
Omnidirectional Image Stabilization
by Computing Camera Trajectory

Akihiko Torii, Michal Havlena, and Tomáš Pajdla
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Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic
{torii,havlem1,pajdla}@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz

Abstract. In this paper we present a pipeline for camera pose and tra-
jectory estimation, and image stabilization and rectification for dense as
well as wide baseline omnidirectional images. The input is a set of im-
ages taken by a single hand-held camera. The output is a set of stabilized
and rectified images augmented by the computed camera 3D trajectory
and reconstruction of feature points facilitating visual object recognition.
The paper generalizes previous works on camera trajectory estimation
done on perspective images to omnidirectional images and introduces a
new technique for omnidirectional image rectification that is suited for
recognizing people and cars in images. The performance of the pipeline
is demonstrated on a real image sequence acquired in urban as well as
natural environments.

Keywords: Structure from Motion, Omnidirectional Vision.

1 Introduction

Image stabilization and camera trajectory estimation plays an important role in
3D reconstruction [1,2,3], self localization [4], and reducing the number of false
alarms in detection and recognition of pedestrians, cars, and other objects in
video sequences [5,6,7,8].

Most of the approaches to camera pose and trajectory computation [9,1,2]
work with classical perspective cameras because of the simplicity of their pro-
jection models and ease of their calibration. However, perspective cameras offer
only a limited field of view. Occlusions and sharp camera turns may cause that
consecutive frames look completely different when the baseline becomes longer.
This makes the image feature matching very difficult (or impossible) and the
camera trajectory estimation fails under such conditions. These problems can
be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor [10], are
used. Large field of view also facilitates the analysis of activities happening in
the scene since moving objects can be tracked for longer time periods [7].

In this paper we present a pipeline for camera pose and trajectory estimation,
and image stabilization and rectification for dense as well as wide baseline om-
nidirectional images. The input is a set of images taken by a single hand-held
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Fig. 1. (a) Kyocera Finecam M410R camera and Nikon FC-E9 fish-eye lens convertor.
(b) The equi-angular projection model. The angle θ between the casted ray of a 3D
point and the optical axis can be computed from the radius r of a circle in the image
circular view field.

camera. The output is a set of stabilized and rectified images augmented by the
computed camera 3D trajectory and reconstruction of feature points facilitating
visual object recognition. We describe the essential issues for a reliable camera
trajectory estimation, i.e. the choice of the camera and its geometric projection
model, camera calibration, image feature detection and description, robust 3D
structure computation, and a suitable omnidirectional image rectification.

The setup used in this work was a combination of Nikon FC-E9, mounted
via a mechanical adaptor, and a Kyocera Finecam M410R digital camera (see
Figure 1(a)). Nikon FC-E9 is a megapixel omnidirectional add-on convertor with
180◦ view angle which provides images of photographic quality. Kyocera Finecam
M410R delivers 2272×1704 images at 3 frames per second. The resulting com-
bination yields a circular view of diameter 1600 pixels in the image.

2 The Pipeline

Next we shall describe our pipeline.

2.1 Camera Calibration

The calibration of omnidirectional cameras is non-trivial and is crucial for achiev-
ing good accuracy of the resulting 3D reconstruction. Our omnidirectional cam-
era is calibrated off-line using the state-of-the-art technique [11] and Mičuš́ık’s
two-parameter model [10], that links the radius of the image point r to the angle
θ of its corresponding rays w.r.t. the optical axis (see Figure 1(b)) as

θ =
ar

1 + br2 . (1)

After a successful calibration, we know the correspondence of the image points to
the 3D optical rays in the coordinate system of the camera. The following steps
aim at finding the transformation between the camera and the world coordinate
systems, i.e. the pose of the camera in the 3D world, using 2D image matches.
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Fig. 2. Example of the wide baseline image matching. The colors of the dots correspond
to the detectors (yellow) MSER-Intensity+, (green) MSER-Intensity−, (cyan) MSER-
Saturation+, (blue) MSER-Saturation−, (magenta) Harris Affine, and (red) Hessian
Affine. (a) All detected features. (b) Tentative matches constructed by selecting pairs
of features which have the mutually closest similarity distance. (c) The epipole (black
circle) computed by maximizing the supports. Note that the scene dominated by a
single plane does not induce the degeneracy of computing epipolar geometry due to
solving the 5-point minimal relative orientation problem.

