
Dealing with Active and Stateful Services in the
Service-Oriented Architecture�

Haldor Samset and Rolv Bræk

Department of Telematics, NTNU,
N-7491 Trondheim, Norway

{haldors,rolv}@item.ntnu.no
http://www.item.ntnu.no

Abstract. Services in SOA are typically considered to be of passive
nature, providing functionality that solely execute upon invocation. Ad-
ditionally, stateless services are commonly advocated as a modeling prin-
ciple of todays SOA style.This paper argues that services could be of an
active nature, and that services often involve sessions with stateful be-
havior. We suggest an approach for modeling active and stateful services ,
using UML 2 Collaborations and state machines. This forms a behavioral
contract, and separates the modeling of service logic from the service im-
plementation, allowing for validating the asserted service behavior using
a model checker.

Keywords: Service-oriented architecture, service modeling, colla-
boration-based, stateless, stateful, behavioral contract.

1 Introduction

With its raising popularity, the Service-oriented Architecture (SOA) approach
has started to find its way into to the telecom domain. Traditionally, software
engineers within the telecom domain have applied the abstraction of communi-
cating state machines as the basis for modeling of communication systems and
services. This has helped considerably to manage their inherent complexities.
In the information systems domain, where focus has been more on computation
and retrieval of data, procedure calls have formed the main behavioral abstrac-
tion. Now that the two domains are merging one may ask if these differences
are fundamental or accidental? We believe there is a fundamental difference be-
tween passive services and active services, i.e. services with active behavior that
takes initiative towards the service user. Such services are typical for the telecom
domain. This is due to the fact that they involve several active users that may
take initiatives towards each other, and also that behavior is time dependent.
Notification and push services are also active. The most challenging situation
occurs when the service and the user may take mutual initiatives.

� This paper is partly supported by the SPICE project, IST Contract No. 027617.

E. Di Nitto and M. Ripeanu (Eds.): ICSOC 2007 Workshops, LNCS 4907, pp. 268–281, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.item.ntnu.no

Dealing with Active and Stateful Services in SOA 269

2 Service-Oriented Architecture

The service-oriented architecture (SOA) is essentially an architectural style where
program functionality is logically organized into services that are universally ac-
cessible through well-defined interfaces, supported by mechanisms to publish and
discover the available functionality and the means of communicating with the ser-
vice. Ideally, a service should provide a rather self-sufficient piece of functionality
applicable within a particular context. The organization of functionality into ser-
vices is meant to give rise to a larger degree of functionality reuse. This is achieved
by keeping service interfaces independent from functionality implementations, and
by enabling universal access and keeping them independent from other service
interfaces.

Contemporary1 SOAs have primarily been client-server oriented, with clients
making synchronous calls to operations provided by a server. Although there
is some movement towards using asynchronous events with the emergence of
“advanced SOA”2 [13], symmetrical asynchronous communication between peers
seems to be the exception rather than the rule.

2.1 Principles in the Service-Oriented Architecture

An architectural style include some principles or rules that guide and con-
strain the construction of systems according to the architecture. For SOA, these
principles are related to the concept of service-orientation. While there is no
common agreement on exactly what these principles are, the “four tenets of
service-orientation” by Don Box of Microsoft [1] are commonly cited in the
SOA community. The four tenets are stated below in bold, followed by a short
explanation.

Boundaries are explicit. Services are geographically separated, developed by
different organizations, run in a variety of execution environments etc. All
these distributions bring some aspect of boundaries, and the potential cost
of crossing these should be explicit. The notion of boundaries also applies
to the service modeling itself, where the size and complexity of abstractions
shared between services should be kept to a minimum.

Services are autonomous, in the sense that they are independent, both as
deployable units and as self-governing entities. There is no central controlling
entity in a service-oriented system, rather services are responsible for their
own behavior.

Services share schema and contract, not class. Unlike the combination of
structure and behavior in the class construct of object-orientation, service
interaction is based on the concepts of schema and contract. The contract
describes the structure and ordering constraints of the messages belonging
to the service, and the schema describes the conceptual data manipulated.

1 As Erl[4], we use contemporary SOA to refer to the typical WSDL- and Web Services-
based service-oriented architectures usual in the industry today.

2 Or “SOA 2.0” which seems to be a popular, but somewhat misleading term as there
is no version numbers or standardization as such of SOA.

