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Abstract. We introduce a new force-directed model for computing graph lay-
out. The model bridges the two more popular force directed approaches – the
stress and the electrical-spring models – through the binary stress cost function,
which is a carefully defined energy function with low descriptive complexity al-
lowing fast computation via a Barnes-Hut scheme. This allows us to overcome
optimization pitfalls from which previous methods suffer. In addition, the binary
stress model often offers a unique viewpoint to the graph, which can occasion-
ally add useful insight to its topology. The model uniformly spreads the nodes
within a circle. This helps in achieving an efficient utilization of the drawing area.
Moreover, the ability to uniformly spread nodes regardless of topology, becomes
particularly helpful for graphs with low connectivity, or even with multiple con-
nected components, where there is not enough structure for defining a readable
layout.

1 Introduction

A popular approach to drawing graphs is based on measuring the quality of the layout
through a formal cost function. The layout of the graph is formed by an optimization
algorithm that finds a local minimum of the cost function. This family of algorithms is
known in the graph drawing literature as force-directed algorithms; see, e.g., [3,14].

Broadly speaking, force-directed cost functions (also known as energies) define a de-
sired layout based on either the electric-spring metaphor or on a stress function. Electric
spring functions liken the graph to a physical system where nodes correspond to electri-
cally charged particles, and edges correspond to springs with zero rest length. Repulsive
electric forces ensure that nodes are well separated, while attractive spring forces tend to
shorten edges and pack closely connected components. Two well known early versions
of this scheme are by Eades [4] and by Fruchterman and Reingold [6].

The stress function relates a nice drawing to good isometry. We have an ideal target
distance dij for every pair of nodes i and j. Given a 2-D layout, where node i is placed
at point pi, the stress function is:

∑

i<j

wij (‖pi − pj‖ − dij)
2 (1)

We desire a layout that minimizes this function, thereby best realizing the target dis-
tances. Here, the distance dij is typically the graph-theoretical distance between nodes
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i and j. The normalization constant wij equals d−α
ij . The function (1) appeared earlier

as the stress function in multidimensional scaling [2], where it was applied to graph
drawing [16]. It became a popular graph drawing tool by Kamada and Kawai [13].

Both electric-spring and stress approaches enjoy successful implementations and of-
fer pleasing layouts to many graphs. In terms of layout appearance, there are distinct
differences between the models, though they are hard to define. As for computational
aspects, the two approaches induce different optimization processes, and each has a
unique advantage. Electric-spring models have the advantage of a lower descriptive
complexity compared to the stress model. This is because all repulsive forces are uni-
form, whereas attractive forces involve only the |E| pairs of adjacent nodes. On the
other hand, the stress function requires encoding a different target distance for each
node pair. This fundamental difference bounds stress models to quadratic space com-
plexity, while efficient implementations of electric-spring models scale to larger graphs.

On the other hand, the stress function has a mild landscape, which allows utilizing
powerful optimization techniques such as majorization [7]. This way, good minima are
usually achieved regardless of the initial positions. This is untrue for the electric-spring
models, which induce an intricate landscape as repulsive forces make the energy go to
infinity when nodes overlap. This causes serious convergence problems even for mod-
erately sized graphs. Past works [9,11,19] used sophisticated initialization techniques
through multilevel approximation to overcome these problems.

In this work we introduce the binary-stress model (bStress) for drawing graphs. Com-
putationally, it is able to merge the advantages of both the electric-spring model and the
stress model. Namely, it offers a low descriptive complexity, thus being scalable to very
large graphs. At the same time, it is similar in its form to the known stress function,
thus enabling the use of the majorization optimization scheme.

As for the quality of the layout, bStress frequently offers a unique perspective to
the graph structure. More than other models, bStress emphasizes uniform spread of the
nodes within a circular drawing area. This may lead to distinctive layouts, which can
serve as useful addition to those produced by other algorithms. Moreover, the empha-
sis on uniform spread is advantageous for graphs with low connectivity, whose struc-
ture alone is not capable of defining a good layout. For example, bStress will naturally
handle graphs with multiple connected components by packing all connected compo-
nents together without requiring any post-processing or special treatment that alterna-
tive methods require. In addition, bStress is suitable for drawing large graphs, not only
because of its improved scalability, but also because it achieves good area utilization
that is important for placing a large number of nodes.

