
E. Di Nitto and M. Ripeanu (Eds.): ICSOC 2007 Workshops, LNCS 4907, pp. 295–303, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Business-Level Service Model Supporting End-User
Customization*

Jianwu Wang1,2 and Jian Yu1

1 Software Engineering Research Group, Dept. of Control and Computer Engineering,
Politecnico di Torino, 10129, Torino, Italy

2 Research Centre for Grid and Service Computing, Institute of Computing Technology,
Chinese Academy of Sciences, 100080, Beijing, China

{jianwu.wang,jian.yu}@polito.it

Abstract. If end users can utilize the abundant Web services to construct busi-
ness applications on demand and independently, the ever changing business re-
quirements will be met efficiently and timely. However, Web services are
difficult for end users to use directly due to both the diversity of Web services
and the diversity of end-user requirements. To tackle the problem, we introduce
feature modeling and configuring techniques in domain engineering into ser-
vice-oriented computing, and correspondingly propose a business-level service
model and an end-user friendly service customization mechanism. Feasibility of
the proposals is demonstrated on an example.

Keywords: Domain-Specific Reuse, Business-Level Service Model, Service
Customization, End-User Friendly, Variability-Supported Service Matching.

1 Introduction

Nowadays, business requirements are ever changing in many business domains, such
as scientific research, government and commence, which requires information sys-
tems to be integrated on demand to handle the requirements in a just-in-time manner.
With the gradual popularity of service-oriented computing technologies, there are
more and more Web services available on the Internet. In the bioinformatics domain,
for instance, the number of Web services has added up to over 3000 [1]. If end users
can utilize these services to construct business applications on demand and independ-
ently, the ever changing business requirements will be met efficiently and timely.
However, Web services are difficult for end users to use directly due to both the di-
versity of Web services and the diversity of end-user requirements.

To alleviate the above problem, we propose a business-level service approach (named
VINCA Business Service Approach) based on our previous work [2, 3]. The approach
consists of a business-level service model (named VINCA Business Service Model) with
end-user friendliness and domain-specific reusability, and a corresponding service

* This research was supported by National Natural Science Foundation of China (No.

60573117).

296 J. Wang and J. Yu

modeling and reusing mechanism. This approach can facilitate end users to construct on
demand business applications timely by themselves.

The service model and the corresponding service customization mechanism will be
discussed in this paper. The rest of the paper is organized as follows. In Section 2, we
present a motivating example. In Section 3, the service model is explored in detail.
Then, the corresponding service customization mechanism is discussed in Section 4.
Section 5 compares with related work. Finally, we draw a conclusion and briefly state
our future work.

2 Motivating Example

We will use a simplified example from the weather service domain throughout the
paper (see Fig. 1). There are over 15 Web services (including 179 independent opera-
tions)2 providing weather forecast on the Internet. When the number of Web services
with similar functionality is huge, it is very difficult for end users to directly select
proper services and reuse them.

We can then split the problem into two parts:

Fig. 1. Two levels of service usage in service-oriented environments

1) Similarity and diversity of end-user requirements: As shown in Fig.1, Req1 and
Req2 are two similar yet different service requirements of end users. For instance,
wind speed information is mandatory in Req1 but not in Req2; the preferred ways to
describe location are also different. A key problem at the service requirement level is
how to facilitate end users to describe their requirements in a certain business domain
where end-user requirements are similar yet diverse.

2) Similarity and diversity of Web services: Also as shown in Fig.1, WS1 and WS2
are two similar yet different Web services. For instance, their input parameters for
location are different; moreover, WS2 has an additional output: wind speed. A key
problem at the Web service level is how to optimize the matching between service
requirements and executable Web services in a service-oriented environment where

2 An incomplete list can be found at from http://softeng.polito.it/wang/domainservice/
 WeatherForecastWSList.html.

 A Business-Level Service Model Supporting End-User Customization 297

Web services are abundant yet diverse in capability (namely Input, Output, Precondi-
tion, Effect and QoS).

3 VINCA Business Service Model

To tackle the above problems, we propose VINCA business service approach (Fig. 2).
As the core of the approach, VINCA business service model (or business service for
short) will be explained in detail through the following three subsections: principle,
components, and matching with Web services.

Fig. 2. The overview of VINCA business service approach

3.1 The Principle of VINCA Business Service Model

The principle of business service model can be summarized into two main aspects:

End-User Friendliness: Web services are usually utilized by end users to perform
certain domain-specific business activities [4]. So each business service is modeled as
an independent and executable business activity by combining top-down domain-
specific activity modeling and bottom-up Web service abstraction. From real project
experiences, we summarize business activity requirements into four typical catego-
ries: business activity looking-up, customization, composition and execution. To meet
these typical requirements, business service is modeled in a layered fashion, so that
end users can utilize business services through unfolding the corresponding layer
according to the type of their requirements.