270 H. Samset and R. Bræk

Service compatibility is based upon policy. According to [1], structural
and semantic compatibility is often confused in object-oriented design. Struc-
tural compatibility in service-orientation is based on schema and contract,
while semantic compatibility is based on policies, stating the conditions and
assertions for the desired service behavior. Service Level Agreements (SLAs)
would typically be part of such policies.

3 Passive and Active Services

Telecom architectures are characterized by peer-to-peer services with multi-way
initiatives[6], as opposed to the client-server, one-way initiatives of contemporary
SOA services. Our notion of active services is an attempt to broaden the SOA
service concept to incorporate these characteristics.

3.1 Passive Services

We consider services in contemporary SOAs to be passive in the sense that the
functionality they provide is considered to be executed solely upon invocation.
In this context, the term service request is typically applied to describe the
invocation of an operation available in a declared interface of a service. The
service concept in SOA has grown out of the Web Service technology, and is
tightly tied to the concept of interface as declared by WSDL [12], which is
restricted to describing the static invocation details of interfaces. In this sense,
the client-server paradigm of HTTP pervades the service model of SOA.

StockQuote

client

server
:StockQuoteWS

GetStockQuote

Fig. 1. StockQuote Web Service collaboration

If we view a typical HTTP Web Service in the light of UML 2 Collaborations
[15,23], we see that such a service is the collaboration between a client and a
server. Only the server role is described in any detail (by being typed by an
interface), while the client role remains anonymous. Figure 1 shows the classic
StockQuote Web Service depicted as a collaboration, with the server role typed
by the StockQuoteWS interface. The only active part in the collaboration is
the client role, invoking the provided operations on the server. Interactions are
thereby limited to initiatives in one direction only.

Dealing with Active and Stateful Services in SOA 271

3.2 Active Services

A rich class of services are of an active nature, in the sense that their functional-
ity is not only invoked by an client, but is active behavior that may take initiative
towards the client, seemingly on their own. The classic telephone service is a good
case in point as a user may both initiate and receive calls. Likewise, the numer-
ous scenarios describing advanced context-aware services performing proactive
behavior exemplify active service functionality that is not inherently passive.
In general, services involving several active participants (humans or devices)
that may take independent initiatives to interact are of an active nature. Active
objects with concurrent behavior do not communicate well by synchronous invo-
cation, since this involves transfer of control, and blocking behavior[6]. Some sort
of asynchronous communication mechanisms such as signal sending or messaging
is most convenient for active service interactions.

The participants of active services cannot well be classified as “clients” or
“servers”, and thus they do not fit naturally into the client-server paradigm of
contemporary SOA. It is possible to design workarounds for this mismatch, but
they are artificial and invariably add complexity for the service design.

4 Services and State

In the SOA literature one frequently encounters the statement that services
should be stateless. Erl, for instance, lists this among his service-orientation prin-
ciples in [4]. This statement is routinely justified by referring to the stateless
nature of the HTTP protocol, demonstrating the common assumption of SOA
as a direct derivative of the Web Service model. A service could be viewed as
completely stateless if all operations declared by that service could be invoked at
any time, providing the same result regardless of any invocation order. But more
often than not, an order in which the operations should be invoked exists - like
when parameters of an operation need values obtained by an earlier invocation
of another operation. Hence, a service is usually not entirely stateless.

However, states are mostly relevant for individual service sessions. In many
SOA applications, each interface handles many concurrent sessions. This reflects
itself in the typical conversation-identification parameters of contemporary SOA
services, revealing the occurrence of a session beneath the surface. Although
each session may be state dependent, the interface definitions may appear to
be stateless, while in reality they just hide the sessions and their states. For
instance, in many cases a client has to authenticate and authorize itself against a
provided service, and a session identification has to be carried in all subsequent
service requests. If the client fails to initiate a new request within a certain
timeframe, the session will be invalidated and further requests rejected until
new authentication and authorization is obtained. Since it is the stateful session
behavior that really matters for clients, it should be represented clearly to handle
the complexities in a controlled way. We therefore argue for enabling explicit
modeling of individual service sessions and their behavior. If this happens to be

272 H. Samset and R. Bræk

stateless, so much the better. If it is stateful, it should be made explicit as this
is essential to validate interfaces and manage service composition.

