
E. Di Nitto and M. Ripeanu (Eds.): ICSOC 2007 Workshops, LNCS 4907, pp. 115–127, 2009.
© Springer-Verlag Berlin Heidelberg 2009

onQoS-QL: A Query Language for QoS-Based Service
Selection and Ranking

Giuseppe Damiano, Ester Giallonardo, and Eugenio Zimeo

Research Centre on Software Technology
Department of Engineering

University of Sannio
Benevento, 82100 Italy

gppdamy@virgilio.it, ester.giallonardo@unisannio.it,
zimeo@unisannio.it

Abstract. Although service consumers need to communicate effectively their
quality of service requests, today a standard QoS query language has not yet
been defined. This paper proposes a query language, named onQoS-QL, to
properly capture QoS requirements. It is based on the onQoS ontology and on a
set of statements that the user adopts to express the desiderata subjective or con-
text-aware constraints on QoS measurable values. Currently, the language is
based on SPARQL to implement service retrieval and selection through a
SPARQL-engine integrated in our discovery engine that is able to rank the se-
lected services according to user requirements and specifications. Some pre-
liminary tests show the correctness and the power of the proposed approach.

Keywords: Metrics, Ontology, Quality of Service, Semantic Web, Service
Discovery.

1 Introduction

Discovery engines are key architectural components of Service Oriented Architecture
(SOA). Service requestors use them to properly select the services to bind to a Web
process by specifying both functional (“what the service does”) and non-functional
(“how the service is supported”) requirements.

Accessing a growing number of Web Services requires more and more sophisti-
cated discovery engines that extend the basic capabilities of UDDI registries in order
to find the set of services that satisfy user requests and to select one or more of them
that better meet the requirements [1].

Although functional requirements allows for building a desired business process by
composing existing functionalities, non-functional requirements are important to
reduce the search space during the discovery process by identifying only those ser-
vices that guarantee the desired level of quality of service (QoS). The role of these
requirements is much more important if we consider the dynamic nature of business
processes, especially in the Web environment. Here QoS constraints can be usefully
adopted to autonomously handle Web processes at run-time, dynamically guiding the
binding of discovered services and re-binding them in presence of failures.

116 G. Damiano, E. Giallonardo, and E. Zimeo

QoS is defined in ISO 8402 as: “The totality of features and characteristics of a
product or service that bear on its ability to satisfy stated or implied needs”. This
definition clearly highlights the necessity of defining an unambiguous understanding
of QoS concepts and their relations in order to establish valid agreements between
providers and consumers with limited user intervention, even at run-time. To this end,
in a previous work [3], we have proposed an ontological-based approach (onQoS) that
provides a QoS Description Model, which helps to eliminate ambiguities during the
QoS Discovery Process, when the same ontology is shared between providers and
consumers.

However, a correct matching of user desiderata with published onQoS service de-
scriptions requires a template description prepared by the requestor, reporting the
features of the desiderated service. This approach presents three main problems: (1) it
is hard and cumbersome to define template services; (2) templates are not sufficiently
expressive to capture user desiderata; (3) service ranking is often subjective and needs
to specify user-centric utility functions. In this work we face and overcome these
expressivity problems exploiting onQoS to define a query language, called in the
following onQoS-QL (Query Language about QoS), which we use to define complex
queries on QoS constraints (related to both functional and non-functional service
features).

With the help of onQoS-QL, service consumers can express more effectively their
QoS requests, so better formalizing their real intentions. In fact, these measures often
depend on subjective expectations of the service or on context information and vary
with the type of service and where it is used. Therefore, providing clients with a way
to clearly and formally define QoS criteria and complex utility functions, the QoS
discovery engine will be able to select automatically the proper service, reasoning not
only on the QoS shared knowledge but also ranking the services according to the
requestor criteria.

The definition of onQoS-QL gave us also the opportunity of re-factoring onQoS by
introducing some new concepts that enable onQoS to better explicit the concept of
measurement process of QoS attributes, which represents a key element in a dynamic
market of networked services where monitoring and reputation drive the evolution.
The remainder of this paper is structured as follows. Section 2 describes the related
works. Section 3 shows the main concepts of the onQoS ontology. Section 4 describes
the onQoS-QL query language. Section 5 presents the onQoS-QL reasoner. Section 6
discusses the results of our study. Finally, Section 7 summarizes the conclusions and
highlights future works.

