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Abstract. We present a linear-time algorithm for solving the simultaneous em-
bedding problem with fixed edges (SEFE) for a planar graph and a pseudoforest
(a graph with at most one cycle) by reducing it to the following embedding prob-
lem: Given a planar graph G, a cycle C of G, and a partitioning of the remaining
vertices of G, does there exist a planar embedding in which the induced subgraph
on each vertex partite of G \ C is contained entirely inside or outside C? For the
latter problem, we present an algorithm that is based on SPQR-trees and has lin-
ear running time. We also show how we can employ SPQR-trees to decide SEFE
for two planar graphs where one graph has at most two cycles and the intersec-
tion is a pseudoforest in linear time. These results give rise to our hope that our
SPQR-tree approach might eventually lead to a polynomial-time algorithm for
deciding the general SEFE problem for two planar graphs.

1 Introduction

Many practical graph drawing applications demand planar embeddings of a graph that
yield additional constraints. One natural application is in obtaining simultaneous draw-
ings of a set of related planar graphs. This is useful in the areas of bioinformatics,
social sciences and software engineering. A single drawing can be insufficient in de-
picting complex interrelationships of different models of a system. Instead, multiple
drawings may be required, each from a different perspective. The challenge is to pre-
serve the “mental map” of the common structures in each layout so that the scientist can
easily navigate between the different diagrams. To do this, common vertices and edges
are placed and drawn equally in each drawing. This can be modeled via embedding
constraints.

Various embedding constraints have already been studied in [2,5,6]; Gutwenger et
al. [12] apply SPQR-trees to efficiently decide if a graph has a combinatorial embedding
with respect to a set of hierarchical constraints modeling grouping and fixed orders of
edges around a vertex. We instead address a problem that cannot be modeled by any
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of the previous approaches. Given a planar graph G, a cycle C ⊂ G, and a partition
P of all vertices of G \ C, we ask whether there is a planar embedding of G where
all vertices v ∈ p for some part p ∈ P lie completely inside or outside C. We give an
efficient decision algorithm using SPQR-trees that can be used to solve a simultaneous
embedding problem.

Given a set of planar graphs {G1, G2, . . . , Gn} on the same vertex set, a simul-
taneous embedding with fixed edges (SEFE) of {Gi} are planar drawings Γi of Gi,
i ∈ [1..n], such that all vertices and all edges belonging to two graphs Gi and Gj are
drawn identically in the corresponding drawings Γi and Γj . SEFE and its variant of
simultaneous geometric embedding (SGE) with planar straight-line drawings as well
as the other variations of simultaneous embedding have become an important branch
within the field of graph drawing. It is known that deciding SEFE is NP-complete for
three graphs [11] while deciding SGE is NP-hard for two graphs [8]. The complexity
of deciding SEFE for two graphs is still open.

Many approaches have been made to decide the problem for some classes of graph
pairs [4,7,9,10]. Frati [10] showed that trees and planar graphs always have a SEFE.
Fowler et al. [9] improved this result to show that forests, circular caterpillars (removal
of all degree-1 vertices yields a cycle), K4, and subgraphs of K3-multiedges (an edge
(x, y) with any number of edges with x or y as endpoints) are the only graphs to always
have a SEFE with any planar graph. Their drawing algorithms are based upon using
an optimal Euclidean shortest path algorithm [13]. We also apply this technique in our
algorithms.

In this paper we examine the pairs of a planar graph G1 with a pseudoforest G2.
A SEFE is not always guaranteed unless all non-cycle edges of G2 are incident to
the cycle, i.e., the pseudoforest happens to be a circular caterpillar. However, we show
that SEFE for such pairs can be decided in polynomial time by presenting an efficient
decision algorithm. We further discuss efficient decision algorithms for the case that
G2 contains two cycles and G1 ∩ G2 is a pseudoforest. We think that our approach is
promising in that it may eventually lead to a general polynomial time decision algorithm
for testing SEFE of two graphs.