People tend to worry about solutions being stateful, and their main concerns
are usually related to performance. The rather simplistic view that stateless so-
lutions scale and stateful does not, leads many to believe that the notion of
state should be avoided. This is not true, there are no performance problems
associated with states, as it is demonstrated by existing high performance com-
munication software. There is no problem today to automatically generate such
software for state machine models [3].

The question is not whether to treat states, but how and where. In contempo-
rary SOAs state is not treated explicitly, but rather hidden in the implementation
details of services and their consumers. We contend that one is better off dealing
with stateful behavior as explicitly as possible. This can be achieved by modeling
the stateful behavior separately from the implementation, and defining a precise
mapping from the model to the implementation.

5 Modeling Active Services in SOA

So how do we model our active services while still aligning ourselves with the
service-oriented architecture style? A central point in SOA is the notion that
services are requested and provided. The terms requestor and provider are often
applied when talking about the entities that respectively request and provide
services [4,5]. (OASIS, on the other hand, uses service consumer and service
provider in its reference model [14]). These terms are usually assumed to relate
to the client and server roles in the client-server communication paradigm.

In contrast to the common view in contemporary SOA, we focus on the col-
laborative nature of services. Even in the simple case where the functionality
of a service is a mere computation or information lookup, both the component
requesting the computation and the component performing the computation are
involved in the execution of the service in our view. We regard a service as an
identified (partial) functionality, provided by a system, component, or facility,
to serve a purpose for its environment [2]. Hence, we maintain the idea that
services are something that are provided, while still allowing for modeling ser-
vices as a compromise of several collaborating entities. Consequently, we focus
on describing the actual collaboration of these entities, in other words the in-
teractions between the collaborating entities. We believe that this is where the
main complexity of the service design task resides.

We choose to keep the terms requestor and provider as the identified roles
in a service in the context of SOA, but we dispose of the imposed client-server
relationship. Accordingly, we view a service in SOA as the collaboration between
two entities that are equal peers when it comes to the ability to take initiative
(a composite service may involve more than two entities, but this is outside the
scope of this paper). The roles requestor and provider describe the characteris-
tics that the entities must possess to take part in this collaboration. With the
client-server relationship exchanged for a peer-to-peer paradigm, it may seem

Dealing with Active and Stateful Services in SOA 273

that the names requestor and provider have no significance. However, the role
names do imply a difference. The requestor role describes the entity that takes
the very first initiative of the service, in other words the entity that is in need of a
certain functionality. The provider role correspondingly represents the behavior
of the entity providing the requested functionality. Provider role implementa-
tions would most likely be the targets of lookup and discovery, like the provided
services in contemporary SOA.

5.1 Modeling with UML 2 Collaborations

The new Collaboration concept introduced with UML 2.0[15] provides us with
a suiting modeling element for our service notion. By being both a structural
and behavioral classifier, it fits well for modeling the collaboration between a
requestor role and a provider role. The signals a role should be able to receive, as
well as which signals it should be allowed to send, are of interest when describing
the service behavior. A CollaborationRole in UML 2 Collaborations can be typed
with an interface, so we type roles with interfaces describing the possible signal
receptions in order to constrain the reception. The constraint on possible signal
sending from a role is given by the possible receptions defined by the other role in
the collaboration. But this is only the static communication details, we also want
to describe the exact interaction protocol. For this we choose to model the visible
behavior of each role using state machines. The state machine model is a UML
2 state machine limited to simple triggers on events of type SendSignalEvent or
ReceiveSignalEvent. A role state machine then describes the different possibilities
of behavior allowed by a role in different states - it can either receive or send
signals.

We have defined a UML profile for modeling active SOA services with UML
Collaborations. Figure 2 shows the stereotypes which is the core of this profile.

The BasicService stereotype is a Collaboration with two collaboration roles,
named requestor and provider. We decided against naming it ActiceService, since
the stereotype is more general and could be used to model both active and passive
services. In the latter case, all initiatives would taken by the requestor role,
but this would not demand a separate stereotype. The name BasicService also
indicates that we foresee a stereotype for composite services at a later stage, with
more than two roles involved. A BasicService has two ServiceRoleStateMachines,
describing the (visible) behavior of the requestor and provider roles.