2 Related Works

Queries used during service discovery have a direct influence on the precision and
recall of the results, since they are the means for the requestor to explicit the knowl-
edge about its intention. Hence, to improve the quality of service matching, the design
of a specific QoS query language could be useful, as demonstrated by the focus on
query and rule layers in the context of Semantic Web [12-14].

OWL-QL [13] has a restricted access to the TBox so that only named classes and
individuals can be retrieved. Utilizing this formal language, values of variables cannot

 OnQoS-QL: A Query Language for QoS-Based Service Selection and Ranking 117

be filtered and no ranking can be produced. On the other hand SPARQL [12], the
W3C’s proposed query language to access RDF and RDF schema information, is able
to retrieve from a pool the services that satisfy a query. Constraints on the retrieved
solutions can be expressed by the keyword FILTER. In this way a sorting on a single
attribute can be implemented, but no ranking on aggregated variables is possible. So it
can be mainly used as a basis for building other more complex query languages.

Liu, Ngu and Zeng in [16] presented a QoS computation model for web services
selection. They utilize weights, groups of parameters, preferred directions on QoS
values (e.g. the highest or the lowest ones) in order to specify the client demand.
However, the model does not provide support for expressing logical or value con-
straints on QoS parameters.

The definition of a language for aiding service discovery and ranking requires to be
founded on a stable and well-organized ontology. The research on this field has pro-
duced many proposals in recent years that we briefly overviewed to establish our
reference QoS ontology before defining a new language.

The DAML-QoS ontology [5] presents the following three levels. The QoS profile
layer for matching purpose; the QoS property definition layer for defining domain and
range constraints on QoS features; the metrics layer for specifying QoS metrics.
DAML-QoS presents also a QoS vocabulary, called Basic Profile. The approach al-
lows a service requestor to define QoS constraints in the QoS profile layer, but the
authors utilize incorrectly the OWL cardinality construct to impose bounds on QoS
parameter values.

The scope of the WS QoS ontology [6] is QoS service discovery. The QoSInfo
element describes server performance and protocols required for providing QoS fea-
tures; the WSQoSOntology element is used to define QoS parameters and their proto-
cols; instead the QoSOfferDefinition element contains one or more QoSInfo elements.
The implemented WS-QoS Editor allows both requestor and provider to easily edit
their QoS requirements or offers without knowing the details of the WS-QoS XML
Schema. One or more XML-based files are generated automatically. QoSOnt [7] has
been designed in a modular way with the scope of developing service centric systems.
The QoSOnt basic layer contains generic concepts relevant to QoS as for example
unit ontologies. The QoSOnt attribute layer defines particular QoS attributes and their
metrics. The last layer contains domain ontologies.

QoS Ontology [8] captures QoS vocabulary and the basic QoS concepts in the up-
per ontology. While in the middle ontology, QoS features on distribute systems are
specified. The implemented SQRM tool provides graphical means to specifying QoS
requirements.

The analysis of the literature showed that the semantics of query operators and of
query measurement processes have not yet been formalized in any existing QoS on-
tology. For this reason we worked to define onQoS [3] and to refine it in this paper in
order to better formalize the concept of MeasurementProcess.

3 onQoS Ontology

By reasoning on QoS Discovery, we identified as key aspect the importance of deliv-
ering measurable values to Service Consumers for advanced monitoring and process

118 G. Damiano, E. Giallonardo, and E. Zimeo

handling. Such values are instances of concepts of a QoS Description Model that uses
QoS metrics to share QoS knowledge between providers and consumer. The ontologi-
cal concepts derive from the analysis of process measurement and from its employ-
ment in the specification of each QoS entity.

The onQoS [3] ontology (όνQoS, i.e. QoS entity, ὄν in the early Greek, part. of
εἶναι: to be) is able to support the reasoning power required to navigate the QoS ter-
minology correctly and efficiently and it is able to formalize QoS knowledge, i.e. QoS
parameters and their relationships. We utilized the ontology as the means to resolve
terminology mismatches between the vocabularies, misunderstandings at message
level, unsuccessful couplings between measurement processes, scales and units of
measurement and as the means to derive knowledge utilizing the domain-dependent
functions that can be specified among QoS metrics [3].

