be upward planar, the next theorem analyze these

cases.

Theorem 2. Let Gφ be an upward planar embedded digraph with a single source sG

and a face-sink graph F. If we insert an edge e = (u,v) in the face f ∈ Gφ , then G′
φ ′

will be upward planar if one of the following conditions is true.

1. Both u and v already exist, such that αv is a sink-switch and αu is either a source-
switch or αu is a non-switch angle;

2. u is the new vertex;
3. v is the new vertex and αu is either a source-switch or a non-switch angle.

We analyze the remaining cases by looking at the different possibilities for αu and αv.
Both αu and αv can either be a sink-switch, a source-switch, or they can be a non-
switch angle. If the new edge is added between two existing vertices, then we know
from Lemma 3 that αv cannot be a source-switch. The case when αv is a sink-switch
and αu is either a source-switch or when αv is a non-switch angle is already discussed in
Theorem 2. Hence we need to analyze when αv is a sink-switch or a non-switch angle,
while αu is any type of angle. These cases are discussed in Theorem 3 and Theorem
4. Theorem 3 discusses the case when αv is not a switch while αu can be any type of
angle. The only case left for both end-vertices to be already existing is when both αv

and αu are sink-switches, which is discussed in Theorem 4.

Theorem 3. Let Gφ be an upward planar embedded digraph with a single source sG

and a face-sink graph F. If we insert an edge e = (u,v) in the face f ∈ Gφ such that
both u and v exists and αv is not a switch then G′

φ ′ will be upward planar if and only if
one of the following is true.

1. If Tf �= T̂ then wTf ∈ nodes(Tj+1 ∪ . . .∪Tk).
2. If Tf = T̂ then sG′ is incident to at least one face in f aces(Tj+1 ∪ . . .∪Tk).

While αu can either be a sink-switch, or, a source-switch, or not a switch.

Proof. The tree Tf is transformed into two new trees T1 and T2, such that

V (T1) = V (T1 ∪T2 . . .Tj)

E(T1) = E(T1 ∪T2, . . .Tj)∪{( f̄1,w1)∪ . . . ( f̄1,wj)})

V (T2) = V (Tj+1 ∪Tj+2 . . .Tk)

E(T2) = E(Tj+1 ∪Tj+2 . . .Tk)∪{( f̄2,wj+1)∪ . . .( f̄2,wk)})

where wi is the access node for subtree Ti. When u is a sink-switch in f , there will also
be a third tree

T3 = (V (Tl),E(Tl)).

We may observe that v is an internal vertex that is part of T1 and u is an internal vertex
of T3 (when T3 exists). All possible cases are shown in Fig. 3.
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Fig. 3. Cases of Theorem 3: u and v already exist, αu is source-switch and αv is not a switch (a);
u and v already exist, αu is not a switch and αv is sink-switch (b); u and v already exist, αu is a
sink-switch and αv is not a switch (c)

If: If Tf �= T̂ and wTf ∈ nodes(Tj+1 . . .∪Tk) then each tree in F ′ \F has one internal

vertex and G′
φ ′ is upward planar in this case. Similarly, if Tf = T̂ then each of the

generated new trees has one internal vertex except T2. Again, G′
φ ′ is upward planar

because according to our assumption f aces(T2)∩HG′
φ ′

�= /0.

Only if: We show this by proving the contrapositive. If Tf �= T̂ and wTf ∈{T1, . . . ,Tj}
then F ′ has two trees T2 and T̂ that have no internal vertices. Similarly, if Tf = T̂ and
sG′ is not incident to a face in f aces(Tj+1 . . .∪ Tk) then T2 has no internal vertex but
f aces(T2)∩HG′

φ ′
= /0. Hence G′

φ ′ will not be upward planar. 
�

Theorem 4. Let Gφ be an upward planar embedded digraph with a single source sG

and a face-sink graph F. We insert an edge e = (u,v) in the face f ∈ Gφ , such that both
u and v already exists. If both αu and αv are sink-switches in f then G′

φ ′ will be upward
planar if and only if one of the following is true.

1. If Tf �= T̂ then wTf ∈ nodes(T1 ∪ . . .∪Tk).
2. If Tf = T̂ then sG′ is incident to at least one face in f aces(T1 ∪ . . .∪Tk)

When one of the end-vertices is a new vertices for the new edge e = (u,v), then the case
when u is the new vertex and when v is the new vertex and αu is a sink-switch is already
discussed in Theorem 2. The only remaining case is discussed in Theorem 5.

Theorem 5. Let Gφ be an upward planar embedded digraph with a single source sG

and a face-sink graph F. We insert an edge e = (u,v) in the face f ∈ Gφ , such that v is
a new vertex and αu is a sink-switch, then G′

φ ′ will be upward planar if and only if one
of the following is true.
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1. If Tf �= T̂ then wTf ∈ nodes(T1 ∪ . . .∪Tk).
2. If Tf = T̂ then sG′ is incident to at least one face in f aces(T1 ∪ . . .∪Tk).

