
An Execution Engine for Semantic Business
Processes

Tammo van Lessen1, Jörg Nitzsche1, Marin Dimitrov2, Mihail Konstantinov2,
Dimka Karastoyanova1, Luchesar Cekov2, and Frank Leymann1

1 Institute of Architecture of Application Systems
University of Stuttgart

Universitätsstrasse 38, 70569 Stuttgart, Germany
{tammo.van.lessen,joerg.nitzsche,dimka.karastoyanova,

frank.leymann}@iaas.uni-stuttgart.de
2 Ontotext Lab. / Sirma Group

135 Tsarigradsko Shose Blvd., Office Express IT Center, Sofia 1784, Bulgaria
{firstname.lastname}@ontotext.com

Abstract. In this paper we present the architecture and design of an
extended BPEL engine that implements the operational semantics of
BPEL4SWS. BPEL4SWS is an extension of the BPEL language with
support for Semantic Web Service concepts like mediation and
semantic descriptions of activity implementations. We describe the basic
communication scenarios of processes with services and the interaction
between the engine components involved in the execution of BPEL4SWS
processes. The presented prototype is based on the open source BPEL
engine Apache ODE, features improved configurability and facilitates
the definition of additional BPEL extensions with minimal development
effort.

1 Introduction

The Web Services Business Process Execution Language (BPEL) [1] is the de
facto standard for the orchestration of Web Services. However, two major short-
comings of BPEL can be identified, namely (i) hard-coding of service interfaces,
i.e. actual activity implementation types [2], and (ii) lack of semantics of used
data types. Interfaces of partner services used within a BPEL process and the
interface of the process itself are hard-coded within the process logic via WSDL
[3] interfaces. Therefore, services providing equivalent functionality but through
different WSDL interfaces cannot be used. In BPEL messages are described in
XML and have no formal semantics. As a result, automated or semi-automated
matching of and translation (mediation) between different XML schemata used
by different business partners is not possible. Instead, handcrafted XPath ex-
pressions or other transformation approaches (like XSLT) are used in order to
provide message manipulation on the syntactical level.

These shortcoming are eliminated by BPEL4SWS [4], which is an extension
of BPEL. It uses ontologies as a data model, supports descriptions of activity

E. Di Nitto and M. Ripeanu (Eds.): ICSOC 2007 Workshops, LNCS 4907, pp. 200–211, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Execution Engine for Semantic Business Processes 201

implementations independent of WSDL interfaces using Semantic Web Services
and enables data manipulation, i.e. mediation, on an ontological level.

For conventional BPEL there is already a huge amount of tool support avail-
able. This holds for both modelling tools and execution environments. Since
BPEL4SWS is an extension of BPEL, existing BPEL engines can be extended
to support and make use of the new features introduced by BPEL4SWS. In this
paper we show how the existing open source Apache ODE1 BPEL engine can
be extended in a non-intrusive manner to a BPEL4SWS compliant execution
engine. The extended engine implements the basic scenarios for communication
between processes and services as provided for by BPEL4SWS.

The paper is structured as follows. Section 2 gives a short introduction of
BPEL4SWS. The communication scenarios it supports are described in section
3. The architecture and design of the extended ODE engine are presented in
section 4 and the actual implementation is described in section 5. Section 6
concludes the paper and gives directions for future work.

2 BPEL for Semantic Web Services

BPEL4SWS [4] attempts to overcome the aforementioned deficiencies of BPEL
by (i) allowing semantic descriptions of activity implementations (instead of
referring to syntactic WSDL interfaces), (ii) using ontologies as an underlying
data model and employing the concept of ontology mediation.

The attributes of BPEL interaction activities that refer to WSDL operations
and to partner links, which are in turn dependent on WSDL interfaces, are
mandatory. Hence there is a need for a new interaction model that is indepen-
dent of WSDL. This interaction model is provided by BPELlight [2]. It intro-
duces a new interaction activity type (interactionActivity) using the BPEL
extensionActivity mechanism. The interactionActivity is independent of
WSDL and can be configured to behave like the different basic interaction activ-
ities in BPEL. Additionally, a conversation element is introduced which allows
grouping together a set of activities that in combination are able to achieve a
functional goal on behalf of the process or enable the process to provide func-
tionality to other partners.

