
Dynamic Service Provisioning Using GRIA SLAs

Mike Boniface, Stephen C. Phillips, Alfonso Sanchez-Macian,
and Mike Surridge

University of Southampton IT Innovation Centre,
2 Venture Road, Chilworth,

Southampton, SO16 7NP, UK
{mjb,scp,asm,ms}@it-innovation.soton.ac.uk

http://www.it-innovation.soton.ac.uk

Abstract. Service Level Agreements (SLA) include quality of service
(QoS) constraints and bounds that have to be honoured by the service
provider. To maximise the Service Provider revenue while satisfying the
QoS requirements of the agreed SLAs it is important to be able to per-
form a dynamic distribution of the service provider resources between
the services and SLAs. This distribution should be based on the current
status and predicted evolution of the QoS characteristics. This paper de-
scribes the experiences managing SLA obligations from a service provider
perspective in a scenario where dynamic deployment of services can be
undertaken. The main issues faced to deal with the management of SLAs
in this context are detailed. The adopted solution, based on GRIA (a Ser-
vice Oriented Architecture framework) is discussed.

Keywords: SLA management, dynamic provisioning.

1 Introduction

Businesses designing and developing complex products are facing increasing mar-
ket pressure to reduce product development cycles whilst improving capabilities
and compliance with ever rigorous safety regulations. Traditional business struc-
tures and markets are fragmenting as companies continue to specialise through
increased focus on core competencies. Outsourcing of previously core functions
(product design, analysis codes, etc) is seen as a key strategy that will allow busi-
nesses to meet their goals and entire design supply chains are emerging. This
has led to great interest in technologies such as service oriented architectures
(SOA), Grid computing, and software as a service (SAAS) offerings. Businesses
are anticipating that such technologies will provide flexible and adaptive infras-
tructures that will allow them to extend their enterprise and to inject innovation
into their product design processes in a way that is secure, accountable, auditable
and cost-effective.

In this paper, we present strategies that allow service providers to offer inter-
enterprise service provision using SLAs. We explore how Web Service manage-
ment using SLAs and dynamic service provision can maximise resource
utilisation whilst satisfying quality of service (QoS) commitments to existing

E. Di Nitto and M. Ripeanu (Eds.): ICSOC 2007 Workshops, LNCS 4907, pp. 56–67, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.it-innovation.soton.ac.uk

Dynamic Service Provisioning Using GRIA SLAs 57

customers. We describe the characteristics of such an SLA management system
and how we have adapted the GRIA middleware to meet the needs of dynamic
provisioning scenarios.

2 Web Service Management with SLAs

SLAs are at the cornerstone of business transactions and describe the QoS and
other commitments by a service provider in exchange for financial commitments
by a customer against an agreed schedule of prices and payments. SLAs are
now widely considered a central component for managing extended enterprise
business automation and many research initiatives within the EC 6th Framework
Programme have investigated the role SLAs have in Web Service management.
The NextGRID project [1] proposes the use of bipartite (two-party) SLAs to
describe both the functional and non-functional aspects of a service to allow
consumers to make informed choices. The NextGRID SLA is an agreement (as
denoted by its name) and describes the obligations each each of its signatories
must do in order to be compliant with the agreement. NextGRID SLAs have a
strong linkage to business impact for both the customer and provider so that the
customer can assign and manage costs transparently within their business and
the service provider can retain the flexibility in operations to strive to reduce
the cost of delivery and ultimately the price paid by the customer [2]. In the EU
IST SIMDAT project [3], an SLA management service has been developed for
GRIA to meet the demands of distributed product development teams needing
to share IT assets [4]. GRIA SLAs have some of the characteristics of NextGRID
SLAs, for example, bi-partite agreements and high-level business value exchange
linked to low-level resourcing but GRIA focuses on capacity management rather
than dynamic provisioning decisions.