4 Algorithm and Time Complexity

We now present our algorithm for testing the upward planarity of a bimodal and pla-
narly embedded G′

φ ′ with a fixed external face and discuss its complexity. The input to
the algorithm is Gφ , the upward planar embedded digraph; e, the edge to be added or
deleted; and G̃φ̃ , the embedded split-digraph corresponding to Gφ . It first constructs a
bimodal and planar G′

φ ′ , if it exists. If we delete the edge e then the resulting G′
φ ′ will

also be upward planar. The rest of the algorithm checks if G′
φ ′ satisfies the conditions

of theorems from the previous section. The algorithm is shown in Algorithm 1.
We now show that dynamic upward planarity testing based on Theorem 1 requires

Ω(n) time when we allow the external face to change and do not transform Gφ . We
show it by assuming that G′

φ ′ is non-upward planar with h as its external face, where h
was the external face of Gφ . The digraph G′

φ ′ will be upward planar if there is a face

g �= h, such that g ∈ HG′
φ ′

∩ f aces(T̂ ′), where T̂ ′ is the tree in F ′ with no internal vertex.

Recall that HG′
φ ′

denotes the set of faces that are incident to the single-source in G′
φ ′ . In

order to find an alternative external face g in o(n) time, we dynamically maintain HG′
φ ′

by making appropriate additions or deletions in HGφ because recomputing HG′
φ ′

from

scratch will take O(n) time. Now, if the new edge e = (u,v) is between a new vertex u
and an existing vertex v = sG, then HG′

φ ′
= { f}. This results in a contradiction because

removing the old faces will take O(n) time. Hence it is not possible to design an efficient
dynamic upward planarity testing algorithm for single-source embedded digraphs using
Theorem 1.

We recall from Sec. 2 that finding a planar and bimodal G′
φ ′ requires O(logn) amor-

tized time. We can check that an insertion satisfies Theorem 2 in constant time. Let μ
represent the unique internal vertex wTf of Tf when Tf �= T̂ and represent the external

face h of Gφ when Tf = T̂ . The overall time complexity of Algorithm 1 depends on
how efficiently we can check if μ is in a particular subtree of Tf . The location of μ can
be easily be determined in O(n) time by traversing the nodes of Tf , but then the time
complexity of Algorithm 1 will equal running the algorithm of Bertolazzi et al. from
scratch. We propose instead an O(1)-time method. We maintain a directed version of
F by rooting each tree T ∈ F at its unique internal vertex or vertex corresponding to
the external face, and then orienting all edges toward the root. Each vertex v �= μ will
have exactly one outgoing edge and if v = μ then it has no outgoing edge. Let out(v)
represent the outgoing edge for a vertex v and let p(v) be the target node for out(v).
Note that, p( f̄ ) is always an access-vertex wi for a subtree Ti.

We can check if μ is in a subtree satisfying Theorems 3, 4 or 5 by finding the relative
location of p( f̄ ) in the facial boundary of f . This is done by maintaining a linked
list Lf for every face f ∈ Gφ , such that every vertex v ∈ f has a corresponding real
number Lf [v]. We construct Lf = {Lf [v1], . . . ,Lf [vk]} such that: Lf [vi] < Lf [vi+1], where
v1, . . . ,vk are consecutive vertices on the facial boundary of f in the clockwise direction.
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Algorithm 1. Dynamic Upward Planarity Test(Gφ,e = (u,v),G̃φ̃)

1: Find a planar and bimodal embedding of G′, G′
φ ′

2: if we cannot find a planar and bimodal G′
φ ′ then

3: Return False
4: end if
5: if delete the edge e then
6: Return True
7: end if
8: if Both u and v already exist and αv is sink-switch; or u is a new vertex; or v is a new vertex

and αu is not sink-switch then
9: Return True

10: end if
11: μ = wTf when Tf �= T̂ and μ = h when Tf = T̂
12: if u and v exist and αv is not a switch and μ ∈ {Tj+1, . . . ,Tk} then
13: Return True
14: else if u and v exist and both αu and αv are sink-switches and μ ∈ {T1, . . . ,Tk} then
15: Return True
16: else if v is a new vertex and αu is a sink-switch and μ ∈ {T1, . . . ,Tk} then
17: Return True
18: else
19: Return False
20: end if

When the insertion of e = (u,v) divides f into f1 and f2, we divide Lf to get Lf1 and
Lf2 such that L[u] and L[v] are present in both of them. We also maintain pointers from
each vertex incident to a face f to its entry in Lf . When we insert an edge e such
that a new vertex v j is added, we can choose a sufficiently small ε , letting Lf [v j] =
Lf [v j−1]+ ε . However, this can result in difficulties associated with high precision real
numbers and hence increase the time complexity in comparing two elements of Lf .
Instead, we suggest using the algorithm by Bender et al. to assign Lf [v j] in O(logn)
amortized time [1]. The algorithm by Bender et al. maintains a dynamic list and allows
a user to compare the order of any two elements in the list. This is done by assigning
tags of O(logn) bits to each element in the list. Hence, any Lf [v j] and Lf [vi] can be
efficiently compared. The following lemma shows that Lf can be used to efficiently
check if μ is in the required subtree. This technique will also work when Lf is divided
into two new lists Lf1 and Lf2 because the algorithm of Bender et al. assigns a tag by
locally relabeling a subset of a list.