BPEL4SWS builds on top of the interaction model provided by BPELlight

and can utilize SWS frameworks like OWL-S [5] and WSMO [6] to semanti-
cally describe what a conversation is meant to achieve. Due to its advantages
over OWL-S (see [7]) the implementation we present in this paper focuses on
supporting WSMO.

WSMO distinguishes between Goals and Web Services. A WSMO Web Ser-
vice describes the functional and non-functional properties of a Web service in a
machine-processible manner (i.e. using ontologies and abstract state machines).
A WSMO Goal describes in a similar way the requirements a client has on a
particular Web Service. Having this distinction allows to use Goals as query to

1 http://ode.apache.org/

http://ode.apache.org/

202 T. van Lessen et al.

discover matching Web services. Applied to BPEL4SWS this means that depend-
ing on whether the process requires or provides functionality, either a WSMO
Goal or a WSMO Web Service must be assigned to the affected conversation.

While lacking flexibility on an abstract level, WSDL provides excellent low
level support. All kinds of protocols and all kinds of encodings can be defined
and used for the purpose of communication. For that reason, Semantic Web
Service frameworks (including WSMO) mainly use WSDL groundings for en-
abling communication and benefit from its flexibility and existing infrastructure.
BPEL4SWS also defines a WSDL grounding. There are two different kinds of
grounding according to the different use cases: (i) partial grounding of the inter-
action model when using and exposing Semantic Web Services, i.e. grounding of
the receiving activities only and (ii) full grounding when exposing the function-
ality of a process as conventional Web Services for backward compatibility.

XML data is communicated “over the wire” when BPEL4SWS processes are
invoked. Semantic Annotations for WSDL and XML Schema (SAWSDL) [8]
is an approach that enables lifting XML data to an ontological representation
and vice versa, i.e. it facilitates making data accessible to ontological reasoning.
Thus, conditions in the process that contain ontologically described data can
be evaluated using reasoning and semantic mediation can be applied (via an
<extensionAssignOperation> called <mediate>). The semantic representation
of data is also required to enable semantic discovery and invocation of Semantic
Web Services using an SWS middleware (e.g. WSMX [9]).

3 Service Interaction Scenarios

In this section we present several execution scenarios of BPEL4SWS processes
with partner services that have to be supported by an execution engine
implementation. The execution scenarios include conventional invocation and
invocation using a semantic middleware considering both asynchronous and syn-
chronous invocation.

To support the goal based communication features BPEL4SWS provides,
a semantic aware middleware like WSMX has to provide several operations
[7]. To establish a conversation with a partner service that is able to fulfil a
WSMO Goal, the registerCommunication(goal):context operation can be
used. The returned context identifies the created conversation in the middle-
ware. Sending messages via an already established conversation to a partner
service hosted by the semantic middleware is enabled by two different opera-
tions: invokeWebService(context, data):data for synchronous communica-
tion and invokeWebService(context, data) for asynchronous communication.
These operations are used by the BPEL engine presented in this paper to com-
municate with a WSMO-enabled middleware.

3.1 Synchronous Invocation of a BPEL4SWS Process

In case a process is exposed via a request-response WSDL operation it can be
invoked synchronously, i.e. a client that invokes the process blocks and waits until

An Execution Engine for Semantic Business Processes 203

…

BPEL4SWS process Semantic Service Bus

act=op

act=op

Capabilities
Choreography

grounding

SWS
Repository

WSMO Web Service

grounding file

Fig. 1. Semantic Synchronous Invocation of a BPEL4SWS process

the return result is sent back. Therefore a receiving activity and a subsequent
sending activity of the BPELlight process logic are grounded to this particular
WSDL operation. This happens in a grounding file, which contains deployment
specific information.

When a client invokes the WSDL operation, the call is resolved to a receiving
activity in the process model by the process engine using the information given
in the grounding file. Later, when the corresponding sending activity is executed,
the return value is assigned to the WSDL operation using the grounding file and
the WSDL call is completed.

Additionally, the process can be made available as a Semantic Web Service at a
semantic middleware (see Figure 1). Therefore a WSMO WS has to be modelled
that describes the process’ interface and capability semantically and grounds to
the WSDL operation the process exposes. In addition, semantic annotations and
lifting & lowering rules can be defined using the SAWSDL.

After the process has been discovered, the ontological instance data has to
be lowered to its XML Schema representation. This is done by the middleware
via the loweringSchemaMapping defined using SAWSDL. In the next step, the
service binding and location given in the WSMO WS grounding is used together
with the XML data to invoke the BPEL4SWS process. The process engine pro-
cesses the request like described above. After the WSDL call is completed, the
semantic middleware lifts the returned XML data to an ontological level, i.e.
creates ontological instances using the liftingSchemaMapping defined in the SA-
WSDL of the process.