2 Preliminaries

Given some planar drawing Γ of a planar graph G, a cycle C in G forms a Jordan
curve that splits the plane into two connected components. One is bounded by C and
the other is unbounded as given by the Jordan curve theorem [14]. We say that some
vertex v ∈ G \ C lies in the interior (exterior) of C if it is mapped to a position in the
bounded (unbounded) component.

A combinatorial embedding of a planar graph G is defined as a clockwise ordering
of the incident edges for each vertex with respect to a crossing-free drawing of G in
the Euclidean plane. A planar embedding is a combinatorial embedding together with
a fixed external face.

A block is a maximal 2-connected subgraph of a graph G. If G is 2-connected, the
SPQR-tree T of G represents its decomposition into 3-connected components compris-
ing serial, parallel, and 3-connected structures [3]. The respective structure is given by a
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skeleton graph associated with each tree node which is either a cycle (S-node), a bundle
of parallel edges (P-node), or a 3-connected simple graph (R-node); Q-nodes serve as
representatives for the edges of G.

If G is 2-connected and planar, its SPQR-tree T represents all combinatorial embed-
dings of G. In particular, a combinatorial embedding of G uniquely defines a combi-
natorial embedding of each skeleton in T , and fixing the combinatorial embedding of
each skeleton uniquely defines a combinatorial embedding of G.

Given two planar graphs G1 = (V, E1) and G2 = (V, E2) on the same vertex set V ,
a simultaneous embedding with fixed edges (SEFE) consists of planar drawings Γi of
Gi, i ∈ [1, 2], such that each vertex is mapped to the same point in the plane for Γ1 and
Γ2 and each edge in G1 ∩ G2 is represented by the same simple curve in the plane for
both drawings.

3 A Planar Graph, a Cycle, and a Partition

In this section, we consider the following graph embedding problem. Given a planar
graph G = (V, E), a cycle C = (VC , EC) ⊂ G, and a partition P of V \ VC , de-
cide whether G has a planar drawing such that all vertices of each part in P either lie
completely inside or outside of C; see Algorithm 1.

The input partition P or the planar embeddings of the graph may force two vertices
to be on the same side of the cycle (either both inside or both outside). We call this
situation a same-side constraint. On the other hand, by examining all embeddings of the
graph we may reveal that two vertices must be positioned on opposite sides of the cycle
(one inside and one outside). We refer to this situation as an opposite-side constraint.
The idea of the algorithm is to find all such constraints and then check whether all these
constraints can be satisfied at once, i.e., whether a planar embedding with the required
property exists.

The following algorithm uses an SPQR-tree T to examine all embeddings of the
block of graph G containing the given cycle C. Each skeleton of a node of T may
lead to constraints prohibiting some of the possible embeddings as discussed above.
We use an auxiliary graph H containing all of the vertices of the original graph to
maintain the occuring constraints. Same-side constraints are represented by green edges
and opposite-side constraints by red edges.

We say that H is 2-colorable if its vertices can be colored with two colors, say red
and green, in such a way that both endpoints of a green edge have the same color and
both endpoints of a red edge have different color.

As cycles are 2-connected, the given cycle C is contained in a single block B of
graph G. All other blocks are either completely inside or outside of C in all planar
drawings of G. Hence, we get one same-side constraint for all vertices of each block
B′ �= B. We can now assume to deal with a 2-connected graph G and its SPQR-tree T
that represents all planar embeddings of G together with some cycle C ⊆ G. Let ν ∈ T
be some node of the SPQR-tree, S be its skeleton and e ∈ S be any skeleton edge. If
the expansion graph of e includes any edge of C, we call e a cycle edge. We consider
the different possibilities for ν in turn.
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Algorithm 1. Deciding the embeddability of parts respecting a cycle

Input: Planar graph G = (V, E), cycle C = (VC , EC) ⊆ G, partition P of V \ VC

Output: Returns YES if and only if G has a planar embedding such that all induced
subgraphs of each p ∈ P lie on one side of C

Let H = (V, ∅)
for all parts p ∈ P do

Construct path in H with green edges of all vertices in p

Block B := Biconnected component of G containing C
for all blocks B′ �= B do

Construct path in H with green edges of all vertices in B′

Tree T := SPQR-tree of B
for all nodes μ ∈ T do

if skeleton S of μ has at least two cycle edges then
Cycle C′ := cycle consisting of all cycle edges in S
if μ is R-node then