2 Basic Notions

We are seeking a layout for a graph G(V = {1, . . . , n}, E), where the position of node
i is pi = (xi, yi). Sometimes, we will refer to the vectors x, y ∈ R

n, which represent
all x- or y-coordinates, respectively. Notice that while this work addresses the more
common case of 2-D layouts, as usual with force-directed algorithms, extensions to
3-D are naturally possible.
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Fig. 1. A Layout of 1024 points that minimizes G(p), by scattering the points within a circle

3 The Binary Stress Model

One of the earliest cost functions involved in defining a nice layout strives to shorten
the squared edge lengths:

H(p) =
∑

〈i,j〉∈E

‖pi − pj‖2 (2)

However, minimizing H(p) on its own is not sufficient for defining a useful layout, as
nothing prevents all nodes from collapsing at a single point. Thus, Tutte [18] and Hall
[10] augmented H(p) with simple constraints that prevented the formation of trivial
layouts. Nonetheless, both solutions tend to generate layouts with very uneven sparsity,
where many nodes are overcrowded together. Moreover, Tutte’s and Hall’s methods fail
to produce adequate layouts for graphs of low connectivity such as tree-like graphs.

A hypothetical possible way to make H(p) working for general graphs, is to lay
out the graph over a grid and then minimize H(p) while requiring that each node is
positioned at a unique grid cell. This will ensure a uniform spread of the nodes and
prevent nodes from getting too close to each other. However, practical implementation
of such a strategy would be quite complicated. The primary issue is that constraining
positions to grid cells transforms the problem into integer optimization, which would
be much harder to solve and less scalable.

We avoid integer optimization by adopting a continuous relaxation of the grid layout
strategy. The relaxation is based on the following cost function:

G(p) =
∑

i�=j∈V

(‖pi − pj‖ − 1)2 (3)

This function strives to place all nodes such that their pairwise distances are uniform.
Notice that G(p) is independent of the graph structure. The minimum of G(p), as we
have found experimentally, will position the nodes almost uniformly within a circle. For
example, consider Fig. 1, where 1024 nodes are positioned so as to minimize G(p).

The function G(p) gives us the necessary tool to combat the over dense areas which
are typical to minimization of H(p). Thus, the binary stress function for computing a
layout of a graph is defined as a linear combination of the two functions:
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B(p) =
∑

〈i,j〉∈E

‖pi − pj‖2 + α
∑

i�=j∈V

(‖pi − pj‖ − 1)2 (4)

The first term relates the layout to the graph structure by ensuring that edges are short,
whereas the second term makes the nodes spread uniformly within a circle. The constant
α (discussed later) controls the balance between the two terms.

Our experience shows that bStress results in useful layouts for wide families of
graphs. However, before we dwell into the quality of layouts generated by the bStress
model, we would like to discuss computational aspects.

4 Minimizing the Binary Stress Function

The bStress function (4) is structured as a sum of two stress functions (Eq. (1)), one
with target distances equal to 0, and the other with target distances equal to 1. This is
the reason for choosing the “binary stress” name. Though, the particular value of 1 has
no influence on the resulting layout and any other positive value could be used as well.

As sum of stress functions, the majorization optimization technique can be exploited
to optimizing bStress. Derivation of the stress majorization was given by Gansner et al.
[7]. The process used here is as follows:

Let us define two n × n matrices, L and M . The matrix L is the Laplacian of graph
G, whose associated quadratic form is the sum of squared edge lengths H(p). The other
matrix, M , is associated with a quadratic form that bounds G(p):

Li,j =

⎧
⎨

⎩

−1 〈i, j〉 ∈ E∑
k �=i Lik i = j

0 otherwise
, Mi,j =

{
−1 i �= j
n − 1 i = j

We also define two vectors, bx, by ∈ R
n, which sum all cosines and sines associated

with each node:

bx
i =

∑

j �=i

xi − xj

‖(xi, yi) − (xj , yj)‖
, by

i =
∑

j �=i

yi − yj

‖(xi, yi) − (xj , yj)‖
(5)

Given a current placement p(t) = (x(t), y(t)), an improved placement p(t + 1) =
(x(t+1), y(t+1)), which lowers B(p), is computed by solving the system of equations:

(M + αL)x(t + 1) = bx(t), (M + αL)y(t + 1) = by(t) (6)