Fig. 1 shows the root concepts of onQoS according to the OntoShere global view
approach [15]. It presents a big earth-like sphere bearing on its surface the main on-
QoS concepts represented as small spheres. Atomic nodes are smaller and in dark
colour. The scene shows the main direct semantic relations between the concepts.
QoSParameter is a (measurable or quantifiable) QoS characteristic or feature. QoS-
Metric is a type of measurement tied to a QoS parameter. MeasurementProcess is the
process by which numbers or symbols are assigned to QoS parameters according to
clearly defined rules. Scale specifies the nature of the relationships among a set of
values (ScaleValue). ScaleValue is a number or symbol that identifies a category in
which the QoS parameters can be placed. The Participant identifies the resource that
performs the measurement process. The onQoS Profile describes a QoS policy
through the definition of one or more QoS metrics.

Fig. 1. a) The main concepts of onQoS. b) The MeasurementProcess concept.

The QueryProfile is a particular Profile that presents a unique QoS metric relating
to the overall QoS. QueryProfile presents the single property hasQoSMetric on the
range of WSQoSMetric. WSQoSMetric is a metric relating to the overall QoS. We
associate a Profile with a service advertisement, while a QueryProfile describes the
QoS profile requested by a user. MeasurementProcess presents the specializations
DeclarativeProcess, AggregationProcess, EvaluationProcess, MonitoringProcess and
ReadingProcess as we can see in the image b) of Fig. 1. The DeclarativeProcess is a
direct measurement process that enables statement on QoS parameter values. The
AggregationProcess is an indirect measurement process that reduces a set of measures

 OnQoS-QL: A Query Language for QoS-Based Service Selection and Ranking 119

into a unique representative one, making a synthesis of different aspects. The Evalua-
tionProcess is the process whose objective is to evaluate QoS constraints. These can
be expressed utilizing different predicates, i.e. a specialization of the evaluation proc-
ess (in our context), such as the comparison operators (<, >, =, !=, …) that operate on
different scales. The ReadingProcess is a dummy measurement process that simply
reads the QoS values. Instead, the MonitoringProcess is the process whose objective
is to supervise the QoS.

4 onQoS-QL: A Query Language on QoS Attributes

onQoS-QL is a QoS query language for Web Service selection based on the knowl-
edge represented in onQoS and its lower ontologies, i.e. the elements it defines are
interpreted utilizing the onQoS semantics and its own domain specializations. The
language gives users a way to express in a query some subjective measurement proc-
esses to better evaluate a service. Consequently, the language was designed also to be
extended in a particular domain, to let users defining personalized and contextualized
ways to retrieve and rank services.

The WSQoSMetric concept in onQoS ontology represents the main building
block for query formulation. This metric measures the degree of compatibility be-
tween two descriptions on a scale that defines an ordinal relation. User formulates a
query through several instances of WSQoSMetric organized in hierarchical manner
and according to a logical/arithmetic expression. This concept has the following
restrictions:

∀ hasMeasurementProcess . (AggregationProcess ⊔ EvaluationProcess) (1)

∀ measuredParameter . WSQoS (2)

An instance of it can be defined only if the measurement process is an instance of
AggregationProcess or EvaluationProcess (1) and the measured parameter is the
WSQoS as stated in (2). Therefore, an instance of WSQoS is functionally linked with
an instance of WSQoSMetric by means of the object property isMeasuredBy inverse
of measuredParameter. Indeed, the scope of a query is to capture the way in which
users want to measure the quality of a Web service, represented by the class WSQoS,
evaluating constraints defined on selected QoS parameters and aggregating these
partial results. Aggregation can be performed only if a reference measurement scale
exists for any value involved in this process and according to the operations it defines.
That scale is represented by means of the class WSQoSScale and is a numeric and
totally ordered scale whose values span in the range [0, 1] of the real numbers. The
object property isMadeUpOf of the scale is restricted in a way that any values of it
belong to the range {hasWSQoSScaleValue}. The data property hasWSQoSScaleValue
links a float value in [0, 1] with a variable on the scale WSQoSScale. Formally, a
variable whose values belong to WSQoSScale is represented with the class WSQoS-
Value, subclass of NumericValue. WSQoSValue also, defines the data property
hasWeight that can be used to weight a QoS parameter constraint evaluation or aggre-
gation result as context of the ranking function specified in the query. Therefore, an
instance of QueryProfile, which represents a user’s query by means of an expression

120 G. Damiano, E. Giallonardo, and E. Zimeo

of user selected QoS parameters, defines other than the Profile instances to retrieve,
the function to rank the result set.