2.2 Detecting Features and Constructing Tentative Matches

For computing 3D structure, we construct a set of tentative matches detecting
different affine covariant feature regions including MSER [12], Harris Affine, and
Hessian Affine [13] in acquired images. These features are alternative to popular
SIFT features [14] and work comparably in our situation. Parameters of the
detectors are chosen to limit the number of regions to 1-2 thousands per image.
The detected regions are assigned local affine frames (LAF) [15] and transformed
into standard positions w.r.t. their LAFs. Discrete Cosine Descriptors [16] are
computed for each region in the standard position. Finally, mutual distances of
all regions in one image and all regions in the other image are computed as the
Euclidean distances of their descriptors and tentative matches are constructed
by selecting the mutually closest pairs. Figures 2(a) and (b) show an example of
the feature detection and matching for a pair of wide baseline images.

Unlike the methods using short baseline images [2], simpler image features
which are not affine covariant cannot be used because the view point can change
a lot between consecutive frames. Furthermore, feature matching has to be
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Fig. 3. Examples of pairs of images (two consecutive frames) from top to bottom in
the CITY WALK sequence. Blue circles represent the epipoles and yellow dots are the
matches supporting this epipolar geometry. Red dots are the matches feasibly recon-
structed as 3D points. (a) contains multiple moving objects and large camera rotation.
(b) contains large camera rotation and tentative matches on bushes. (c) contains ten-
tative matches mostly constructed on a complex natural scene.

performed on the whole frame because no assumptions on the proximity of the
consecutive projections can be made for wide baseline images. This is making the
feature detection, description, and matching much more time-consuming than
it is for short baseline images and limits the usage to low frame rate sequences
when operating in real-time.

2.3 Epipolar Geometry Computation of Pairs of Consecutive
Images

Robust 3D structure can be computed by RANSAC [17] which searches for
the largest subset of the set of tentative matches which is, within a predefined
threshold ε, consistent with an epipolar geometry [3]. We use ordered sampling
as suggested in [18] to draw 5-tuples from the list of tentative matches ordered
ascendingly by the distance of their descriptors which may help to reduce the
number of samples in RANSAC. From each 5-tuple, relative orientation is com-
puted by solving the 5-point minimal relative orientation problem for calibrated
cameras [19,20]. Figure 2(c) shows the result of computing the epipolar geometry
for a pair of wide baseline images.
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Often, there are more models which are supported by a large number of
matches. Thus the chance that the correct model, even if it has the largest
support, will be found by running a single RANSAC is small. Work [21] sug-
gested to generate models by randomized sampling as in RANSAC but to use
soft (kernel) voting for a parameter instead of looking for the maximal support.
The best model is then selected as the one with the parameter closest to the
maximum in the accumulator space. In our case, we vote in a two-dimensional
accumulator for the estimated camera motion direction. However, unlike in [21],
we do not cast votes directly by each sampled epipolar geometry but by the
best epipolar geometries recovered by ordered sampling of RANSAC [18]. With
our technique, we could go up to the 98.5 % contamination of mismatches with
comparable effort as simple RANSAC does for the contamination by 84 %. Fi-
nally, the relative camera orientation with the motion direction closest to the
maximum in the voting space is selected. Figure 3 shows difficult examples of
pairs of images to find the correct epipolar geometry.

2.4 Chaining Camera Poses for Sequence of Images

Camera poses in a canonical coordinate system are recovered by chaining the
epipolar geometries of pairs of consecutive images in a sequence. For the essen-
tial matrix Eij between frames i and j = i + 1, the essential matrix Eij can be
decomposed into Eij = [eij ]×Rij . Although there exist four possible decomposi-
tions, the right decomposition can be selected to reconstruct all points in front
of both cameras [3, p260]. Having the normalized camera matrices [3] of the i-th
frame Pi = [Ri |Ti], the normalized camera matrix Pj can be computed by

Pj = [RijRi | RijTi + αeij ] (2)

where α is the scale of the translation in the canonical coordinate system. The
scale α can be computed by any 3D point seen in at least three consecutive
frames. The best scale is selected to maximize the number of points that pass the
feasibility test of L1- or L∞- triangulation [22,23], i.e., the intersection of pixel-
cone rays test. In the final step, we applied the sparse bundle adjustment [24] to
refine the structure.