Now, let us consider computational complexity. The number of entries in matrix L is
n+|E|. The other matrix – M – is, strictly speaking, dense. However its highly uniform
structure makes it sparse for practical purposes. Typical to the stress majorization pro-
cess is solving (6) by using the conjugate gradient method, which accesses (M +αL) as
a linear operator. Thus, all we need to ensure is that the product (M+αL)x, can be com-
puted efficiently. This is indeed the case, as L is sparse, and (Mx)i = nxi −

∑
j xj ,

which is computed in a constant time after precomputing
∑

j xj . Thus, the product
(M + αL)x, is computed in time O(n + |E|).
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Fig. 2. A quad-tree hierarchical space decomposition

The more challenging operation is the computation of the bx and by vectors of Eq.
(5). This essentially involves computing the angles formed by all node pairs. Here we
follow several recent graph drawing works [9,11,17] and use the Barnes-Hut scheme [1]
for approximating the O(n2) interactions in practically O(n log n) time. Thus, we use
a hierarchical geometric decomposition of the drawing area through a quad-tree data
structure. The whole area is assigned to a square (or, a rectangle). Then, each square
is subsequently partitioned into four identical squares, till each node is lying within a
unique leaf square. See Fig. 2 for an illustration.

Computation of bx
i and by

i is based on a top-bottom traversal of the quad-tree. Let v
be a quad-tree vertex corresponding to square s with side length l. We compare l to d
- the distance between node i and the center of square s. If l/d > θ, then we continue
the traversal recursively with the four children of v. Otherwise, we halt the traversal
while taking the approximation that all graph nodes lying within square s are at the
same location, and thus can be processed at once. Our default value for θ is 0.5.

In order to give a flavor of actual running times, we report our experience with
graphs of varying sizes in Table 1. Times were measured on a Pentium 4 PC. We let
the majorization process run for 200 iterations, while it was terminated earlier once
‖p(t+1)−p(t)‖/‖p(t)‖ < 0.001. Overall running time is divided among the two com-
ponents of the algorithm: (1) solving Eq. (6) through the conjugate gradients iterative
process. (2) Computing bx and by (Eq. (5)) using a Barnes-Hut approximation. The ta-
ble shows that the Barnes-Hut approximation is indeed closely following an O(n log n)
running time. The conjugate gradient component takes (n + |E|) time per internal it-
eration, but the number of those iterations is less consistent. Since the Barnes-Hut cal-
culation is independent of the number edges, as graphs become denser the conjugate
gradient component becomes more significant (see graphs ‘plustk10’ and ‘gearbox’).
Wall-clock measured running times are not directly comparable across different papers,
due to differences in platforms and code optimization. However, we believe that the
ability of bStress to lay out of 100,000 nodes in a few minutes, places it among the
more efficient graph drawing techniques.

5 Results and Implementation Details

The binary stress model is based on unique principles, which in many cases lead to lay-
outs quite different than those produced by other algorithms. Hence, a key to assessing
the utility of the new model is a qualitative analysis of typical results. In the following
subsections we discuss various aspects of bStress through concrete layout examples.
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Table 1. Running time characteristics for graphs of varying sizes. We measure times for the
two components of the algorithm: a conjugate gradient solver, and Barnes-Hut approximation of
vectors bx and by. The last two columns show the dependency of running time with graph size.
Graphs are taken from [12].

name nodes edges iterations conjugate gradient Barnes-Hut 106× 106×
time/it (sec.) time/it (sec.) C.G. time

|E|+n
B.H. time
n·log n

nopoly 10774 30034 133 0.019 0.182 0.477 4.181
skirt 12598 91961 109 0.082 0.272 0.784 5.264
tuma2 12992 20925 13 0.015 0.238 0.454 4.462
poli large 15575 17468 200 0.106 0.305 3.199 4.666
powersim 15838 36430 200 0.045 0.357 0.869 5.366
ncvxqp9 16554 22493 200 0.023 0.405 0.598 5.797
lpl1 32460 147788 200 0.408 0.763 2.261 5.212
finance256 37376 130560 200 0.192 0.749 1.145 4.385
bcircuit 68902 153328 200 0.328 1.874 1.476 5.621
plustk10 80676 2114154 159 5.169 2.125 2.355 5.367
Ford2 100196 222246 33 0.582 2.230 1.806 4.450
gearbox 107624 3250488 200 5.874 3.317 1.749 6.124
lung2 109460 273646 137 0.272 3.477 0.710 6.304