Following a bottom-up approach to formulate a query, a user defines a Declara-
tiveMetric or ReadingMetric metric for every selected QoS parameter, evaluates the
measured values by means of a predicate defined on the same measurement scale of
the selected parameters and aggregates these partial measurements by means of a
function defined on the WSQoSScale. Predicates and functions are measurement proc-
esses of WSQoSMetric and define how to measure (partial value of) the WSQoS pa-
rameters. The composition of evaluation and aggregation measurement process is
driven by the compatibility of the input/output measured variables. onQoS defines a
variable for each measurement scale, also for the WSQoSScale. As Fig. 2.a) illustrates,
the object property hasMeasuredValue inherited from MeasurementProcess by the
class Predicate has a range restriction on class WSQoSValue. The properties has-
FirstArgument and hasSecondArgument specializing hasParameter of Measurement-
Process identify the arguments of a non-commutative predicate and have restrictions
on subclass of QoSParameterValue corresponding with the scale (NominalScale,
OrdinalScale or RatioScale) for which predicates are defined.

Fig. 2. a) Predicates for b) RatioScale, c) NominalScale and d) OrdinalScale

As we said, a query defines how to measure from a user point of view the whole
quality of a Web service. Fig. 3 shows some aggregation functions (WeightedMean,
WSQoSOr and WSQoSAnd) that let a user to aggregate partial Web Services QoS
evaluations to specify the wished measure in an expression.

Fig. 3. a) WSQoSN-aryFunction and b) WSQoSFunction with their specializations

As we have stated in section 2, no language has yet defined to formulate a query as
a set of statements to retrieve and rank Web Services satisfying user defined QoS
requirements. onQoS-QL tries to fill up that gap giving the user a set of operators that
merge retrieval constrains and ranking directives. As such, predicates and some

 OnQoS-QL: A Query Language for QoS-Based Service Selection and Ranking 121

aggregation functions have extended semantics to support both retrieval and ranking
phases. As example, DoubleLessThan predicate (Fig. 2.a) defined for the ratio scale
DoubleRatioScale not only evaluates whether the first operand is smaller than (<) the
second one but, if that condition is satisfied, also a value in]0, 1] is computed as
evaluation on the WSQoSScale.

Table 1 shows the main predicates and aggregation functions with their semantics.
The first two columns report the operators of the language and the operands with their
measurement scales. The second two columns report retrieval and ranking semantics
of each operator. The former means a service profile will be retrieved if and only if
the logical condition it states is satisfied. The latter indicates the rank value of each
satisfied operator, according to the mathematical expression provided in the table.

Table 1. Main predicates and aggregation functions with their semantics

Vocabulary
Term

Measurement Scale
of Arguments

Retrieval
Semantics

Ranking Seman-
tics

Equal(xi, xj) i = j 1
NotEqual(xi, xj)

NominalScale
{ }

Niix
...1=

 i ≠ j 1

BetterEqualThan(xi, xj) { }Nji ,...,∈ ()ji
N

−+1
1

LessEqualThan(xi, xj)

OrdinalScale
{ }

Nijii jixxx
...1

|
=

<⇔< { }ji ,...,1∈ ()ij
N

−+1
1

DoubleLessThan(x, y) x < y 1
1

2 −
+

−
−

k

xy

e

DoubleGreaterThan(x, y)

DoubleRatioScale
[]supinf , XX

x > y 1
1

2 −
+

−−
k

yx

e

WSQoSAnd(x, y) x ∧ y min(x, y)
WSQoSOr(x, y) x ∨ y max(x, y)