Expand all non-cycle edges in S
Construct path in H with green edges of all vertices inside C′

Construct path in H with green edges of all vertices outside C′

if there exist vertex v in the interior of C′ and vertex w in the exterior of C′

then
Add red edge to H between v and w

if μ is P-node then
for all edges e in S \ C′ do

Construct path in H with green edges of all vertices in the expansion
graph of e

if H is 2-colorable then
return YES

else
return NO

If S contains exactly one cycle edge e, then the edges belonging to the skeleton of
all the other vertices must lie on the same side of C. When regarding the node of T
belonging to e, all these vertices are contained in the expansion graph of a single edge
that is not a cycle edge. Repeating this process, if necessary, we get a T -node that
has more than one cycle edge but also has a single non-cycle edge containing all of
the vertices from above. When dealing with this T -node, the necessary auxiliary graph
augmentation to handle this same-side constraint is performed.

If S contains two or more cycle edges, then these cycle edges comprise a cycle in S.
If S also contains non-cycle edges, ν is a P-node or an R-node.

1. In an S-node this can only occur if all edges of the skeleton are cycle edges. In
this situation there is nothing to be done as this does not lead to any same-side
constraints or opposite-side constraints.

2. Let ν be a P-node (see Fig. 1). All the vertices occurring in an expansion graph of
any other edge in S are forced to be on one side of the cycle C.
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cycle edges

other edge e

Fig. 1. Cycle edges in the skeleton of a P-node lead to same-side constraints: all vertices in the
expansion graph of a non-cycle edge e are on the same side of the cycle

cycle edges

interior edges

exterior edges

Fig. 2. Cycle edges in the skeleton of an R-node yield two same-side and one opposite-side con-
straints: All vertices in the expansion graphs of the interior component are on one side of the
cycle while all vertices of the exterior component are on the other side

3. Having ν as an R-node (see Fig. 2) is the most involved. The skeleton S of ν
is a 3-connected graph and has hence a unique embedding (besides mirroring and
choosing the outer face). The cycle edges split S into two halves: the interior and the
exterior components of S. All vertices belonging to all expansion graphs of edges
of one side must be on one side of the cycle in the final embedding. Neither pair
of vertices w1 and w2 being the interior and the exterior components, respectively,
may end up on the same side of the cycle. Hence, we get two same-side constraints
(between all vertices in the interior and exterior components, respectively) and one
opposite-side constraint (the edges from the interior and the exterior components
must be separated).

Theorem 1. Algorithm 1 has a runtime of O(|V |) and works correctly, i.e., it returns
YES if and only if the input graph G has a planar embedding E such that for each p ∈ P
all vertices in p lie on one side of C in E .

Proof. Obviously, the first two for-loops including the construction of T require only
O(|V |) time, thus add only O(|V |) green edges to H . The third loop iterates over all
nodes μ ∈ T and expands some non-cycle edges. Observe that—for all nodes μ—the
expansion graphs of these non-cycle edges do not share any edge, and thus no vertex
except for vertices on the cycle C. Therefore, the whole for-loop takes O(|V |) time,
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and we add only O(|V |) green and red edges to H . Since the size of H is linear in |V |,
we can check if H is 2-colorable using breadth-first-search in O(|V |) time.

We next show that the algorithm works correctly. First, assume that the algorithm
returns NO. Then the constructed auxiliary graph H is not 2-colorable. This means that
two vertices v and w in H are connected by two paths: one containing an odd number
of red edges and one containing an even number. This implies that v and w must lie
on the same side of C (due to the path with even number of red edges), as well as on
opposite sides (path with odd number of red edges). Hence, G has no such embedding.