We impose the following restrictions on the stereotypes in Figure 2:

1. A transition in a ServiceRoleStateMachine must be a ServiceRoleTransition,
2. The trigger of a ServiceRoleTransition is limited to events of type SendSig-

nalEvent or ReceiveSignalEvent. This restricts the transitions to model only
the sending or reception of a Signal. Timeouts are to be notified using signals
representing the timeout events.

3. A ServiceRoleTransition can not specify any constraints; there may be no
guards, preconditions and postconditions.

274 H. Samset and R. Bræk

StateMachine
(from BehaviorStateMachines)

<<stereotype>>

ServiceRoleStateMachine
<<extends>>

Collaboration
(from Collaborations)

<<extends>>

Transition
(from BehaviorStateMachines)

<<stereotype>>

ServiceRoleTransition
<<extends>>

requestor: ServiceRoleStateMachine
provider: ServiceRoleStateMachine

<<stereotype>>

BasicService

Fig. 2. Profile

4. The only PseduoStateKind allowed is initial, and there must be exactly one.
5. A ServiceRoleStateMachine must have exactly one region with one initial

state.

5.2 Example

Let us consider an example inspired by the Short Messaging Service (SMS) func-
tionality exposed by the Parlay X specification [7]. Even though not primarily
designed for SOA, this standard is intended to make telecom functionality like
the SMS and call control available for 3rd party applications produced by non-
telecom developers. It does so by specifying a collection of Web Services that is
typical in a contemporary SOA.

One of the Web Services described by the Parlay X specification is the SmsNo-
tification service. Its purpose is to provide other components with the ability to
receive incoming SMS messages from the network. A short number (or a keyword
combination for a short number) is reserved and registered with the operator
prior to using the service. A component that wants to utilize this functionality
must implement the Web Service specified by the SmsNotification interface. In
addition it has to provide the URL of the Web Service, together with the crite-
ria for notification to the Parlay X server, in advance. Related to this service,
the SmsNotificationManager Web Service allows components that receive SMS
messages via SmsNotification to start and stop the delivery of messages. This

Dealing with Active and Stateful Services in SOA 275

SmsNotification

requestor
notifySmsReception

provider
:SmsNotification

(a) SmsNotification service

SmsNotificationManager

requestor startSmsNotification
stopSmsNotification

provider
:SmsNotificationManager

(b) SmsNotificationManager service

Fig. 3. Parlay X SMS Notification Web Services

SmsNotification

SMS Server

SmsNotification
Manager

aComponent

provider

requestor

requestor

provider

Fig. 4. Parlay X SMS Notification Web Services applied to components

service is to be implemented by the network component managing the SMS
resources. Figure 3 shows these services as collaborations, while Figure 4 shows,
with collaboration uses, how they are applied in a component system.

SmsNotification and SmsNotificationManager obviously contain related func-
tionality, and they are certainly not independent of each other. One can argue
that they are so strongly related that the functionality of these services should
preferably be gathered in a single service, but due to the passive nature of Web
Services this is not possible. If we presently dispose of the Web Service paradigm
at our abstract modeling layer, and adapt the idea that services indeed can be
active, these services can easily be combined into one single service, as shown in
Figure 5.

We have developed an Eclipse plugin for modeling active services as UML 2
Collaborations in our integrated service engineering tool suite Ramses [10]. An
initial attempt to model the role behaviors of the active SmsNotification service
would typically result in the state machines shown in figure 7 (where ! denotes
a SendSignalEvent and ? a ReceiveSignalEvent). The requestor role requests to
be notified of incoming SMS messages, and receives notifications until it informs
the provider that it wants to stop receiving.

Modeling the interactions with state machines allow us to validate the service
behavior. We have developed another Eclipse plugin that generates a Promela
model, based on the two role state machines contained in the active service
collaboration. This enables us to analyze the behavior using the Spin [8] model
checker, which quickly reveals that NotifySmsReception signals can be lost. As the

276 H. Samset and R. Bræk

SmsNotification

requestor
:SmsNotification

notifySmsReception

provider
:SmsNotificationManager

startSmsNotification
stopSmsNotification

Fig. 5. New active SmsNotification service

SmsNotification SMS ServeraComponent requestor provider

Fig. 6. Active SmsNotification service applied to components

requestor is allowed to end its behavior immediately after sending the StopNotifi-
cation signal, the provider could manage to send one or more NotifySmsReception
signals before the StopNotification signal is received. This is the problem of mixed
initiatives, a common situation that occurs when a role is in a state where it can
both receive or send a signal, and is easily fixed once recognized. Figure 8 shows
the corrected state machines, where the provider now must acknowledge that it
will stop the notification by sending an AckStopNotification signal. Correspond-
ingly, the requestor has to receive any incoming NotifySmsReception signals until
it receives the acknowledgment.