3.2 Asynchronous Invocation of a BPEL4SWS Process

In case of asynchronous invocation a client that invokes the process via a one-way
WSDL operation is not blocked until the return result is sent back. Instead it pro-
vides an endpoint where the process can call back via a WSDL one-way operation.
The grounding file of the process defines that a receiving activity is grounded to

204 T. van Lessen et al.

…

BPEL4SWS process Semantic Service Bus

act=op

act=op

Capabilities
Choreography

grounding

WSMO Web Service

SWS
Repository

1

2

Fig. 2. Semantic Asynchronous Invocation of a BPEL4SWS process

the one-way operation the process provides and a subsequent sending activity is
grounded to the one-way operation the client is supposed to provide.

When a client invokes the WSDL operation of the process it also submits in-
formation about the concrete endpoint and binding for the call-back. Like in the
previous scenarios, the grounding file is used to dispatch the invocation to a certain
activity in the process model. When processing the sending activity the process en-
gine evaluates again the grounding file and uses the appropriate WSDL operation
in conjunction with the endpoint information to call the client back.

Again, the process can also be made available at a semantic middleware as
a Semantic Web Service by specifying a WSMO WS that describes the process
interface and capability semantically and grounds the incoming message to the
WSDL operation the process provides. The outgoing message however is not
grounded to a specific operation because the WSDL operation of the partner
service is considered unknown prior to execution; the call-back endpoint is pro-
vided by the semantic middleware.

In case of semantic asynchronous invocation of the process as shown in Figure 2,
the semanticmiddleware invokes theprocess using the grounding informationgiven
in theWSMOWebService description of the process and the lowered instancedata.
Additionally, it submits context information in the message header that identifies
the communication between the middleware and this particular process instance.
Via this header information, the process engine detects that it has been invoked
semantically. When the process navigator reaches the corresponding sending ac-
tivity it does not use the WSDL operation specified in the grounding file (the light
gray parts of Figure 2) but rather sends the message to the semantic middleware
using the entry point invokeWebService(Context, Data).

3.3 Synchronous Invocation of Services

When a service is to be invoked, the conversation and the invoking activity
are either grounded to the WSDL interface the service provides or they are
semantically described using a WSMO Goal.

An Execution Engine for Semantic Business Processes 205

When the process engine executes an activity that first sends and then re-
ceives a message and there is no semantic attachment at the conversation, the
grounding file is used to figure out which operation should be invoked. In case
there is a semantic attachment at the conversation (linked with a synchronous
invocation activity), there is no grounding defined (see Figure 3). Instead, at the
beginning of the conversation, a goal is submitted to the semantic middleware.
The middleware performs semantic discovery and initializes the communication
between the discovered service and the process by creating context information
and sending it back to the process engine.

BPEL4SWS process Semantic Service Bus

WSMO Goal

…

…

Capabilities
Choreography

context

1

2

3

Fig. 3. Synchronous Invocation of a WSMO Web Service

3.4 Asynchronous Invocation of Services

The asynchronous invocation of a conventional service is similar to the conven-
tional asynchronous invocation of a process. When the process engine executes
the sending activity the WSDL operation that is to be invoked is resolved us-
ing the grounding file. Later, when the invoked service calls back, the receiving
activity (associated with the call back operation) is also discovered using the
grounding file.

Similarly to the synchronous communication mode asynchronous semantic
invocation starts with submitting a goal associated with a conversation to the
semantic middleware. However, in contrast to the synchronous invocation, the
incoming message is grounded to a WSDL operation the process provides as
call-back (see Figure 4). The sending activity is executed by sending ontological
lifted data to the semantic middleware using the entry point invokeWebService-
(context, data). In a later step, the semantic middleware uses the grounding
information in the goal to call the process back via the provided WSDL one-way
operation. This call back is done using XML data generated by the middleware
by lowering the ontological data according to the lowering rules described using
SAWSDL. It is dispatched to the corresponding activity using the grounding file
of the process.