5.1 Balancing the System

Recall that bStress is parametrized by α, which controls the balance between uniform
spread and structure preservation. As α grows, the model will prefer shortening edges
over uniformly spreading the nodes. This can significantly influence the appearance of
the layout. For example, in Fig. 3 we show two layouts of the same graph, one computed
with α = 1 and the other with α = 1000. When α is low (=1), the model emphasizes
uniform spread, thus nodes are well separated and visible. On the other hand, when α
is high (=1000), the model cares mostly about exposing the graph’s structure through
shortening edges. Thus, the different hubs that form the graph are clearly shown.

Notice that G(p) =
∑

i�=j∈V (‖pi − pj‖ − 1)2 contains about n2/2 terms, whereas
the other part of bStress, H(p) =

∑
〈i,j〉∈E ‖pi − pj‖2, contains only |E| terms. Thus,

G(p) becomes more and more dominant as n2/|E| grows. This is undesirable, as it
makes the determination of parameter α less stable across varying graphs. To offset
some of this phenomenon, our experience shows that as |E|/n grows, it is beneficial
to overweight H(p) over G(p). In other words, for sparse graphs, there is no much
structure in the graph and it is reasonable to pay much attention to uniform spread.
However, for denser graphs, there is much structure to be captured from the connectivity
information. Combining these considerations, we learned that a sensible choice to α is
c · n, for some positive constant c. Hence, the bStress model becomes:

B(p) =
∑

〈i,j〉∈E

‖pi − pj‖2 + c · n
∑

i�=j∈V

(‖pi − pj‖ − 1)2 (7)
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α = 1 α = 1000

Fig. 3. Two bStress layouts of a graph with 1933 nodes and 2043 edges. Setting α = 1 achieves
better separation of nodes and improved area utilization. However, some may prefer α = 1000,
for the better abstraction of the graph’s structure.

Focusing on values of c is easier than focusing on values of α. In fact, our experi-
ments show that c = 1 is a universally reasonable choice, being our default value. In
some cases, better results are obtained with lower values of c.

There is another implication to the value of c, beyond layout appearance. We have
found that the majorization optimization process may encounter bad local minima when
c is too low. To avoid this, we first run the algorithm with higher values of c, and then
use the resulting layout for seeding a process with a lower c value. That is, a typical run
would start with c=100, and then restart with c=1. Usually, the number of majorization
iterations after restarting the run is relatively low thanks to the improved initialization.

5.2 Drawing Trees

Prior adaptation of the H(p) function to drawing graphs [10,18] could not handle trees
and tree-like graphs adequately. The major issue was the inability to prevent many nodes
from collapsing at the same location, thus resulting in a highly imbalanced layout with
much unused area and a few overcrowded locations. Such an issue does not exist with
bStress, as could be evident from the drawing of a tree-like graph given in Fig. 3. In
fact, as graphs become sparser, results of bStress look increasingly different than those
computed by alternative models such as the aforementioned stress and electric-spring
models. This is because, the lack of sufficient connectivity information let the uniform
spread component, G(p), be more dominant in shaping the layout.

As an example, in Fig. 4–5 we present the drawings of two trees, which are derived
from an Internet map and a BGP connectivity map. Results of bStress are compared to
the results of the stress function. The known stress model seems to be better at exposing
the decomposition of the tree, whereas bStress achieves more uniform node distribution.
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bStress stress

Fig. 4. Comparing stress to bStress in drawing an Internet map tree (|V |=9227, |E|= 9226)

bStress stress

Fig. 5. Comparing stress to bStress in drawing a BGP connectivity tree (|V |=3487, |E|= 3486)

The uniform spread achieved by bStress becomes particularly useful when the number
of nodes is large making area utilization a high priority.

5.3 Disconnected Graphs

Most force-directed methods cannot directly handle disconnected graphs. For exam-
ple, the stress model requires defining the distance between each two nodes, which is
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Fig. 6. A graph with 11 connected components (|V |=333, |E|=397)

not naturally defined for disconnected nodes. Likewise, the electric spring model as-
sumes only repulsive forces among connected components, ultimately pushing them
away from each other till infinity. Certainly, various modifications to those models can
enable working with disconnected graphs. Most notably, each connected component
can be drawn separately, and later a smart packing algorithm squeezes all components
within the drawing area [5].