Domain-Specific Reusability: Domain-specific reuse is an efficient reuse mecha-
nism which has been successfully applied in domain engineering [5, 6]. One of its
core mechanisms is modeling commonalities and variabilities within a certain do-
main. In service-oriented environments, the commonalities and variabilities are repre-
sented as similar yet diverse business activity requirements (a.k.a. service
requirements) at the business level, and similar yet diverse Web services at the IT

298 J. Wang and J. Yu

level (see Fig.1). So they are modeled at both the business level and the IT level in
business service model. Then we can get domain-specific reusable business services
(called domain business services) bound with proper Web services, which can facili-
tate end users to describe personalized requirements and utilize bound Web services
transparently.

3.2 The Components of VINCA Business Service Model

Following the thought of “separation of concerns”, business service is modeled as
layers and formed an iceberg (shown in Fig. 2.). Firstly, business related and IT re-
lated information of the model is separated. Secondly, business related information is
separated further according to its functionalities. The upper three layers depict busi-
ness related information, which are presented to end users and correspond to the busi-
ness activity looking-up, customization and composition requirements respectively.
The bottom layer depicts IT related information, which is presented to IT profession-
als and corresponds to the business activity execution requirement.

Fig. 3. The iceberg model of VINCA business service

 Representation Layer

This layer depicts the basic function of business activities, which is the basic informa-
tion for end users to choose business services. Each business activity can be simply
represented as two basic parts: action and entity (namely object of action) [7, 8]. So
we abstract business activities as combinations of action and entity in the representa-
tion layer which is used as the fundamental information to depict and differentiate
business activities. Business service names also usually adopt a form of “action +
entity” (such as Enquiry Route) or “entity + action” (such as Weather Forecast).

 Customization Layer

This layer depicts the detailed business properties of business activities, which is for
end users to describe their personalized requirements. Feature modeling techniques
has been widely applied in domain engineering to depict business properties of appli-
cations within a certain domain [7, 8]. From feature models, end users will know
whether an application can meet their requirements, and describe their personalized

 A Business-Level Service Model Supporting End-User Customization 299

requirements through feature configuration. So we employ feature modeling tech-
niques in the customization layer, which can facilitate end users to know the detailed
business properties of business activities and describe their personalized business
activity requirements.

 Composition Layer

This layer depicts the capability information of business activities, which is for end
users to compose services at the business level [2, 9]. Referring to the way of OWL-S
semantic Web service model [10], the composition layer depicts service capabilities
as input, output, precondition, effect and QoS. Moreover, the capability information
can also be used to match Web services.

 Implementation Layer

This layer depicts the information of bound Web services that perform business ac-
tivities. Then Web services can be selected and invoked when the business service is
executed. Concretely, the WSDL file information of bound Web services is recorded
in the implementation layer.

It is worth noting that the information in the customization layer and the composi-
tion layer can be seen as the same information depicted from two perspectives: busi-
ness property and capability. On one hand, business services interact with end users
through their business properties; on the other hand, business services match and bind
Web services through their capabilities. So the business property and capability can
be correlated to realize the selection and invocation of Web services according to end-
user requirements. We depict the correlation by specifying these features’ functional-
ities in capability, namely which features in the customization layer will be used in
input, output, precondition, effect and QoS in the composition layer.

Fig. 4. Business related information of weatherforecast business service

300 J. Wang and J. Yu

For the examples and problems presented in Section 2, a domain business service
in the weather service domain, WeatherForecast, is modeled, whose business related
information is shown in Fig. 4 (precondition and effect of the service is omitted here).
Since the weather location is typically described as zip code or location name, but not
both, so they are modeled as two sub features of location, and the feature type is
XOR. Wind speed is an additional property for typical weather forecast, so it is not
included in WeatherForecast.

Following the above mechanism, the commonalities and variabilities of services
can be modeled by feature modeling techniques in both the customization layer and
the composition layer. Then business service model can adapt to the diversity of end
user requirements and the capability diversity of Web services respectively. The
commonalities and variabilities modeled in the customization layer can facilitate end
users to understand and customize services, and those modeled in the composition
layer can support the matching with Web services that may have diverse capabilities.