206 T. van Lessen et al.

…

BPEL4SWS process Semantic Service Bus

act=op

grounding

WSMO Goal

Capabilities
Choreography

1

2

3

4

context

Fig. 4. Asynchronous Invocation of a WSMO Web Service

3.5 Partner-Based Semantic Web Service Discovery

The partner element in BPEL4SWS can be used to constrain that a partner has
to satisfy multiple goals. This partner can either be an abstract partner that is
discovered during runtime or a concrete partner. The concrete partner can be
configured during design time or can be assigned to the partner element during
runtime. Whenever a partner has to be discovered, a list of goals is sent to the se-
mantic middleware using the entry point findPartner(listof goals):partner
[7]. And whenever a conversation starts that belongs to a specific partner, the
entry point registerCommunication(partner, goal):context is invoked. The
communication between the process and the service(s) is then conducted as pre-
sented in the previous sections.

4 Architecture of a BPEL4SWS Engine

The architecture of the BPEL4SWS engine is similar to well-known workflow
engines – the main components are described in the following (see Figure 5).

4.1 Components of the Architecture

To manage and configure the engine one uses the administration module. The same
component exposes operations for deployment and undeployment of processes.

The deployment component is responsible for deploying the artefacts needed to
execute a BPEL4SWS process. These are a BPEL4SWS description, correspond-
ing WSDL files and a deployment descriptor. The process model is validated,
compiled and stored in the buildtime database of the engine.

Process models and process instance data are stored in two logically separate
repositories - the buildtime database and the runtime database. The Buildtime
database stores the compiled process model representation while the Runtime
database handles runtime data of all process instances being executed. Each
process instance contains a reference to its corresponding process model in the
Buildtime database.

An Execution Engine for Semantic Business Processes 207

Build Time
Data

Runtime
Data

Deployment
Component

Integration Layer

Reasoner

Administration Module

Navigator

Lifting &
Lowering

Mediator

Fig. 5. Architecture of a BPEL4SWS Engine

The communication between the engine and external services and clients is
handled by the integration layer. In particular, it is responsible for receiving
external messages, dispatching them to the execution components and sending
results back to the clients or partner services.

The process navigator uses the process models stored in the Buildtime
database to execute their instances. It navigates over the process model for
each of its instances. The navigator stores the state of each process instance in
the Runtime database. Whenever a service interaction must be performed, this
component delegates the interaction and the actual message exchange to the
integration layer.

Transition conditions on control connectors and join conditions that are de-
fined by logical expressions are evaluated by the reasoner. XPath expressions are
directly processed by the process navigator.

The mediation component is responsible for handling the data mismatches
when the process model makes use of different ontologies.

For transforming XML data into ontology instances and vice versa the en-
gine employs the lifting & lowering component. Semantically annotated XML
variables can thus always be made available in terms of their ontological repre-
sentation, whenever needed.

4.2 Component Interaction Scenarios

The interplay among the components of the architecture can be demonstrated
in terms of the following scenarios: (i) process deployment and (ii) process
execution.

During process deployment the process model is parsed, validated and trans-
formed into an engine-internal representation. This representation is then stored
into the Buildtime database. The WSDL interfaces of the process are used to ex-
pose it as a service, which is done by exposing a new endpoint at the integration

208 T. van Lessen et al.

layer. During process execution four basic scenarios are of interest: receiving mes-
sages and sending messages on behalf of a process, evaluating semantically defined
conditions and mediation.

Whenever the engine receives a message it either dispatches it to an existing
process instance, or creates a new one. In both cases the messages arrive at the
process endpoint at the integration layer. The correlation of a message to an
existing or a new process instance is done by the integration layer. Once the
message is consumed by the navigator, the corresponding interaction activity is
executed.

Interaction activities can also send messages. Therefore during the execution
of such an activity the integration layer receives a command for sending a mes-
sage by the navigator. If the target is a WSDL Web Service, the message is
serialized in XML. In case an SWS is invoked (via a semantic middleware infras-
tructure like WSMX), the data representation is an instance of an ontological
concept, generated by the Lifting & Lowering component. If the interaction is
synchronous, the navigator suspends the process instance at the activity and
resumes it once it receives data – either XML from a WSDL Web Service or
an instance of an ontological concept from an SWS. In contrast to this commu-
nication mode, whenever asynchronous communication is required the process
instance is not blocked until the response is received.

Whenever the navigator needs to evaluate conditions that are expressed in
terms of logical expressions, all data visible in the current scope is ontological
lifted using the Lifting & Lowering component. Thereafter the ontological data
is provided to the reasoner which evaluates the logical expression and returns
the result to the navigator.