Next assume that the algorithm returns YES in which H is 2-colorable. We pick one
of the two colors to lie in the interior of C and one to lie on the outside. The choice
of embeddings for every P-node and every R-node implies an embedding E for G. For
each such node in T , we can choose an embedding that satisfies the given choice of
interior and exterior of C. In each P-node, the vertices that belong to the expansion
graph of one of the parallel edges are connected by green edges in H , thus, they lie on
the same side in E . In each R-node, the vertices on both sides of the cycle are connected
by green edges, respectively, while a single edge between these sets forbids both parts
to lie on the same side. Finally, green edges between the vertices of the input partition
yield that these vertices lie on the same side of C. ��

4 A Planar Graph, a Pseudoforest, and a Decision

In this section, we apply Algorithm 1 to solve the following open problem in simul-
taneous embedding: Given a planar graph G1 and a pseudoforest G2, find an efficient
algorithm to decide whether the pair {G1, G2} has an SEFE; see Algorithm 2. For a
few special cases of G2 the situation becomes trivial as described by the next theorem.

Theorem 2 (Fowler et al. [9]). Let G1 be a planar graph and G2 be a forest or a
circular caterpillar. Then G1 and G2 have a SEFE.

Next, we consider the more general case of a pseudoforest containing a cycle C in
which not all non-cycle edges are incident to C. We see by the next theorem that the
case is also trivial if C is not in the intersection of G1 and G2.

Theorem 3. Let G1 = (V, E1) be a planar graph and G2 = (V, E2) be a pseudoforest
with a cycle C. If C is not in G1 ∩ G2, then the pair has a SEFE.

Proof. Let edge e ∈ C \ G1. Create a planar drawing of Γ1 of G1 in the plane using
any suitable graph drawing algorithm (e.g. [1]). We construct a planar drawing Γ2 of
G2 that, together with Γ1, creates a SEFE of G1 and G2.

Draw all vertices and all edges of G1 ∩G2 in Γ2 in the same way as in Γ1 guarantee-
ing a simultaneous drawing. We still must draw all edges of G2\G1 without introducing
any crossings in Γ2. As e is not part of G1, it has not been drawn in Γ2 yet. We draw all
edges of G2 \ G1 in Γ2 one after another with e as the last edge. The order of the other
edges can be chosen arbitrarily.

To do this we use an optimal Euclidean shortest path algorithm [13]. We apply the
modification as done by Fowler et al. [9] in their drawing algorithms. A distance ε is
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always maintained between the shortest path and any line segment corresponding to
previous part of Γ2. This allows subsequent edges to be routed as need be in between
any pair of non-incident edges that would otherwise be touching. Applying this algo-
rithm adds at most O(|V |) edge bends for each new edge (as new bends hide old bends
as argued in [9]) so that the final complexity of the drawing is O(|V |2) giving an overall
running time of O(|V |2 log |V |).

As G2 has only one cycle C and e is part of C, G2 \ {e} is a forest. Any drawing of
any subgraph of G2 \ {e} has exactly one face. Hence, starting with the partial drawing
of Γ2 it is always possible to insert a route for the edges not yet drawn maintaining
planarity. Even, in the last step, when edge e is inserted, the partial drawing of Γ2 has
exactly one face and thus, e can be safely inserted into Γ2. Then Γ2 is completed and
{Γ1, Γ2} is a SEFE of {G1, G2}. ��

Due to Theorems 2 and 3 we assume G2 to have exactly one cycle C in the intersection
G1 ∩ G2. By construction G1 is planar. However, to ensure a SEFE of G1 and G2 we
must embed G1 in such a way that the cycle C does not separate any pair of vertices
that are adjacent in G2. On the other hand, as G2 \ C is a forest, this condition suffices
to guarantee a SEFE of the pair {G1, G2}.

Theorem 4. Let G1 = (V, E1) be a planar graph and G2 = (V, E2) be a pseudoforest
each on n vertices with a cycle C ⊆ G1 ∩ G2. G1 and G2 have a SEFE if and only
if there exists a planar drawing of G1 such that for all edges e = {v, w} ∈ G2 \ G1
either both v and w lie inside or both lie outside of C.

Proof. Assume first that G1 has a planar drawing Γ1 with the described property. We
create a planar drawing Γ2 of G2 that, together with Γ1, yields a SEFE of G1 and
G2. Draw all vertices and all edges of G1 ∩ G2 in Γ2 in the same way as in Γ1. As
C ⊆ G1 ∩ G2, the cycle is now present in Γ2. We draw all remaining edges of G2 \ G1
next by using the same approach of the proof of Theorem 3.