3.3 Matching between Business Services and Web Services

Web services are needed for business service execution, so a semantic and variability-
supported service matching mechanism is proposed to realize automatically binding
between one business service and proper Web services with diverse capabilities. The
mechanism has the following two advantages compared to related semantic service
matching mechanisms [10, 11, 12]. Concrete service matching mechanism is omitted
for the space limitation.

1) Variability Supported: Feature modeling techniques are adopted in business ser-
vice model so that each business service may has many possible capabilities. If a Web
service can match one possible capability of a certain business service, it can be
bound to the business service.

2) Additional Property Allowed: Business services represent typical domain spe-
cific business activities, but Web services are provided independently and then may
have additional business properties. For example, typical properties of weather fore-
cast only include sky condition, max temperature and min temperature, but independ-
ent Web services may have additional properties, such as wind speed. To adapt to this
characteristic, Web services with additional business properties can also be bound to
the corresponding business services.

For the example of weather forecast, the capability information of WS1 and WS2
belongs to the possible capabilities of WeatherForecast, so both of them can match
WeatherForecast. Then the capability diversity of underlying Web services is hidden
from end users. Moreover, the business service information that presented to end
users is independent of the changes of Web services.

4 End-User Friendly Service Customization

As shown in Fig. 2, domain business services are modeled by domain experts in ad-
vance for reuse. Yet there are always slight differences between pre-modeled business
services with personalized end-user requirements. Since end users know their re-
quirements well, so we present a service customization mechanism to facilitate end

 A Business-Level Service Model Supporting End-User Customization 301

users to describe their personalized requirements by themselves on the base of reusing
proper domain business services. Note that the service customization mechanism is
only to meet single service requirements; complex requirements can be met through
the composition of customized services, which is beyond the scope of this paper.

Three categories of customization operations are proposed for end users to
customize:

 Adding New Features
If an end-user requirement has more business property demands than the business

properties of a certain domain business service, the end user can specify this require-
ment by adding additional features in the customization layer of the business service,
such as adding a new mandatory sub feature to an existing feature.

 Deleting Existing Features
If an end-user requirement only has partial business properties of a certain domain

business service, the end user can specify this requirement by deleting additional
features in the customization layer of the business service, such as deleting an existing
mandatory sub feature of an existing feature.

 Configuring Existing Features
If an end-user requirement belongs to the business property variability (namely the

range of possible business properties) of a certain domain business service, the end
user can specify this requirement by configuring features in the customization layer of
the business service, such as choosing one or more sub features of an OR feature.

To perform personalized requirements of end users, proper Web services should be
selected according to the service customization results. While end users customize a
business service in its customization layer, its composition layer is also changed cor-
respondingly through the correlation of the two layers. With the service matching
mechanism presented in Section 3, the capability information in the composition layer
can be used to match and get proper Web services meeting the end-user requirements.
The above customization operations only involve business related information of
business services, so they can be easily used by end users.

For the example of weather forecast, end users can describe their personalized
weather forecast requirements by customizing the domain business service: Weather-
Forecast. For Req1 in Fig.1, the end user need to choose the location name sub fea-
ture of the location feature, and add wind speed as a new feature of weather in the
customization layer of WeatherForecast. In the composition layer of WeatherFore-
cast, the location input parameter will be automatically specified as location name,
and wind speed feature should be manually specified as an output parameter for it is a
new feature. Of WS1 and WS2, only WS2 can match the customization result accord-
ing to the matching mechanism in Section 3. Then WS2 can be executed to satisfy the
personalized requirement.

5 Related Work

In this section, we will discuss two areas of related work: service model and service
customization.

Service Model: Many service models (and service matching mechanisms) have been
proposed to abstract Web services with similar capabilities and then simplify service

302 J. Wang and J. Yu

usage [10, 11, 12, 13]. But they consider little about the capability diversity of dy-
namic and independent Web services. So either there are too many abstract services
for end users to select and use, or there are many Web services that can not automati-
cally match abstract services. In VINCA business service model, the commonalities
and variabilities of services are modeled, then not only the number of business ser-
vices can be kept in a minor range, but also most of Web services can match business
services.

Service Customization: Recently, some effort has been put into importing feature
modeling in service-oriented computing. In [14], each feature represents a service
operation, which can support operation variabilities in similar systems. Feature
modeling is also used to express non-functional properties of services [15, 16] and
implement techniques [17]. Customization on these aspects can be realized through
feature configuration, yet they do not discuss the concrete customization mechanism,
such as customization operations. Moreover, none of these works deal with the
service capability variability, which is a main difficulty for end users to directly select
Web services. In VINCA business service model, features are used to depict business
properties and capabilities of services, and three categories of customization opera-
tions are provided. Corresponding service matching mechanism is also proposed to
select suitable Web services according to the customization results.