WeightedMean Niip ,...,1)(=

WSQoSScale
() [] []{ }

sup,01,0|, Xwxwxp ∈∧∈≡ ,ip∃

Ni ,...,1= ∑
∑

=

=
N

i

i

N

i

ii

w

xw

1

1

4.1 Query Examples

To explain in details the query formulation process, let us introduce a short notation
for a QoS metric:

 QoSMetric = < QoSParameter, MeasurementProcess, Scale, ?QoSParameterValue > (3)

where ?QoSParameterValue is the measured variable as the prefixed symbol “?” shows.
By means of the MeasurementProcess it is possible to measure a particular
QoSParameter whose values belong to the Scale as the metric defines.
Our first example deals with some computer network QoS parameters such as jitter
and round trip time (RTT):

?WSQoSValue = ?RTTValue <WSQoS k1 ∨WSQoS ?JitterValue ≤ WSQoS k2 (4)

where operators <WSQoS, ∨WSQoS and ≤ WSQoS have an extended semantics according to
Table 1, where constants k1 and k2 belong to the same measurement scale of ?RTTValue
and ?JitterValue. To define the metrics for the values in (4), we use the notation

122 G. Damiano, E. Giallonardo, and E. Zimeo

ntroduced in (3). The declarative metrics RTTMetric = <RTT, RTTProcess, DoubleScale,
?RTTValue> and JitterMetric = <Jitter, JitterProcess, DoubleScale, ?JitterValue> are de-
fined to measure ?RTTValue = RTTProcess() and ?JitterValue = JitterProcess(). Hence,
to evaluate expression (4) a bottom-up approach is followed, evaluating firstly the
inner expressions. So, the partial WSQoS evaluation metrics WSQoSRTTEval =
<WSQoSRTT, DoubleLessThan, WSQoSScale, ?WSQoSRTTValue> and WSQoSJitterEval =
<WSQoSJitter, DoubleLessEqualThan, WSQoSScale, ?WSQoSJitterValue> are defined to
measure ?WSQoSRTTValue = DoubleLessThan(RTTProcess(), k1) and ?WSQoSJitterValue =
DoubleLessEqualThan(JitterProcess(), k2). The overall WSQoS aggregation metric
WSQoSMetric = <WSQoS, WSQoSOr, WSQoSScale, ?WSQoSValue> is defined to measure
?WSQoSValue = WSQoSOr(?WSQoSRTTValue, ?WSQoSJitterValue).

Another example comes from the automotive domain where we have specialized
onQoS and have extended onQoS-QL with some new operators such as a “quantizer”
evaluation function. In (5) we show such a query whose ?WSQoSValue is the result of a
weighted mean computation over some QoS parameter measurements and evaluations
in the automotive domain.

⎡ ⎤

StdSchedRulesCCC

Std
Sched

F

i
i

Sched
Rules

F

i
i

Rules
C

F

i
i

C
C

F

i
i

C
C

F

i
i

C

wwwwww

Sdtw
F

Sched
w

F

Rules
w

F

C
w

F

C
w

F

C
w

SchedRulesCCC

+++++

+

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

+

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

+

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

+

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

+

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡
∑∑∑∑∑
=====

210

11

2

1
2

1

1
1

0

1
0 ?

??2?1?0?
210

(5)

Evaluations are performed by means of the “quantizer”, a function whose output is
computed through thresholds comparison and indicated in (5) with the symbol ⎡⋅⎤.

The query in (5) can be regarded as a utility function that the matchmaker will
maximize over the whole service space. QoS parameters are C0, C1 and C2 dealing
with the quality of geometric integrity of CAD design for the contact, tangency and
curvature continuity between patches (contiguity surfaces): these parameters measure
(in percentage) how many patches are not compliant with a fixed tolerance; Rules
deals with design rules adherence of CAD modeling; Sched is for the scheduling
constraints satisfaction; finally, Std deals with supported automotive standard. For the
query in (5) we have to define the following metrics.