Both SIMDAT and NextGRID views contrasts with the use of SLAs in the
more established academic Grid community where the SLAs described in [5], [6]
and [7] focus on resources (e.g. computers, network bandwidth, storage devices)
rather than services. This is of course appropriate for a community of experienced
users running often experimental codes. However, in order to address the needs
of business users (as opposed to technical users) the value of the service must
be articulated at the appropriate business level rather than the resource level.
The customer should not be concerned with the resources required to provide
the service just that the service exists and provides a clear business benefit. It is
also important to consider SLA information when composing services to provide
an integrated business solution. NextGRID uses a workflow enactor to deal with
this issue, but other alternatives have been studied. For example, in [18] an
agent-driven architecture is used to manage individual QoS commitments and
map them to the end-to-end QoS constraints. The business perspective of QoS
is also investigated in [8] where client and service providers can define their QoS
requirements and negotiation strategies. Unfortunately, the defined architecture
is based on the use of a negotiation broker, which conflicts with traditional
supply chain approaches.

58 M. Boniface et al.

Previous work has been done in dynamic deployment of web services and
SLA implications of these deployments. In [9], some predictive and reactive ap-
proaches are suggested based on mathematical formulae and the use of heuristics.
Finally, an architecture based on the Web Service Level Agreement (WSLA) lan-
guage is proposed in [10], where dynamic provisioning is also commented. That
work has some interesting ideas, but many of the issues commented on in section
3 below are not addressed in that paper, such as the transparency to the user
or the different ways of sharing resources between different SLAs (an inter-SLA
vision of the problem).

The following sections describe an approach for service provider management
that allows a service provider to offer high-level SLA metrics whist incorporating
strategies to manage SLA violations, mapping high-level SLA metrics to mea-
sured metrics and aggregation of QoS measurements across multiple customers.

3 Issues in Managing Dynamic Provisioning and SLAs

Using dynamic provisioning of services helps the service provider to manage
their resources in a way that he is capable of honouring the SLA requirements
for the contracts he has signed. The possibility of deploying service instances
dynamically allows a service provider to define policies to optimise the distribu-
tion of resources against SLA commitments and therefore increase the number
of agreements with their customers. Additionally, it is also possible to outsource
tasks when SLA commitments cannot be met by adaptively procuring additional
resources from other service providers However, some issues need to be solved
in this situation which are presented in the following subsections.

3.1 Management of Multiple Services and Multiple SLAs

The use of dynamic provisioning by a service provider must be transparent to the
service consumer. This means that from a users perspective, the service has to
behave in a similar way and the functionality has to be provided as if a standalone
service was used. Thus, the capability of deploying services dynamically and the
actual number of services deployed have to be transparent to the software used
by the consumer and the terms included in the SLA should not be changed.

When trying to honour an agreed SLA, the dynamic deployment of new service
instances can help to prevent QoS constraint breaches. During the provisioning
of a service, the QoS is monitored and checked against the constraints defined in
the SLA. If a service provider detects that a future obligation is unlikely to be
met (e.g. the maximum job queue time for a job execution), the service provider
can decide to deploy an additional instance of the service in a new machine
to manage the situation. Of course, the challenge is more complex as service
providers need to manage multiple SLAs that may have conflicting resource
requirements and potential QoS breaches resulting in different business impact.
Service providers (or the policies defined in their software) have to decide how
to distribute or share resources to minimise costs in this situation.

Dynamic Service Provisioning Using GRIA SLAs 59

Usually, there is a many-to-many relationship between SLAs and services.
A service (e.g. a Job Service) can provide functionality to users under different
SLAs and one SLA can include agreements to use several different services (e.g. a
Job Service and a Data Service) from a service provider. In a dynamic provision-
ing scenario, a service is provided by several service instances in a transparent
way. Although the service can still be used under different SLAs, a decision must
be made about how service instances are managed. They may be used to provide
the functionality for a specific SLA in an exclusive way or they can be shared
amongst different SLAs. Additionally, it is necessary to consider the capabilities
of each machine to identify how many service instances can coexist at the same
time. The decisions affect the policies that a service provider can use to honour
the SLAs.

The first strategy is to allocate service instances to many SLAs. The main
issue to consider with this strategy is that it is necessary to distinguish between
invocations related to different SLAs. The service provider needs to monitor
QoS parameter usage against each specific SLA to manage violations and for
load balancing. There are three policies that can be applied using this strat-
egy a) deploy new service instance b) promote invocations or resources among
SLAs, giving priority to the invocations related to the compromised SLA, and c)
redirect requests or migration of resources between service instances. In a), the
new service instance should be deployed on a different machine where no service
instance of this type is available, as it is likely that the problem is related to
the performance of the hardware. b) can be implemented using queues, but c) is
far more complex. In c) migrating resources between service instances requires
state and context to be stored and moved to a new location. All these policies
must be triggered by a component that is able to receive the QoS information
and match it against the SLA constraints.