During the execution of the mediate activity the navigator delegates the
mediation to the mediation component that first uses the Lifting & Lowering
component in case the data is not available in a semantic form and then discovers
and executes an appropriate mediator. After the mediation the result is returned
to the navigator.

5 Implementation

In order to choose a BPEL execution engine that we can base our work on,
we have evaluated several open source options, including Apache ODE, JBoss
BPEL2 and ActiveBPEL3, according to various functional and non-functional
criteria such as licensing, support for WS-BPEL 2.0, extensibility & integration
options, community and industry adoption. Apache ODE has been selected as
the option satisfying our requirements to the highest extent.

A number of extensions and modifications to Apache ODE were required to
realise the architecture described in the section above and thus provide support
for BPEL4SWS.

2 http://www.jboss.org
3 http://www.activebpel.org

http://www.jboss.org
http://www.activebpel.org

An Execution Engine for Semantic Business Processes 209

5.1 Apache ODE Extensibility

Apache ODE follows a lightweight and modular architecture but lacks support
for extensibility so far, in particular for the elements extensionActivityand the
extensionAssignOperation. For that reason, we introduced a plug-in concept
to the engine that allows plugging in so called ExtensionBundles. Such a bundle
is linked to a particular extension namespace and consists of several operations
that are referenced by extensionActivity and extensionAssignOperation
elements in the BPEL process model and implement the concrete extension
functionality. The bundles can be registered in the engine via a configuration
properties file; its namespace must be made known to the process by declaring
it in an <extension> element.

5.2 Parser, Compiler, and Object Model

Deployment in Apache ODE happens in two steps. First, the BPEL file is parsed
into an in-memory representation. Next, the compiler transforms the parsed
process model into an optimized object model. The compiler executes several
optimisations that simplify the implementation of the navigation component.
Additionally the process model is checked against a set of static analysis rules. To
implement BPEL4SWS, ODE needs to be able to parse and compile WS-BPEL
2.0 extensions. Therefore, we changed both its Parser and Compiler to support
the elements <extensions>, <extension>, <extensionAssignOperation> and
<extensionActivity>.

The elements needed to model a BPEL4SWS <conversation> do not require
a special handling by the parser as all unknown elements are preserved in the
object model and can be accessed from the extension implementations at any
time.

5.3 Interaction Activities

In the first development integration, we extended the BPEL engine with a se-
mantic counterpart of the invoke activity, i.e. an interactionActivity that
first sends and subsequently receives a message. This activity implementation
performs a look up of the referenced <conversation> element, which in turn
keeps a reference to a WSMO Goal. This goal is passed to the Semantic Web Ser-
vices execution environment (WSMX) which then discovers, selects and invokes
a best-matching Semantic Web Service.

The next step will be the full implementation of the interactionActivity
that enables a conversational (i.e. asynchronous) communication between the
process and the provider of a WSMO Web Service once the asynchronous com-
munication mode is supported by the WSMX infrastructure.

5.4 Semantic Assign – Data Mediation

In order to enable the engine to perform data mediation, i.e. transformation be-
tween instances of different ontological concepts, the engine relies on WSMX and

210 T. van Lessen et al.

its mediation component. Data mediation is defined by a <mediate> element –
a custom assign operation. It takes two parameters, the source and the target
variable. The engine analyses their SAWSDL annotations to find out which on-
tological concepts are representing the variables’ type. Then the engine delegates
the mediation to WSMX which discovers an appropriate data mediator that is
capable to transform from the source to the target ontology and invokes the
actual transformation.

5.5 Monitoring and Event Logging

Business Process Monitoring [10] and in particular Business Activity Monitoring
(BAM) [11] can strongly benefit from semantic annotated data. By means of
appropriate ontologies, monitoring dashboards can group and visualize audit
events, which semantically belong together.

In order to enable semantic process monitoring, the Apache ODE logging
event infrastructure has been extended to publish process events in a WS-
Notification [12] compliant manner. The events are serialised instances of the
event ontology (EVO) [13] that is capable of capturing the information needed
for semantic monitoring and mining.

6 Conclusion and Future Work

BPEL4SWS extends BPEL 2.0 with the ability to use semantic information for
describing activity implementations using semantics and thus independent of
their interface descriptions. In addition, data models used in processes are rep-
resented semantically using ontologies, which enable the use of process relevant
data for reasoning. Mismatches on the data and process level can also be resolved
using mediation on the ontological level. Unlike other existing approaches, e.g.
METEOR-S [14], the BPEL4SWS processes contain no reference to any imple-
mentation infrastructure, but rather only use semantic descriptions to define
requirements toward service functionality or capabilities of the process being a
service.