We start with the edges e that have one endpoint in the exterior of C in Γ1. Due to
the condition on Γ1, both endpoints of e are in the exterior of C or one endpoint is on
C. As we have just drawn C and all vertices in the same way as in Γ1, this condition
also holds for the partial drawing of Γ2. As G2 \ G1 is a forest there is a way to route e
without introducing crossings: Imagine C and its interior as one big vertex. The partial
drawing Γ2 then has exactly one face. This also holds for edges connecting the exterior
of C with C itself. The same argument holds for all the edges in the interior of C as well
as the edges connecting the interior with C. Hence, by construction we have a planar
drawing Γ2 of G2 that, together with Γ1, yields a SEFE of G1 and G2.

Now let G1 be without a planar drawing with the described property. Assume G1 and
G2 have a SEFE. By definition there exist planar drawings Γi of Gi, i ∈ [1, 2], such
that the intersection G1 ∩G2 is drawn in the same way in both Γ1 and Γ2. As G1 has no
planar drawing with the described property, there exists an edge e = {v, w} ∈ G2 \ C
such that v lies in the interior of C and w lies in the exterior of C in Γ1. As vertices
v and w and cycle C are part of G1 ∩ G2, the same condition holds for Γ2. But this
means that e cannot be routed in Γ2 without introducing a crossing in Γ2, which is a
contradiction to our assumption. Hence, G1 and G2 have no SEFE. ��
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Algorithm 2. Deciding SEFE for planar graph and pseudoforest pair

Input: Planar graph G1 and pseudoforest G2.
Output: YES if and only if {G1, G2} has a SEFE.

if G2 contains no cycle then
Return YES.

Cycle C := the only cycle of G2

if C � G1 then
Return YES.

Partition P = {Pv | v ∈ G1 \ C} := trivial partition of G1 \ C
for all edges {v, w} of G2 \ C do

UNION Pv and Pw.
Run Algorithm 1 with input (G1, C, P ).
Return output of Algorithm 1.

We use the previously discussed results to create an efficient algorithm deciding the
problem mentioned in the beginning of this section.

Theorem 5. Algorithm 2 works correctly, i.e., it returns YES if and only if {G1, G2}
has a SEFE. Moreover, it has a linear runtime.

Proof. Assume first that the algorithm returns YES, which is by one of three statements.
The first returns YES if G2 contains no cycle. But then Theorem 2 states that {G1, G2}
has a SEFE. The second statement returns YES if cycle C is not completely part of G1.
Theorem 3 guarantees that G1 and G2 have a SEFE in this situation. The last instruction
is that the run of Algorithm 1 returns YES. Algorithm 1 checks whether graph G1 can be
embedded in the plane such that all partition sets of P lie completely inside or outside
C. By the construction of P , this is equivalent to saying that both endpoints of every
edge of G2 \ C lie both inside or both outside C. Then Theorem 4 yields a SEFE of
G1 and G2.

Assume next, that the algorithm returns NO, which implies Algorithm 1 returned NO.
Hence, G1 has no planar drawing with the property of Theorem 4, which implies that
G1 and G2 are without a SEFE.

The proposed runtime O(|V |) follows directly from the complexity analysis of
Algorithm 1. ��

5 A Planar Graph, a Path, and a Cyclic Edge Order

In this section, we consider two embedding problems with requirements on the cyclic
order of some of the edges around a vertex x or two vertices x and y that can be used
to decide some special SEFE problems in Section 6.

In the first problem, x and y are two distinct vertices connected by a path p. Let ep

and e′p be the first and last edges on p incident to x and y, respectively, where {ea, eb}
and {e′a, e

′
b} are distinct edges also incident to x and y. We want to ensure that the order

of these edges around x and y (amongst other possible incident edges) in a combinato-
rial embedding Γ of G is consistent with an embedding of a graph in which x and y are
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connected by the three edge-disjoint paths p, pa = ea, . . . , e
′
a, and pb = eb, . . . , e

′
b. This

implies that either the cyclic order around x is ep, ea, eb and around y is e′p, e
′
b, e

′
a or

both orders are reversed. It suffices to test only one possibility, since we can generate a
combinatorial embedding with the reversed orders simply by mirroring the embedding.