The second strategy is to make the service instances restricted to a particular
SLA. QoS can be monitored on a per-instance basis. The deployment of service
instances, in this case, can be done in a machine where other instances of that
type are already deployed if they are not assigned to the same SLA and the
machine is able to cope with the new instance. With the per-SLA distribution
of instances, the alternative available policies are different. Migration would be
still possible between two instances assigned to the particular SLA, but pro-
moting invocations in a service instance is not a solution as all the requests are
related to the same SLA. In this situation, it is possible to prioritise between
the service instances deployed in the same machine and create mechanisms for
pausing or undeploying some service instances, giving priority to those related
to a compromised SLA.

For both strategies the machine capabilities must be monitored and the overall
capacity pre-defined. Some heuristics can be used to decide how many service
instances of a specific type can reside in the same machine. As different service
types have different requirements, it would be necessary to define a way of sharing
the machine between them such as defining an equivalence between number of
service instances of two different types.

60 M. Boniface et al.

3.2 Strategies to Manage SLA Violations

From a service providers perspective, there are two possible policy enforcement
strategies for handling SLA violations: prevention before violation or reaction
after violation. The prevention strategy is based on predictions of a probable
SLA violation. The prediction can come from some prevention thresholds for the
QoS characteristics being monitored or more complex algorithms derived from
previous experiences. For dynamic provisioning, when the prevention threshold is
exceeded, a new service instance is deployed so the load balancing algorithm can
redirect the requests to the new address. The thresholds policy have to be defined
on a per-SLA basis. One approach is to treat thresholds as private constraints
using the same representation (standard web service language or an ontology-
driven pattern) as agreed constraints within the SLA. The reaction strategy is
only acceptable if violations result in service provider penalties rather than SLA
cancellation. The service provider can decide that it is better to accept violations
in some SLAs to give priority to others based on business impact. Different level
of penalties can be defined in a SLA depending on the specific violation or the
affected QoS metrics. If this possibility is considered, then the SLA framework
must be flexible enough to define these terms. Both of violation strategies are
not exclusive as a service provider could decide to adopt prevention for some
SLAs and even specific QoS metrics while applying reaction for others. Even if
the prevention strategy is applied, not all the situations can be overcome and
a combination of both could be needed or preferred depending on the penalties
applied.

3.3 Mapping SLA Metrics to Measured Metrics

The metrics defined in an SLA can be different from those measured in the
services so that a provider offer service at an appropriate business level for their
customers. In this case the measured metrics must be translated in a way that
can be checked against the SLA. Metric translation applies to both single services
and multiple service instances, however, an additional translation is required for
multiple instances to aggregate measurements of the same metric.

It is also important to have a method for mapping different metrics. There is
previous work in the Semantic Web community that can be reused. Oldham [11]
focused on the negotiation of SLAs combining Semantic Web technologies with
the WS-Agreement standard [12]. In [13] some mechanisms using OpenMath and
Semantic Web ontologies and rules were defined to map QoE to QoS metrics.
Dobson [14] defines a QoS ontology for service centric systems that can represent
the required concepts. Those approaches would be applicable once a suitable
implementation is available. The definition of the mapping between metrics can
be stored in a global repository at the service provider or described in the SLA.

The operations needed to aggregate usage from different service instances
to get the final usage for the whole service depends on the way the metric is
calculated. If every instance performs the calculation of these metrics and send
the information to a central factory which aggregates them, some problems can

Dynamic Service Provisioning Using GRIA SLAs 61

arise when trying to do this aggregation. For example, when using the “average
job time in queue” metric, every service instance could send the individual value
for that metric, but to get a real aggregated value you need to know also the
number of jobs per instance to be able to weight each individual value. On
the other hand, metrics like “number of jobs queued” can be easily computed
by simply adding the individual values coming from the instances. A possible
solution for this aggregation is to defer the calculation of the metrics for all
the instances and doing them in a centralised point (e.g. an SLA management
service).