In this paper an extended engine implementing BPEL4SWS has been pre-
sented. The architecture of the enhanced engine enables support for execution
and monitoring. It features improved configurability, and it makes it easier to
provide support for other language extensions using the extension bundles con-
cept without major implementation effort.

As part of our futureworkwe intend to enhance and improve the implementation
of the interactionActivity in BPEL4SWS to support also asynchronous com-
munication modes. This task depends on the ability of the WSMX infrastructure
to support asynchronous communication with Semantic Web Services; such a fea-
ture is not yet available. A monitoring tool that supports monitoring is currently
being developed. It is not only based on conventional data logs but also on semantic
information and the ability to reason over it; BAM-like features will be in the focus
of our future work with emphasis on the use of semantics for this purpose.

An Execution Engine for Semantic Business Processes 211

Acknowledgements

The work published in this article was partially funded by the SUPER project4

under the EU 6th Framework Programme Information Society Technologies Ob-
jective (contract no. FP6-026850).

References

1. Alves, A., et al.: Web Services Business Process Execution Language version 2.0.
Committee specification, OASIS (2007)

2. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPELlight. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
214–229. Springer, Heidelberg (2007)

3. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1 (2001)

4. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPEL for Semantic
Web Services. In: Proceedings of the 3rd International Workshop on Agents and
Web Services in Distributed Environments (AWeSome 2007) (2007)

5. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al.: OWL-S: Semantic markup
for web services. W3C Member Submission. In: World Wide Web Consortium
(2004)

6. Roman, D., Lausen, H., Keller, U., de Bruijn, J., Bussler, C., Domingue, J., Fensel,
D., Hepp, M., Kifer, M., König-Ries, B., Kopecky, J., Lara, R., Oren, E., Polleres,
A., Scicluna, J., Stollberg, M.: Web Service Modeling Ontology, v1.4. WSMO work-
ing draft, DERI (2007), http://www.wsmo.org/TR/d2/v1.4/

7. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: WSMO/X in
the Context of Business Processes: Improvement Recommendations. International
Journal of Web Information Systems (2007), ISSN: 1744-0084

8. Farrell, J., Lausen, H.: Semantic annotations for WSDL and XML Schema. W3C
working draft, W3C (2006), http://www.w3.org/TR/sawsdl/

9. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX – a semantic
service-oriented architecture. In: Proceedings of the International Conference on
Web Services (ICWS 2005), Orlando, USA (2005)

10. Zur Muehlen, M., Rosemann, M.: Workflow-based process monitoring and
controlling-technical and organizational issues. In: Proceedings of the 33rd Annual
Hawaii International Conference on System Science (HICSS-33), Los Alamitos,
California (2000)

11. Hellinger, M., Fingerhut, S.: Business Activity Monitoring: EAI meets Data Ware-
housing. EAI Journal, 18–21 (July 2002)

12. Graham, S., Hull, D., Murray, B.: WS-BaseNotification. OASIS standard (2006)
13. Pedrinaci, C., Domingue, J.: Towards an ontology for process monitoring and min-

ing. In: Proceedings of the Workshop on Semantic Business Process and Product
Lifecycle Management (SBPM 2007), Innsbruck, Austria (2007)

14. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S Ap-
proach for Configuring and Executing Dynamic Web Processes. Technical report,
University of Georgia, Athens (2005)

4 http://www.ip-super.org/

http://www.wsmo.org/TR/d2/v1.4/
http://www.w3.org/TR/sawsdl/
http://www.ip-super.org/

	An Execution Engine for Semantic Business Processes
	Introduction
	BPEL for Semantic Web Services
	Service Interaction Scenarios
	Synchronous Invocation of a BPEL4SWS Process
	Asynchronous Invocation of a BPEL4SWS Process
	Synchronous Invocation of Services
	Asynchronous Invocation of Services
	Partner-Based Semantic Web Service Discovery

	Architecture of a BPEL4SWS Engine
	Components of the Architecture
	Component Interaction Scenarios

	Implementation
	Apache ODE Extensibility
	Parser, Compiler, and Object Model
	Interaction Activities
	Semantic Assign -- Data Mediation
	Monitoring and Event Logging

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