Let Ex = {ep, ea, eb} and Ey = {e′p, e
′
a, e

′
b}. We observe that—if not all edges

in Ex ∪ Ey are in the same block—such a required combinatorial embedding always
exists; in this case, x or y is a cut vertex. We can insert the embedding of one block
B′ into a face of an embedding of the other block B (mirroring the embedding of B′

if necessary) so that the requirements on the embedding are met. On the other hand, if
all the edges in Ex ∪ Ey are contained in a single block B, it is sufficient to test a few
simple conditions in the SPQR-tree T of B. The necessary and sufficient conditions are
given in the lemma below.

Lemma 1. G has a combinatorial embedding Γ such that the cyclic order induced by
Γ on Ex is ep, ea, eb and the cyclic order induced on Ey is e′p, e

′
b, e

′
a if and only if

1. there is no block B of G containing all edges in Ex ∪ Ey; or
2. there is a block B containing Ex ∪ Ey , and its SPQR-tree T has neither

(a) a P-node whose skeleton contains three distinct edges e1, e2, e3 such that ep

and e′p are contained in the expansion graph of e1, ea and e′b in the expansion
graph of e2, and eb and e′a in the expansion graph of e3; nor

(b) an R-node whose skeleton has a combinatorial embedding such that ep, ea,
eb are in the expansion graphs of three distinct skeleton edges ẽp, ẽa, ẽb in this
cyclic order, and e′p, e′a, e′b are in the expansion graphs of three distinct skeleton
edges ẽ′p, ẽ

′
a, ẽ′b in this cyclic order.

These conditions can be checked in linear time, since constructing an SQPR-tree and
determining for each edge e ∈ Ex ∪ Ey in the expansion graphs of which skeleton
edges it is contained, requires only linear time, and there are only two combinatorial
embeddings of each R-node’s skeleton.

In the second embedding problem, we consider a planar graph G with a vertex x
and four distinct edges ea, e′a, eb, e

′
b incident to x. We want to decide if there exists an

embedding Γ of G that induces a cyclic order on these four edges in which ea and e′a
(and thus also eb and e′b) are consecutive. The motivation for this problem is similar as
for the first problem, where p is an empty path and thus x and y are identical. In this
case, deciding if a feasible combinatorial embedding of G exists is even easier. We only
need to consider only R-node skeletons containing x in which x is incident to at least
four skeleton edges. This gives the following lemma whose conditions can be verified
in linear time:

Lemma 2. G has a combinatorial embedding Γ such that the cyclic order induced by
Γ on Ex = {ea, e

′
a, eb, e

′
b} is such that ea and e′a are consecutive, if and only if either

1. no block of G contains all edges in Ex; or
2. there is a block B containing all edges in Ex, and its SPQR-tree contains no R-node

whose skeleton S contains x and the edges in Ex are in the expansion graphs of four
distinct skeleton edges Ẽx = ẽa, ẽ′a, ẽb, ẽ

′
b such that there exists a combinatorial

embedding of S that induces a cyclic order on the edges in Ẽx in which ẽa and ẽ′a
are not consecutive.
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6 Two Planar Graphs with Restrictions and a Decision

We now consider how this approach of using SPQR-trees might be extended to address
more general decision problems for deciding whether a pair of graphs has a SEFE. We
examine pairs of planar graphs G1 and G2 where we restrict both the number and the
arrangement of cycles in G2 and in G1 ∩ G2.

G1 ∩ G2 is a forest: We start with a more general version of Theorem 3 where we
have a larger number of cycles in G2 but still the intersection is a forest.

Theorem 6. Let G1 = (V, E1) be a planar graph and G2 = (V, E2) be a planar
graph where all cycles Ci ⊆ G2, i ∈ [1..k], are pairwise disjoint. If no Ci is contained
in G1 ∩ G2, then the pair {G1, G2} has a SEFE.