4 The GRIA SLA Management Service

4.1 Introduction

The GRIA SLA Management Service, developed in the EU IST SIMDAT
Project, performs functions related to the process of agreeing, monitoring and
enforcing an SLA between the customer and the service provider:

1. It provides access to service level agreement “templates” that can be filled
in and submitted by a potential consumer as service level “proposals”;

2. It decides whether to enter into a new service level agreement (with a given
QoS) when proposed by a consumer, and responds accordingly;

3. It decides whether a requested application service “activity” is covered by
an existing service level agreement, and detects when such an activity (even
if covered) would exceed the capacity of the provider;

4. It decides which service level agreement(s) should be breached when capacity
is about to be exceeded, and initiates relevant management actions to resolve
the situation;

5. It tracks the quality of service actually delivered, and initiates charges when
appropriate;

6. It detects when a consumer is exceeding the limits of a service level agree-
ment, and initiates load reductions in the corresponding application ser-
vice(s) to prevent this.

The interactions with the SLA manager are shown in 1. The service manager
(or agent) is responsible for deploying application services and configuring the
SLA service to manage those services. This would be done by composing and
publishing SLA templates appropriate to the particular application services. A
Customer can obtain any of the templates made available to them, fill it in,
and send it to the SLA manager as an SLA proposal. At this point the SLA
manager may accept the request, and start using the proposed SLA to manage
services, or refuse the request. If accepted, the SLA manager will respond with
a WS-Addressing Endpoint Reference (EPR) including a context reference for
the SLA. The Customer must include this reference in the context header for
subsequent requests to the SLA manager related to this SLA.

The application service shown in Figure 3 can be any Web Service that re-
quires management within the context of a procurement process. The interface

62 M. Boniface et al.

Application
Service

SLA
Manager

Service
Manager
Service

Manager

Application
User

Application
User

CustomerCustomer

Proposes SLA Defines SLA templates

Deploys services

Manages
Service

Checks on
Activities

Requests activities

R
ep

or
ts

 u
sa

ge

Fig. 1. Interactions between the GRIA SLA Manager, an application service and other
actors

between an application service and the SLA management service uses the WS-
Trust and WS-Notification standards as well as a small number of custom op-
erations. A developer kit including helper APIs is available to make application
service development easy.

The Application User in Figure 3 interacts with application services provided
under the terms of an SLA. The nature of these interactions obviously depends
on the application service, but in general, the application service will consume
resources in order to respond to the Application User. It should do so only to
the level specified in the SLA, or the service provider resources may become
overloaded and be unable to response to other Application Users to the required
level. The Application User must specify the EPR of the SLA when initiating
an interaction. If the user has no SLA, or specifies an SLA that does not cover
the application service interaction, or to which this user has no access rights,
the application service should reject the interaction.

The application services will ask the SLA manager when they need to check
if the SLA requires them to respond to a user request. The SLA manager will
ask the application service to terminate an interaction if it becomes necessary
to stop the service from consuming resources under a given SLA. In addition,
the application service should report service usage to the SLA manager.

4.2 Metrics

The GRIA SLA Management Service is designed to be very flexible and to
support a wide range of application services. It retrieves usage information from
application services (e.g. job and data services), records the usage and optionally
constrains and/or bills for the usage. Different application services will want to
report usage of different measurable quantities (metrics). For example, a job
service may report usage of CPU but a data service may report usage of disc
space. The SLA service does not understand the meaning of each metric, it just
records usage and acts according to service provider policies when usage exceeds
a constraint (see below).

The use of metrics is recorded in terms of “instantaneous” measurements and
“cumulative” usage. The cumulative usage is the integration of the instanta-
neous measurements over time. For some metrics, data-transfer for example, the

Dynamic Service Provisioning Using GRIA SLAs 63

instantaneous measurement is best thought of as a rate (bytes per second) and
the cumulative usage has no time dimension (bytes). For other metrics, such
as CPU, the instantaneous measurement is just the quantity in use at the time
(e.g. 3 CPUs) and it is the cumulative usage that has the time dimension, e.g.
180 CPU.seconds. The SLA service can convert between the “instantaneous”
measurements and “cumulative” usage e.g.

– If a job runs on 1 CPU for 5 minutes then the SLA service will be notified
that the instantaneous measurement of CPU usage went to 1 at the start and
then to 0 five minutes later. The SLA service can infer that 300 CPU.seconds
of CPU time have been used (1 ∗ 5 ∗ 60 = 300 CPU.seconds).