Lemma 4. We can check the conditions of Theorems 3, 4 5 in constant time.

Proof. Theorem 4 and 5: We need to check if p( f̄ ) ∈ {w1, . . . ,wk}, this will be true if
p( f̄ ) �= wl . Hence p( f̄ ) ∈ {w1, . . . ,wk} and G′

φ ′ will be upward planar if and only if

Lf [p( f̄ )] �= Lf [u].
Theorem 3: We can see from Fig. 3 that we need to check if p( f̄ ) ∈ {wj+1, . . . ,wk}.

We have the following 2 cases, based on the fact that p( f̄ ) should be between v and u
in the clockwise direction in order to satisfy the theorem.
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1. When Lf [v] < Lf [u] then p( f̄ ) ∈ {wj+1, . . . ,wk} will be true if Lf [v] < Lf [p( f̄ )] <
Lf [u].

2. When Lf [u] < Lf [v] then p( f̄ ) ∈ {wj+1, . . . ,wk} will be true if either Lf [p( f̄ )] <
Lf [u] < Lf [v] or Lf [u] < Lf [v] < Lf [p( f̄ )].


�

We have yet to show that we maintain the correct orientation of the edges of F in the
presence of updates. The following two lemmas shows that we can do this in constant
time. We define the splitting of a vertex f̄ with respect to the new edge e = (u,v) as the
creation of two new vertices f̄1 and f̄2, such that f̄1 has edges of f̄ to and from w1, . . . ,wi

and f̄2 has all edges of f̄ to and from wj+1, . . . ,wk. We also define the merging of a
vertex f̄1 and a vertex f̄2 as the creation of a new vertex f̄ , such that f̄ has all outgoing
edges and incoming edges of both f̄1 and f̄2. We need to split f̄ when as a result of edge
insertion the face f splits into f1 and f2, and we need merging when two faces f1 and
f2 combine to form the face f . Splitting and merging f̄ can be done by splitting and
merging the adjacency list of f̄ .

Lemma 5. Let Gφ be an upward planar embedded digraph with a single-source sG.
If we add a new edge e to create an embedded digraph G′

φ ′ with a single source sG′

such that G′
φ ′ is upward planar with the same external face Gφ then we can update F

in constant time.

The deletion of an edge e will either merge two faces f1 and f2 in Gφ to form a face
f in G′

φ ′ , or when one of the end vertices of e has a degree of 1 and is incident to a
single face f then the facial boundary of f will change. Moreover, we let αu and αv

represent the angle that is created at u and v respectively as a result of the edge deletion.
We say that with the deletion of an edge e from Gφ , F will change to the face-sink
graph F ′. Let T ′

f be the tree in F ′ that contains f̄ . T ′
f ′ is formed by merging trees in a set

M ⊂ F, |M | ≥ 1 and making some local changes in this merged tree. F ′ will always
satisfy Theorem 1. When all trees in M have one internal vertex then the resulting tree
T ′

f will also have exactly one internal vertex. However, if M contains T̂ , the tree in F
with no internal vertex, then T ′

f will also have no internal vertex. We let μ ′ denote either

the internal vertex in T ′
f or the vertex h̄ that corresponds to the external tree.

Lemma 6. Let Gφ be an upward planar embedded digraph with a single-source sG. If
we delete an edge e = (u,v) to create an embedded digraph G′

φ ′ with a single source
sG′ then we can update F in constant time.

Hence we conclude that Algorithm 1 will take O(logn)-time leading to the following
theorem.

Theorem 6. Let Gφ be an upward planar embedded digraph with a single-source sG.
If we add or delete an edge e to create an embedded digraph G′

φ ′ with a single source
sG′ then we can check the upward planarity of G′

φ ′ in O(logn) when the external face is
fixed.
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5 Open Problems

As further work, we want to investigate if there is a dynamic upward planarity testing
algorithm for embedded digraphs that allows for the external face to change. Moreover,
it will be interesting to investigate the optimality of our algorithm. Our algorithm may
also be relevant to finding a maximum upward planar subgraph of a single-source em-
bedded digraph and we intend investigating this. A slightly more difficult open problem
is to develop a dynamic upward planarity testing algorithm for a single-source digraph
over all its embeddings.
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