Proof (sketch). We adapt the proof of Theorem 3. When drawing G2, remove one edge
ei from each Ci \ G1 and draw the rest of G2, which is a forest. Then insert one edge
ei after another in the same way as done with edge e in the proof of Theorem 3. As
all cycles are disjoint and no further cycles exist, this method can be applied without
introducing any crossings in the drawing of G2. ��

Next, we discuss the case where G2 contains exactly two cycles that either touch in
exactly one point or share a common path. With the ideas developed in Section 5 we
can handle this situation efficiently.

Theorem 7. The SEFE decision problem for two planar graphs G1 and G2 where G2
contains exactly two cycles and G1 ∩ G2 is a forest can be decided in linear time.

Proof (sketch). Let C1 and C2 be the two cycles of G2. If C1 ∩ C2 = ∅, the case is
trivial as given by Theorem 6. As G2 contains no more cycles, C1 ∩ C2 is a path p
with endpoints x and y; see Fig. 3. A planar embedding of G1 can force the outgoing
edges of x and y to have a specific order leading to the situation in Fig. 3(b) in G2 that
prevents a SEFE of G1 and G2. However, if G1 has an embedding that allows the right
cyclic order for both x and y as in Fig. 3(a), then a SEFE can be achieved. All other
edges of G2 can be drawn without introducing crossings as in the proof of Theorem 4.
Lemma 1 gives a linear time check to determine whether G1 has an embedding such

(a)

y

C2 \ C1

C1 ∩ C2

C1 \ C2

x

C1 ∩ C2

C1 \ C2

C2 \ C1

(b)

y

x

Fig. 3. The two cycles C1 and C2 drawn without and with crossings. The respective clockwise
ordering of the edges incident to x and y differ.
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Algorithm 3. Deciding SEFE for restricted planar graph pair

Input: Planar graphs G1 and G2 where G2 contains exactly two cycles and G1 ∩ G2 is a
pseudoforest but not a forest.

Output: YES if and only if {G1, G2} has a SEFE.

Cycle C := the only cycle of G1 ∩ G2

Partition P = {Pv | v ∈ G1 \ C} := trivial partition of G1 \ C
for all edges {v, w} of G2 \ C do

UNION Pv and Pw.
Run Algorithm 1 with input (G1, C, P ).
Return output of Algorithm 1.

that the cyclic order for the three outgoing edges corresponds to the paths shown in
Fig. 3. Lemma 2 handles the degenerate case for x = y, also determinable in linear
time. ��

G1 ∩ G2 is a pseudoforest: Assume now that both G1 and G2 are planar graphs
in which G2 contains exactly two cycles C1 and C2 of which only one, say C1, is
contained in G1 ∩ G2. When removing one edge of C2 \ G1 we are in the situation
described in Section 4. This correlation allows us to construct a new decision algorithm
based on Algorithm 2. We start by generalizing Theorem 4, which we use as the key
ingredient to Algorithm 3.

Theorem 8. Let G1 = (V, E1) be a planar graph and G2 = (V, E2) be a planar graph
with exactly two cycles C1 and C2 where C1 ⊆ G1 ∩ G2 and C2 �⊆ G1 ∩ G2. G1 and
G2 have a SEFE if and only if there exists a planar drawing of G1 such that for all
edges e = {v, w} ∈ G2 \ G1 either both v and w lie inside or both lie outside of C1.

Theorem 8 can be proved by using Theorem 4 to determine whether {G1, G2 \ {e}}
has a SEFE. In an SEFE of this smaller pair, edge e = {v, w} can be inserted if and
only if both endpoints v and w lie on the same side of C1.

It is easy to see that Algorithm 3 works correctly. We can imitate the proof of cor-
rectness of Algorithm 2 (see Theorem 5) where this time Theorem 8 plays the role of
Theorem 4.

7 Concluding Remarks and Future Applications

We have shown how to use SPQR-trees in the context of simultaneous embedding with
fixed edges by presenting several new decision algorithms for some classes of graph
pairs. Clearly, much future works remains, but overall this approach of using SPQR-
trees seems promising in potentially yielding a polynomial-time decision algorithm for
deciding whether two graphs have a SEFE, if one exists.
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