– If a service reported that it had used 120 units of a resource in a 1 minute
period, the SLA service would infer that the average instantaneous measure-
ment (rate of usage) had been 2 units/s.

All metrics have both instantaneous measurements and cumulative usage
which may be recorded or inferred. For some metrics one or other concept will
not be useful, but the SLA manager has no idea of what it is counting, restricting
or billing for in each metric, and so can cope with either type of measurement
and can always infer one from the other.

4.3 Constraints

Constraints play a major role in GRIAs SLA definitions. An SLA can contain
any number of constraints, each one defining a usage limit that defines the com-
mitment made by the service provider which the consumer is not supposed to
exceed. Each constraint places a limit on a metric (see above), for instance:

– Amount of CPU time ≤ 50 CPU.hours/day
– Amount of disc space ≤ 100 GB
– Number of databases ≤ 3
– Number of simulation timesteps < 100000/week
– Size of mesh < 1000000 elements
– Number of video frames rendered ≤ 1000/day

The first three constraints in this list are self-explanatory and they have a
trivial mapping on to typical service provider resources required to fulfill an SLA.
However, in some situations a client will want to deal with a service provider
in “business terms” (what the client wants to get done) rather than “technical
terms” (what resources are required to do the job). For example, a client who
requires frames of a video to be rendered may prefer to have an SLA that specifies
how many frames of high-definition video they were permitted to render per day,
rather than an SLA that described how many CPUs and how much memory etc
is on offer.

To support this scenario, the concept of “private constraints” has been in-
troduced. A private constraint is treated in the same way as a public (normal)
constraint in every way except that it is not revealed to the customer. They can

64 M. Boniface et al.

be used to hide the technical detail about how the service provider will use its
resources (CPU etc) and expose the business offer of interest to the customer,
e.g. an SLA template could have these constraints:

– A public constraint saying “Number of video frames rendered ≤ 1000/day”.
– A private constraint saying “Amount of CPU time ≤ 50 CPU hours/day”.
– A private constraint saying “Amount of disc space ≤ 100 GB”.

In composing the SLA template, the service provider has had to make a
judgement about what basic resources (CPU, disc) are required to fulfill the
offer of 1000 frames of video per day. All three constraints then go into the
SLA template and the template is published. When the client views the SLA
template though, the private constraints are removed so all the client sees is the
information they are interested in, namely how many frames they will be able to
render. The SLA manager will pay attention to all the constraints though and
will ensure that the service provider has sufficient capacity to meet the CPU and
disc space constraints.

4.4 Pricing Terms

As well as constraining the usage of resources, an SLA can also (optionally)
charge for resource usage. The pricing system in the GRIA SLAs is also flexible.
Firstly, a billing period can be defined and the SLA manager will aggregate
usage over the billing period and place a single aggregated charge onto the users
account at the end of each period. Secondly, a “signing fee” and a “subscription
fee” may be defined. The signing fee is paid up front on agreeing the SLA and the
subscription fee is levied at the end of each billing period. Finally, metric-specific
charges may be defined, either on the cumulative amount of a metric used in the
period (e.g. a charge per CPU second) or on how many times a metric has been
used (e.g. a charge per job executed). These metric-specific charges can also be
augmented with usage thresholds, so for instance pricing terms could be:

– 0.01 $/CPU.second in the range 0-3600 CPU.seconds
– 0.05 $/CPU.second in the range 3600-∞ CPU.seconds.

5 Adopted Solution

The GRIA SLA service is being adapted to meet dynamic provisioning require-
ments in two phases. The first phase is completed and some initial solutions have
been incorporated and are being tested. In the second phase the solution will
be refined, learning from the outputs of the tests being carried out. The main
experiments have been achieved using a service factory and resource factory
(DynaSOAr [15] and Debut [16]) to provision GRIA job and data application
services which provide stateful resources accessed under the terms of an SLA.

The SLA service has been adapted to manage the dynamic deployment sce-
nario while keeping the public SLA terms. In the scenario, users working under

Dynamic Service Provisioning Using GRIA SLAs 65

different SLAs want to create and run jobs. The SLAs being used keep the con-
straints defined in section 4.3, such as “amount of disc space” and the pricing
terms defined in section 4.4. The user only access a single entry point (see sec-
tion 3.1) to request for job creation, but the actual jobs are allocated in different
service instances. This means that the SLA service has now to be able to group
usage monitoring reports coming from the different service instances, e.g. it has
to aggregate the amount of disc space or the amount of CPU time consumed
by the jobs in all the instances. Implementing this strategy was simple due to
GRIA’s WS-Notification [17] based monitoring architecture and the storage of
that information in the SLA usage database located in the SLA service. The
calculation of aggregated values is done using the information retrieved from
SLA usage database.