6 Conclusion and Future Work

Service abstraction is necessary and valuable to facilitate on demand Web service
usage. Hereinto, the diversity of similar Web services and the diversity of similar
service requirements are two important factors need to be considered. In this paper,
feature modeling and configuring techniques in domain engineering are introduced
into service model and customization to adapt to the diversity of similar service re-
quirements and the capability diversity of similar Web services, which obtain a busi-
ness-level service model and an end-user friendly service customization mechanism.

For future work, since the diversity of real Web services and service requirements
is very complicated, we are extending our model to have more expressive power, such
as feature constraints. Moreover, more and in-depth empirical experiments will be
made to obtain evidence, which can testify the advantages of our work.

References

1. Hull, D., Zolin, E., et al.: Deciding Semantic Matching of Stateless Services. In: 21st Na-
tional Conference on Artificial Intelligence and 18th Innovative Applications of Artificial
Intelligence Conference (AAAI 2006), pp. 1319–1324 (2006)

2. Han, Y., Geng, H., Li, H., Xiong, J., Li, G., Holtkamp, B., Gartmann, R., Wagner, R.,
Weißenberg, N.: VINCA – A visual and personalized business-level composition language
for chaining web-based services. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P.,
Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 165–177. Springer, Heidelberg (2003)

 A Business-Level Service Model Supporting End-User Customization 303

3. Wang, J., Yu, J., et al.: A Service Modeling Approach with Business-Level Reusability
and Extensibility. In: 1st IEEE International Workshop on Service-Oriented System Engi-
neering (SOSE 2005), pp. 23–28 (2005)

4. Baida, Z., Gordijn, J., et al.: A Shared Service Terminology for Online Service Provision-
ing. In: 6th International Conference on Electronic Commerce (ICEC 2004), pp. 1–10
(2004)

5. Kang, K.C., Cohen, S.G., et al.: Feature-Oriented Domain Analysis Feasibility Study.
Technical Report: SEI-90-TR-21. Pittsburgh, Software Engineering Institute, Carnegie
Mellon University (1990)

6. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and Applica-
tions. Addison-Wesley, New York (2000)

7. Arisha, K., Kraus, S., et al.: Impact: A Platform for Collaborating Agents. IEEE Intelligent
Systems 14(2), 64–72 (1999)

8. Ikeda, M., Seta, K., et al.: Task Ontology: Ontology for Building Conceptual Problem
Solving Models. In: 13th European Conference on Artificial Intelligence (ECAI 1998),
Brighton, England (1998)

9. Yu, J., Wang, J., et al.: Developing End-User Programmable Service-Oriented Applica-
tions with VINCA. In: Workshop on Web Logistics (2004)

10. Martin, D., Paolucci, M., McIlraith, S.A., Burstein, M., McDermott, D., McGuinness,
D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.P.: Bring-
ing semantics to web services: The OWL-S approach. In: Cardoso, J., Sheth, A.P. (eds.)
SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg (2005)

11. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web ser-
vices capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp.
333–347. Springer, Heidelberg (2002)

12. Tan, Y., Vellanki, V., et al.: Service Domains. IBM Sytems Journal 43(4), 734–755 (2004)
13. Benatallah, B., Sheng, Q., et al.: The Self-Serv Environment for Web Services Composi-

tion. IEEE Internet Computing 7(1), 40–48 (2003)
14. Chen, F., Li, S., et al.: Feature Analysis for Service-Oriented Reengineering. In: 12th Asia-

Pacific Software Engineering Conference (APSEC 2005), pp. 201–208 (2005)
15. Wada, H., Suzuki, J., et al.: A Feature Modeling Support for Non-Functional Constraints

in Service Oriented Architecture. In: 2007 IEEE Int. Conf. on Services Computing (SCC
2007), pp. 187–195 (2007)

16. Fantinato, M., de S. Gimenes, I.M., de Toledo, M.B.F.: Supporting QoS Negotiation with
Feature Modeling. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 429–434. Springer, Heidelberg (2007)

17. Robak, S., Franczyk, B.: Modeling web services variability with feature diagrams. In:
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS,
vol. 2593, pp. 120–128. Springer, Heidelberg (2003)

	A Business-Level Service Model Supporting End-User Customization
	Introduction
	Motivating Example
	VINCA Business Service Model
	The Principle of VINCA Business Service Model
	The Components of VINCA Business Service Model
	Matching between Business Services and Web Services

	End-User Friendly Service Customization
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