Interestingly, bStress handles disconnected graphs exactly the same way it handles
connected graphs. Thus, unlike other methods, it does not require any modification or
postprocessing when addressing disconnectivity. This is thanks to the uniform spread
model (G(p)), which strives for a fairly uniform node distribution, regardless of con-
nectivity. A small artificial example is brought in Fig. 6, where we draw a graph with 11
connected components. As can be seen, bStress could pack all components efficiently
together within a circle, while no two components overlap, and each component is dawn
reasonably. A larger, more realistic example is given in Fig. 7, where we show a graph
consisting of many Internet traces. The graph contains 3743 connected components,
which are all packed pretty well within the layout.

5.4 Filling a Circle

A notable feature of bStress is packing the graph within a circle. Admittedly, the cir-
cular shape of the layout is not a design goal but rather an outcome of the chosen cost
function. However, filling the interior of the circle is indeed a design goal of the bStress
model. In some cases this can lead to surprisingly looking layouts. For example, some
layouts would be expected to lie on the periphery of a circle. However, bStress will
“insist” on filling the circle with some of the nodes, due to the strict uniform spread re-
quirement. This might look odd at first, but we argue that it has an advantage of enabling
a better distinction between individual nodes.

We demonstrate this in Fig. 8. First simple example is a (topological) circle, which is
twisted in order to spread nodes within the interior. Another example is the finan512
graph, which became a standard example in works aimed at drawing large graphs.
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Fig. 7. An Internet map with 3743 connected components (|V |=33552, |E|=29809). Node colors
indicate some known ISPs.

Previous works (e.g., [15,19]) placed all nodes on or close to the perimeter of a cir-
cle. On the other hand, bStress fills the interior of the circle. This enables a better view
of the local details of this large graph, at the price of an inferior exhibition of sym-
metries. At this point, we would like to clarify that while frequently the outline of the
layout is circular, this is not always the case; for example consider Fig. 9.

5.5 Distorting the Layout

The uniform spread component, G(p), induces layouts where the periphery is denser
than the central area. This effect can be seen in Fig. 1. Let us take a polar coordinates
viewpoint, where the origin is the layout center. We observe that nodes are uniformly
spread across different angular coordinates, but less so across different radial coordi-
nates. Thus, we propose the following correction as an optional postprocessing phase.

We denote the layout density (or, sparsity) around node i by di. This way di = 0
for the densest possible area, while di is large when there is a lot of free area around i.
One way to measure di is to set it to the average distance between i and its top k closest
nodes in the layout. In our implementation, we compute a relative neighborhood graph
(RNG), and define di as the average length of edges adjacent to i in the RNG.

We sort all nodes by their radial coordinates, which are distances from the center.
Then, we smooth the computed densities, by averaging densities of nodes with similar
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1000-circle (|V |=1000, |E|= 1000) finan512 (|V |=74752, |E|= 261120)

Fig. 8. bStress tends to fill the interior of a circle

Fig. 9. The gearbox graph [12] (|V |=107624, |E|=3250488)

radial coordinates; see Sec. 6 of [8] for a similar procedure. Finally, for each node i,
which comes immediately after node j in the sorted order, we modify the gap in radial
coordinates between i and j by multiplying it by 1/di. Thus, we shrink gaps in sparse
areas, while widening gaps in dense areas.
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no distortion with distortion

Fig. 10. The effect of post-processing the layout of a 32 × 32 grid with a radial distortion that
makes node distribution more uniform

We include this distortion in our default settings, as it takes a negligible time, and
occasionally leads to a modest improvement of layout appearance. A simple example is
a square grid, whose layout improves when applying the distortion as shown in Fig. 10.

6 Conclusions

The binary stress model leads to unique graph layouts characterized by uniform distri-
bution of nodes within a circular area. This is particularly beneficial for large graphs,
where efficient utilization of the drawing area becomes vital. In addition, the model
is capable of producing decent layouts even for graphs with low connectivity, where
scant adjacency information cannot define a useful layout on its own. Computationally,
it combines some of the benefits of both the stress and the electric-spring model, fa-
cilitating a simple, yet effective optimization procedure that scales well for very large
graphs. We believe that it should coexist as a viable option along more familiar models.
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