The reading metrics CxMetric = <Cx, CxProcess, DoubleScale, ?Cx>, RulesMetric =
<Rules, RulesProcess, DoubleScale, ?Rules> and SchedMetric = <Sched, SchedProcess,
DoubleScale, ?Sched> and a declarative metric StdMetric = <Std, StdProcess, IntScale,
?Std>. The role of reading and monitoring metrics in query-answering is illustrated in
Fig. 4. The monitoring components are configured by means of the monitoring metrics
to collect measures about dynamic QoS parameters. For each monitoring metric an
onQoS domain ontology defines also a reading metric utilized by users to formulate
their queries. A reading metric defines its measurement frame, i.e. the number of
samples the matchmaker can read from the requestor’s (or provider’s) monitoring
component. So, the derived metrics CxDerivedMetric = <CxMean, ArithmeticMean, Dou-
bleScale, ?CxMean>, RulesDerivedMetric = <RulesMean, ArithmeticMean, DoubleScale,
?RulesMean> and SchedDerivedMetric = <SchedMean, ArithmeticMean, DoubleScale,
?SchedMean> are defined to compute a synthetic value (arithmetic mean) for each
requestor’s monitored QoS parameter. The partial WSQoS evaluation metrics
CxWSQoSEvalMetric = <CxWSQoS, ⎡⋅⎤, DoubleScale, ?CxWSQoS>, RulesWSQoSEvalMetric

 OnQoS-QL: A Query Language for QoS-Based Service Selection and Ranking 123

= <RulesWSQoS, ⎡⋅⎤, DoubleScale, ?RulesWSQoS>, SchedWSQoSEvalMetric = <Sched-
WSQoS, ⎡⋅⎤, DoubleScale, ?SchedWSQoS> and StdWSQoSEvalMetric = <StdWSQoS, ⎡⋅⎤,
DoubleScale, ?StdWSQoS> are defined to evaluate each QoS parameter value on the
WSQoSScale. Finally, the overall WSQoS aggregation metric WSQoSMetric =
<WSQoS, WeightedMean, WSQoSScale, ?WSQoSValue> is defined to measure ?WSQoS-
Value according to the expression in (5).

Fig. 4. Role of monitoring and reading metrics in query-answering

5 onQoS-QL Reasoner

The sample expressions presented above and the metrics used are analyzed by the
onQoS-QL reasoner that supports onQoS-QL query-answering by using the reasoning
capabilities of the open source DL reasoner Pellet [9] and the framework Jena [10].
Fig. 5 shows the onQoS-QL Reasoner architecture. The main component is the on-
QoS-QL Engine that manages and controls the SPAR-QL Engine and the Ranking
Engine.

Fig. 5. onQoS-QL Reasoner Architecture

The former selects from a pool the services that satisfy the query whereas the latter
establishes a ranking among the retrieved services. To this end, the onQoS-QL engine
rewrites the onQoS-QL query in a SPARQL one in order to give it in input to the
SPAR-QL engine. The result set obtained from the SPAR-QL engine can be ranked
according to the matching process defined in the query.

The onQoS-QL reasoner presents the following interface:

• loadOntology (String uri): loads in the knowledge-base the onQoS-based
domain ontology;

• loadProfile(Profile p): loads in the knowledge-base a domain ontology com-
pliant target profile;

• executeQuery(QueryProfile q, Boolean rank): retrieves the profiles that satisfies
the input query. The argument rank enables or disables the ranking process.

124 G. Damiano, E. Giallonardo, and E. Zimeo

5.1 Profiles Retrieval

As first step to reply to a user’s query, the onQoS-QL engine interacts with the
SPAR-QL engine to retrieve from its knowledge-base the Profile instances satisfying
the query according to the retrieval semantics explained in Table 1. As such, the on-
QoS-QL engine rewrites dynamically the submitted onQoS-QL query in SPAR-QL,
with two main sections: an OPTIONAL blocks sequence and a FILTER statement.
Indeed, each declarative or reading metric is rewritten as an OPTIONAL block and
each constraint (or predicate) for a QoS parameter value and some aggregation func-
tions have a corresponding piece in the FILTER statement.

Example of SPAR-QL rewriting of the query shown in (4).

SELECT DISTINCT ?profile WHERE { ?profile rdf:type onQoS:Profile.
 OPTIONAL{
 ?profile onQoS:hasQoSMetric ?metricRTT.
 ?metricRTT onQoS:measuredParameter ?mparRTT.

?metricRTT onQoS:hasMeasurementProcess ?mpRTT.
?mpRTT onQoS:hasMeasuredValue ?mvRTT.
?mvRTT onQoS:hasDoubleScaleValue ?RTT.
?mparRTT rdf:type qosNet:RTT.