5.3 Model and Implementation

We have separated the service modeling from implementation by applying the
UML 2 Collaborations for modeling, deliberately removing ourselves from imple-
mentation technology details like WSDL. In order to provide implementations
of the services, the model must be precisely mapped to an execution environ-
ment and code must be generated or written accordingly. There is not room for
demonstrating such a mapping here, but the active service collaboration concept
conforms to our system engineering approach based on a meta-model for design
and execution of services. Central in this model is precise behavioral descrip-
tions of components as communicating extended finite state machines in the
form of UML 2.0 state machines. State machines combine three properties that
make them very useful in practical service engineering; they enable readable and
precise definitions of stateful behavior; the behavior can be analyzed formally
using model checkers and other tools; and it can be effectively implemented in

Dealing with Active and Stateful Services in SOA 277

sm provider

notifying

? StartSmsNotification

? StopSmsNotification

! NotifySmsReception

sm requestor

receiving

! StartSmsNotification

! StopSmsNotification

? NotifySmsReception

Fig. 7. State machines for active SmsNotification service role behaviors

a variety of ways to satisfy non-functional requirements such as performance. In
short, state machines provide a working basis for model driven development[3].
This combination of properties is the main reason why we use state machines in
service component design. (In many cases it is useful to combine state machines
with other formalisms such as temporal logic, Petri nets and process algebras,
but this will not be elaborated here).

When it comes to implementation, there are many issues to consider. We have
found that most can be addressed quite systematically as explained in [20], and
hidden from the application/service developer. Many people believe that asyn-
chronous messaging will incur performance penalties compared to synchronous
method invocation. This is true for local invocations within one address space
and thread, but in a distributed system with multithreading the opposite is
normally the case. Our execution model relies on asynchronous communication
between components using signal buffers. This ensures a decoupled component
model well suited for modeling and realization of distributed systems. See [9] for
a detailed look on our execution model.

5.4 Loose Coupling and Contracts

Loose coupling between components is a commonly expressed goal when con-
structing a service-oriented architecture. A key to achieve loose coupling is to
minimize the knowledge that needs to be shared between communicating part-
ners. Organizing functionality in services described by interfaces is a considerable
simplification, but the reduction is too extensive if only the static invocation de-
tails are described. In addition to the list of operations, there usually exists
an intended invocation order. The tenets cited in Section 2.1 list contract and
schema as the shared service knowledge in service-orientation, and our collabo-
ration oriented modeling concept encompasses this through interfaces and role
state machines. The signals listed as signal receptions in the interfaces of the
service roles provide the data structures that form the schema of a service.
Likewise, the service role state machines for the requestor and provider roles

278 H. Samset and R. Bræk

sm requestor

receiving

! StartSmsNotification

stopping

! StopSmsNotification

? NotifySmsReception

? AckStopSmsNotification

? NotifySmsReception

sm provider

notifying

? StartSmsNotification

stopping

? StopSmsNotification

! AckStopSmsNotification

! NotifySmsReception

Fig. 8. Corrected state machines for active SmsNotification service role behaviors

together define a behavioral contract that entities requesting and/or providing
the service must adhere to. This contract precisely describes the behavioral se-
mantics of a service, in other words the expected and accepted behavior of the
involved entities while omitting other more component-specific details.

6 Related Work

Treating service as a collaborative activity is not a new idea. For instance,
CoSDL[19,18] is a collaborative approach for designing systems with SDL, defin-
ing collaboration modules that encapsulate the required interactions of all agents
in a collaboration. Our use of the Collaboration element encapsulates these using
an established UML 2 concept together with specialized stereotypes suited for
our service model.

The use of roles in modeling was fundamental in the OOram[17] methodology,
and later influenced OMG in its work on collaborations in UML.