The SLAs used in the experiment define constraints that must be honoured by
the service provider. This includes constraints to keep the Average Queue Time
and the Average Queue Length of jobs below a threshold during a specified time
period. To manage SLA violations, prevention thresholds (see section 3.2) have
been defined. For the constraint “Average Queue Length < 4”, a private con-
straint has also been specified “Average Queue Length < 2”. A service provider
can then use the SLA constraint to check when an SLA has been violated and
the private constraint to trigger additional deployments to prevent the violation.

To deal with the dynamic deployment and multiple SLAs, we have opted to
associate each instance of the application service with a single SLA: the second
strategy discussed in section 3.1. This means that the requests from different
users in the experiment are directed to different service instances. When the
prevention threshold is exceeded, a decision is taken depending on the manage-
ment actions defined in the SLA service. These actions can trigger a new service
deployment or, if no additional hosts are available, the problem can be escalated
allowing the service provider to prioritise existing commitments based on pre-
dicted penalties. The service provider can suspend or force the undeployment of
a service instance associated to a different SLA that is competing for the CPU or
memory resources. The policies to prioritise SLAs to maximise service provider
revenues are planned to be addressed in the second development phase.

Some metrics reported by service instances need to be mapped to the metrics
defined within the SLA, for example, “average queue length per service”. Each
job service instance reports information about the time when a job starts queuing
and the time when it finishes queuing. The SLA service aggregates these reports
and converting them into the “number of jobs queued per SLA”. Additionally,
there is a second metric coming from the single entry point and providing in-
formation about the “number of job services deployed”. To calculate the SLA
metric these two metrics are combined using the following simple rule:

average queue length per service =
number of jobs queued per SLA
number of job services deployed

This type of conversions has been implemented in the SLA service using a plug-
gable metric architecture (Figure 2). When the SLA manager needs to check a
constraint it queries registered metric handlers to determine how to calculate

66 M. Boniface et al.

SLA Service

Mx My Mz

SLA
Manager

SLA
SLA

SLA

M1 < N

M1 = f(Mx, My)

Measured metrics

Handler M1

Handler M2

Handler M3

Job and Data Service Instances

Service
and

Resource
Factory

uses

Client
SLA Service

Measured metrics

Fig. 2. Mapping measured to SLA metrics

current usage. If no specific metric handler is registered, it assumes that the
metric maps to a measured one and calculates directly the aggregated value
as explained in section 4.2. The definition of the metric translation using an
adapted XML language or ontology is being evaluated for the second phase of
development.

6 Conclusion

In this paper we have described strategies that allow service providers to use
dynamic service provisioning with Service Level Agreements (SLAs) to max-
imise resource utilisation. Various issues have been discussed that impact service
provider provisioning decisions. These issues have driven enhancements to the
GRIA SLA management service allowing a wide range of application services to
be dynamically deployed. We have shown that the adopted solution has been
able to address most of the challenges presented in section 3 in a simple way.
However, additional work needs to be done to define the business policies to
prioritise SLAs and to work with competing QoS objectives. The final enhanced
GRIA infrastructure will be used as a component within the UK DTI CRISP
project to explore how inter-enterprise infrastructure can support engineering
application service provision. The current implementation is being evaluated by
industrial users to determine the impact such technology can have on improving
their ability to design and develop complex products and services.

Acknowledgments. SIMDAT has received research funding from the Euro-
pean Commission under the Information Society Technologies Programme(IST),
contract number IST-2004-511438.

CRISP has received research funding from the UK DTI under the technology
programme, DTI project number TP/2/IC/6/S/10044.