 }
OPTIONAL{

 ?profile onQoS:hasQoSMetric ?metricJitter.
 ?metricJitter onQoS:measuredParameter ?mparJitter.

?metricJitter onQoS:hasMeasurementProcess ?mpJitter.
?mpJitter onQoS:hasMeasuredValue ?mvJitter.
?mvJitter onQoS:hasDoubleScaleValue ?Jitter.
?mparJitter rdf:type qosNet:Jitter.

 }
 FILTER ((?RTT < k1) || (?Jitter <= k2))
}

5.2 Profiles Ranking

The ranking engine orders the Profile instances retrieved by the SPAR-QL engine
according to the predicates and aggregation functions reported in Table 1. To compute
a ranking value, our component substitutes the Profile instance specific QoS parame-
ter values in the measurement process of the WSQoSMetric representing the user
query. Recursively, the execution of that process starts the computation of the input
arguments by means of their specific measurement processes.

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+
−

+
= −−−−

1
1

2
,1

1

2
? ?2?1

k

eJitterValuk

k

RTTValuek

ee
maxWSQoSValue (6)

The top-down measurement processes execution terminates when atomic parame-
ters are found. So, partial values on the WSQoSScale can be aggregated to compute a
globally value for the WSQoS parameter. In (6) we show the function used to rank the
result set obtained from the SPAR-QL engine for the query in (4).

6 Experimental Results

Once tested the correctness of the onQoS-QL reasoner, the proposed approach was
compared with manual matches and a previous implemented matching strategy [3],
called QoSAggregator. In [3], each test case QoS description defines a set of met-
rics with expected values for QoS parameters, that are assumed to be in logical
“And”. Instead, here in order to formulate the onQoS-QL queries, we are able to use

 OnQoS-QL: A Query Language for QoS-Based Service Selection and Ranking 125

explicitly the WSQoSAnd aggregation function, whose ranking semantics is been
defined comparing the following three different functions: min(x, y), max(x, y) and
(x+y)/2. These respectively return the smallest value between x and y, the largest one
and the average.

The recall curves in Fig. 6. a) were obtained constraining the expected WSQoS
value in the range [0.1, 1] with incremental steps of 0.1. We selected the aggregation
function related to the worst case (i.e., min(x, y)) to have a better level of robustness,
and we adopted a similar approach to define the ranking semantics of other functions.

Fig. 6. Comparison of a) WSQoSAnd ranking semantics and b) matching strategy

After established the ranking semantics of WSQoSAnd, we compared the recall
curve of QoSAggregator based on atomic matching with that of the onQoS-QL rea-
soner. Indeed, the comparison with QoSAggregator is significant only for a con-
strained value of WSQoS equal to 100%. With that assumption, the final recall value
for the QoSAggregator is equal to the initial value for the onQoS-QL reasoner be-
cause in the former case the retrieval is performed only with a constrained value of
WSQoS equal to 100% while in the latter case it is performed for every value and
before the ranking phase. So, for a constrained value of WSQoS equal to 0.1, the
onQoS-QL reasoner has already filtered out irrelevant profiles. Fig. 6. b) shows the
comparison between the QoSAggregator and the onQoS-QL reasoner. It shows also
that the adoption of a selection strategy exploiting domain knowledge about QoS
parameters also for onQoS-QL would improve of about 30% the recall index, without
degrading the precision, since the aggregation decreases false negatives without add-
ing false positives.

In spite of the same value of recall shown in Fig. 6 b) between QoSAggregator
(based on the Zeng algorithm) and onQoS-QL, it is worth noting that for the experi-
ments we used simple queries based on the “And” operator to correlate the parameters
of each template, so assuming the same simple query semantics used in [3]. However,
if the client wishes to use more complex queries, Zeng and QoSAggregator algo-
rithms would show a precision loss, whereas onQoS-QL, by defining operators with
an extended semantics, would be able to express complex queries for subjective and
context-aware service retrieval and ranking.