COSMO[16] is a proposed conceptual framework for service modeling and
refinement, aimed at providing a common semantic meta-model for service lan-
guages. COSMO identifies two roles involved in a service; the user role and
provider role, and our requestor and provider roles correspond well to these con-
cepts. It seems that COSMO does not treat initiative, so whether initiative is
restricted to the user role alone is not clear. The examples in [16] are all with
client-server type initiatives, while our service concept are deliberately devised to
allow peer-to-peer style initiatives. Causality relations between activities is the
notion of state in COSMO, while we have chosen to deal with state explicitly
with state machines when modeling the roles.

Dealing with Active and Stateful Services in SOA 279

The notion that services can be of active nature is taken for granted in Vis-
sers and Logrippo’s classic paper about the service concept [24], which define a
service as “the behavior of the provider as observed by its users”. The provider
behavior is seen as an abstract machine which service primitives can be invoked
upon, but it is also capable of spontaneous actions resulting in the execution of
service primitives upon the user. Our use of state machines to describe service
role behavior somewhat resembles this, but we also describe the interaction pro-
tocol of the service, which corresponds to the “internals of the service provider”
in [24].

Our ServiceRoleStateMachine is very similar to the Port State Machine pro-
posed by Mencl [11]. But while the Port State Machine is a thorough extension
of the Protocol State Machine in UML 2, our ServiceRoleStateMachine is just a
very restricted Behavioral State Machine, constructed solely for use in our service
modeling concept. The strength of the ServiceRoleStateMachine is its simplicity,
which makes it easier to validate, while the Port State Machine is a versatile
construction suitable for general modeling using UML.

7 Summary

The service concept of contemporary SOA is of passive nature, while function-
ality involving active participants are of an active nature. We have introduced
the notion of active services that include active participants, by allowing both
the requestor and provider to take communicative initiatives.

We have applied the UML 2 Collaboration concept that provides a modeling
context well suited for service specification, defining a boundary at the modeling
level. Service interactions are modeled by state machines communicating using
asynchronous signals. This emphasizes the boundary crossings related to the
physical distribution. It also provides loose coupling and execution independence
of the entities involved in the service. The service autonomy is strengthened by
enabling both requestor and provider roles of a service to take initiative. There
is no single controlling entity in an active service, just as there is no such entity
in a SOA as a whole. The state machines of the requestor and provider roles
establish a precise behavioral contract for the service. The signal receptions of
the roles together with the data structures of the signals, form the schemas
that are shared in a service. We are not concerned with the exact type that
eventually will fill a role in the service, as long as it is compatible with the schema
and contract effectively specified by the service collaboration. We do not treat
semantic compatibility based on policies in this paper, but the work of Sanders
[22,21] addresses substitutability of service roles by the use of goal expressions.
These expressions are attached to a collaboration as a whole, as well as to the
states of the roles, and could be applied to the service collaboration described
here in order to address the semantic comparability of service instances.

Contemporary SOAs does no treat states explicitly, and we contend that state-
ful behavior should be dealt with as explicitly as possible. As demonstrated by
our SMS example in section 5.2, even small and uncomplicated functionality is

280 H. Samset and R. Bræk

likely to suffer from mistakes. We have separated the service modeling from the
implementation, and are able to validate the asserted behavior since the service
interactions are formalized as communicating state machines.

References

1. Box, D.: A guide to developing and running connected systems with indigo. MSDN
Magazine 19(1) (January 2004)

2. Bræk, R.: Using roles with types and objects for service development. In:
Yongchareon, T., Aagesen, F.A., Wuwongse, V. (eds.) SMARTNET. IFIP Con-
ference Proceedings, vol. 160, pp. 265–278. Kluwer, Dordrecht (1999)

3. Bræk, R., Melby, G.: Model-Driven Service Engineering. In: Model-Driven Software
Development. Part III, pp. 385–401. Springer, Heidelberg (2005)

4. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

5. Erl, T.: A W3C Web Services Glossary (March 2007),
http://www.ws-standards.com/glossary.asp

6. Floch, J., Bræk, R.: ICT convergence: Modeling issues. In: Amyot, D., Williams,
A.W. (eds.) SAM 2004. LNCS, vol. 3319, pp. 237–256. Springer, Heidelberg (2005)