References

1. Snelling, D., Fisher, M., Basermann, A., Wray, F., Wieder, P., Surridge, M.:
NextGRID Vision and Architecture White Paper V5, http://www.nextgrid.org/
download/publications/NextGRID Architecture White Paper.pdf

http://www.nextgrid.org/download/publications/NextGRID_Architecture_White_Paper.pdf
http://www.nextgrid.org/download/publications/NextGRID_Architecture_White_Paper.pdf

Dynamic Service Provisioning Using GRIA SLAs 67

2. McKee, P., Taylor, S., Surridge, M., Lowe, R., Ragusa, C.: Strategies for the service
market place. In: Veit, D.J., Altmann, J. (eds.) GECON 2007. LNCS, vol. 4685,
pp. 58–70. Springer, Heidelberg (2007)

3. EU IST SIMDAT Project, http://www.simdat.org
4. Boniface, M., Phillips, S.C., Surridge, M.: Grid-Based Business Partnerships us-

ing Service Level Agreements. In: Proc. of Cracow Grid Workshop 2006, Cracow,
Poland (2006)

5. Buyya, R., Abramson, D., Venugopal, S.: The grid economy. Proceedings of the
IEEE 93(3), 698–714 (2005)

6. Czajkowski, K., Foster, I., Kesselman, C.: Agreement-Based Resource Manage-
ment. Proceedings of the IEEE 93(3), 631–643 (2005)

7. Yeo, C.S., Buyya, R.: Service Level Agreement based Allocation of Cluster Re-
sources: Handling Penalty to Enhance Utility. In: Proc. of the 7th IEEE Interna-
tional Conference on Cluster Computing (Cluster 2005). IEEE Computer Society,
Los Alamitos (2005)

8. Comuzzi, M., Pernici, B.: An architecture for Flexible Web Service QoS Negotia-
tion. In: Proc. of the 9th IEEE International EDOC Enterprise Computing Con-
ference (EDOC 2005), pp. 70–82. IEEE Computer Society, Washington (2005)

9. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic Provisioning Of Multi-
Tier Internet Applications. In: Proc. of the 2nd IEEE International Conference on
Autonomic Computing, pp. 217–228. IEEE Computer Society, Washington (2005)

10. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H.,
Polan, M., Spreitzer, M., Youssef, A.: Web services on demand: WSLA-driven
automated management. IBM Systems Journal 43(1), 136–158 (2004)

11. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-agreement part-
ner selection. In: Proc. of the 15th International Conference on World Wide Web,
WWW 2006, pp. 697–706. ACM Press, New York (2006)

12. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Kakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specifica-
tion (WS-Agreement) GFD 107 Recommendation. Open Grid Forum (2007)

13. Sánchez-Macián, A., López, D., López de Vergara, J.E., Pastor, E.: Framework
for the Automatic Calculation of Quality of Experience in Telematic Services. In:
Proc. of the 13th HP-OVUA Workshop, Côte d’Azur, France (2006)

14. Dobson, G., Russell, L., Sommerville, I.: QoSOnt: a QoS Ontology for Service-
Centric Systems. In: Proc. of the 31st Euromicro conference on Software Engineer-
ing and Advanced Applications, pp. 80–87. IEEE Computer Society, Washington
(2005)

15. Watson, P., Fowler, C.P., Kubicek, C., et al.: Dynamically Deploying Web Services
on a Grid using Dynasoar. In: Proc. of the 9th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing, Gyeongju,
Korea, pp. 151–158. IEEE Computer Society Press, Washington (2006)

16. Belfast e-Science Centre, www.besc.ac.uk
17. WS-Notification, http://docs.oasis-open.org/wsn/

wsn-ws base notification-1.3-spec-os.htm
18. Chhetri, M.B., Lin, J., Goh, S., Zhang, J.Y., Kowalczyk, R., Yan, J.: A Coordi-

nated Architecture for the Agent-based Service Level Agreement Negotiation of
Web Service Composition. In: Proc. of the 2006 Australian Software Engineer-
ing Conference (ASWEC 2006), pp. 90–99. IEEE Computer Society, Washington
(2006)

http://www.simdat.org
www.besc.ac.uk
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.htm
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.htm

	Dynamic Service Provisioning Using GRIA SLAs
	Introduction
	Web Service Management with SLAs
	Issues in Managing Dynamic Provisioning and SLAs
	Management of Multiple Services and Multiple SLAs
	Strategies to Manage SLA Violations
	Mapping SLA Metrics to Measured Metrics

	The GRIA SLA Management Service
	Introduction
	Metrics
	Constraints
	Pricing Terms

	Adopted Solution
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