126 G. Damiano, E. Giallonardo, and E. Zimeo

7 Conclusion and Future Works

In this paper we addressed the problem of effectively expressing user preferences on
QoS selection and ranking. In particular we faced the challenge of design a QoS query
language in order to add a query logical layer in our discovery engine architecture.
Being QoS a fundamental aspect in business decision-making, discovery strategies
need to ensure that non-functional requirements to be satisfied.

In the progress of defining a QoS Discovery Engine, the design of an appropriate
query language is a fundamental phase. In fact, it enables users to request services
through a set of statements, instead of asking services through services descriptions.
onQoS-QL can be regarded as a bridge between onQoS and Service Requestors.

We will perform other experiments to evaluate the improvement of precision of
onQoS-QL compared with other techniques when more complex queries are issued.
To this end, we propose to interpret the user requests also using context information.

Acknowledgments. The work described in this paper is framed within the
LOCOSP[11] and ArtDeco[17] projects funded dy Italian Ministry of University and
Research (MIUR).

References

1. Verma, K., et al.: METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic
Publication and Discovery of Web Services. J. of Information Technology and Manage-
ment 6(1), 17–39 (2005); Special Issue on Universal Global Integration

2. Kramer, J.: Is Abstraction the Key to Computing. Communications of the ACM 50(4)
(2007)

3. Giallonardo, E., Zimeo, E.: More Semantics in QoS Matching. In: IEEE International Con-
ference on Service-Oriented Computing and Applications, Newport Beach, pp. 163–171.
IEEE Press, Los Alamitos (2007)

4. Wache, H., et al.: Ontology-based integration of information - a survey of existing ap-
proaches. In: Stuckenschmidt, H. (ed.) IJCAI 2001 Workshop: Ontologies and Information
Sharing, pp. 108–117 (2001)

5. Zhou, C., Chia, L., Lee, B.: DAML-QoS Ontology for Web Services. In: ICWS 2004, pp.
472–479 (2004)

6. Tian, M., Gramm, A., Ritter, H., Schiller, J.: Efficient Selection and Monitoring of QoS-
Aware Web Services with the WS-QoS Framework. In: IEEE/WIC/ACM International
Conference on Web Intelligence. Proceedings, pp. 152–158 (2004)

7. Dobson, G., Lock, R., Sommerville, I.: QoSOnt: a QoS Ontology for Service-Centric Sys-
tems. In: 31st EUROMICRO Conference on Software Engineering and Advanced Applica-
tions (2005)

8. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection. In:
ICSOC, pp. 212–221 (2004)

9. Pellet Reasoner, v. 1.3 (April 17, 2006),
 http://www.mindswap.org/2003/pellet/

10. Jena 2.4, http://jena.sourceforge.net/
11. LOCOSP, http://plone.rcost.unisannio.it/locosp

 OnQoS-QL: A Query Language for QoS-Based Service Selection and Ranking 127

12. Prud’hommeaux, E.: SPARQL Query Language for RDF, W3C Working Draft A.S. (ed.)
(October 4, 2006)

13. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL - A Language for Deductive Query Answer-
ing on the Semantic Web. Web Semantics: Science, Services and Agents on the
WWW 2(1), 19–29 (2004)

14. Antoniou, G., Bikakis, A.: DR-Prolog: A System for Defeasible Reasoning with Rules and
Ontologies on the Semantic Web. IEEE Transactions on Knowledge and Data Engineer-
ing, 233–245 (2007)

15. Bosca, A., Bonino, D., Pellegrino, P.: OntoSphere: more than a 3D ontology visualization
tool. In: The 2nd Italian Semantic Web Workshop SWAP CEUR Workshop Proceedings,
Trento, Italy, December 14-16 (2005), http://ceur-ws.org/Vol-166/70.pdf
ISSN 1613-0073

16. Liu, Y., Ngu, A.H.H., Zeng, L.: QoS computation and policing in dynamic web service se-
lection. WWW (Alternate Track Papers & Posters), 66–73 (2004)

17. ArtDeco, http://artdeco.elet.polimi.it/Artdeco

	onQoS-QL: A Query Language for QoS-Based Service Selection and Ranking
	Introduction
	Related Works
	onQoS Ontology
	onQoS-QL: A Query Language on QoS Attributes
	Query Examples

	onQoS-QL Reasoner
	Profiles Retrieval
	Profiles Ranking

	Experimental Results
	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