7. Parlay Group. Parlay X Web Services Specification, Version 2.1 - Short Messaging
(2006), http://www.parlay.org/en/specifications/pxws.asp

8. Holzmann, G.J.: The SPIN model checker: Primer and reference manual. Addison-
Wesley, Reading (2004)

9. Kraemer, F.A., Herrmann, P., Bræk, R.: Aligning UML 2.0 state machines and
temporal logic for the efficient execution of services. In: Meersman, R., Tari, Z.
(eds.) OTM 2006. LNCS, vol. 4276, pp. 1613–1632. Springer, Heidelberg (2006)

10. Kraemer, F.A., Samset, H.: Ramses User Guide. Avantel Technical Report 1/2006.
Technical report, Department of Telematics, NTNU, Trondheim, Norway (2006)

11. Mencl, V.: Specifying component behavior with port state machines. Electronic
Notes in Theoretical Computer Science 101C, 129–153 (2004); In: de Boer, F.,
Bonsangue, M. (eds.) Proceedings of the Workshop on the Compositional Verifica-
tion of UML Models CVUML

12. Moreau, J.-J., Weerawarana, S., Ryman, A., Chinnici, R.: Web services description
language (WSDL) version 2.0 part 1: Core language. W3C recommendation, W3C
(June 2007), http://www.w3.org/TR/2007/REC-wsdl20-20070626

13. Natis, Y., Schulte, R.: Advanced SOA for advanced enterprise projects. Technical
report, Gartner Group (2006)

14. OASIS. Reference Model for Service Oriented Architecture v1.0 (October 2006)
15. Object Management Group. Unified Modeling Language 2.0 Superstructure Spec-

ification (2006)
16. Quartel, D.A.C., Steen, M.W.A., Pokraev, S., van Sinderen, M.: COSMO: A con-

ceptual framework for service modelling and refinement. Information Systems Fron-
tiers 9(2-3), 225–244 (2007)

17. Reenskaug, T., Wold, P., Lehne, O.A.: Working with Objects: The OOram Software
Engineering Method. Prentice-Hall, Englewood Cliffs (1995)

18. Rößler, F., Geppert, B., Gotzhein, R.: Collaboration-based design of SDL systems.
In: Reed, R., Reed, J. (eds.) SDL 2001. LNCS, vol. 2078, pp. 72–89. Springer,
Heidelberg (2001)

http://www.ws-standards.com/glossary.asp
http://www.parlay.org/en/specifications/pxws.asp
 http://www.w3.org/TR/2007/REC-wsdl20-20070626

Dealing with Active and Stateful Services in SOA 281

19. Rößler, F., Geppert, B., Gotzhein, R.: Cosdl: An experimental language for collab-
oration specification. In: Sherratt, E. (ed.) SAM 2002. LNCS, vol. 2599, pp. 1–20.
Springer, Heidelberg (2003)

20. Sanders, R.T.: Implementing from SDL. Telektronikk 96(4) (2000) ISSN 0085-7130
21. Sanders, R.T.: Collaborations, Semantic Interfaces and Service Goals - a new way

forward for Service Engineering. PhD thesis, Norwegian University of Science and
Technology (NTNU) (2007)

22. Sanders, R.T., Bræk, R., Bochmann, G., Amyot, D.: Service discovery and com-
ponent reuse with semantic interfaces. In: 12th SDL Forum, Grimstad, Norway
(2005)

23. Sanders, R.T., Castejón, H.N., Kraemer, F.A., Bræk, R.: Using UML 2.0 collabo-
rations for compositional service specification. In: Briand, L.C., Williams, C. (eds.)
MoDELS 2005. LNCS, vol. 3713, pp. 460–475. Springer, Heidelberg (2005)

24. Vissers, C.A., Logrippo, L.: The importance of the service concept in the design of
data communications protocols. In: Diaz, M. (ed.) PSTV, pp. 3–17. North-Holland,
Amsterdam (1985)

	Dealing with Active and Stateful Services in the Service-Oriented Architecture
	Introduction
	Service-Oriented Architecture
	Principles in the Service-Oriented Architecture

	Passive and Active Services
	Passive Services
	Active Services

	Services and State
	Modeling Active Services in SOA
	Modeling with UML 2 Collaborations
	Example
	Model and Implementation
	Loose Coupling and Contracts

	Related Work
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