2.5 Image Stabilization Using Camera Pose and Trajectory

The recovered camera pose and trajectory can be used to rectify the original
images to the stabilized images. If there exists no assumption on the camera
motion in a sequence, the simplest way of stabilization is to rectify images w.r.t.
the gravity vector in the coordinate system of the first camera and all other
images will then be aligned with the first one. This can be achieved by taking
the first image with care. When a sequence is captured by walking or driving
on the roads, it is possible to stabilize the images w.r.t. the ground plane. For a
gravity direction g and a motion direction t, we compute the normal vector of
the ground plane

d =
t × (g × t)
|t × (g × t)| . (3)
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Fig. 4. Projection of a pixel u′ of the resulting cylindrical image onto a pixel u on a
unit sphere. Column index u′

i is transformed into angle θ and row index u′
j into angle φ.

These angles are then transformed into the coordinates ux, uy, and uz of a unit vector.
Left: Central cylindrical projection. Right: Non-central cylindrical projection.

We construct the stabilization and rectification transform Rs for the image point
represented as a 3D unit vector such that Rs = [a,d,b ] where a = (0, 0, 1)� ×
d /

∣
∣(0, 0, 1)� × d

∣
∣ and b = a×d / |a × d|. This formulation is sufficient because

the roads usually go up and down to the view direction.

2.6 Central and Non-central Cylindrical Image Generation

Using the camera trajectories, it is possible to construct perspective cutouts
rectified w.r.t. the ground plane and an arbitrary object recognition routine de-
signed to work with images acquired by perspective cameras can be used without
any further modifications. For instance, object recognition methods could benefit
from image stabilization (e.g. [6]) which is usually trained on perspective images.
On the other hand, as a true perspective image is able to cover only a small part
of the available omnidirectional view-field, we propose to use cylindrical images
which can cover a much larger part of it.

Knowing the camera and lens calibration, we represent our omnidirectional
image as a part of a surface of a unit sphere, each pixel is represented by a unit
vector. It is straightforward to project such surface on a surface of a unit cylinder
surrounding the sphere using rays passing through the center of the sphere (see
Figure 4). We transform the column index u′

i of a pixel of the resulting cylindrical
image into angle θ and the row index u′

j into angle φ using

θ =
(

u′
i − IW

2

)
θmax

IW
, φ = arctan

((

u′
j − IH

2

)
θmax

IW

)

, (4)
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(a) (b)

(c) (d)

Fig. 5. (a) Original omnidirectional image (equiangular). (b) Central cylindrical pro-
jection. (c) Perspective projection. (d) Non-central cylindrical projection. Note there
is a large deformation at the borders of the perspective image and at the top and bot-
tom borders of the central cylindrical image. The borders of the non-central cylindrical
image are less deformed.

where IW and IH are the dimensions of the resulting image and θmax is the
horizontal field of view of the omnidirectional camera. These angles are then
transformed into the coordinates ux, uy, and uz of a unit vector as

ux = cosφ sin θ, uy = sin φ, uz = cosφ cos θ . (5)

Note that the top and bottom of the rectified image look rather deformed for
the vertical field of view reaching π if the height of the resulting image IH is being
increased (see Figure 5). We propose to use a generalization of the stereographic
projection which we call a non-central cylindrical projection. Projecting rays do
not pass through the center of the sphere but are cast from points on its equator.
The desired point is the intersection of the plane determined by the column of
the resulting image and the center of the sphere with the equator of the sphere.
The equation for angle θ remains the same but angle φ is now computed using

φ = 2 arctan

((

u′
j − IH

2

)
θmax

IW

2

)

. (6)

When generating the images, bilinear interpolation is used to suppress the arti-
facts caused by image rescaling.
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3 Experimental Results

The experiment with real data demonstrates the use of proposed image stabiliza-
tion method. Two image sequences of a city scene captured by a single hand-held
fish-eye lens camera are used as our input sequences.

The CITY WALK sequence is 190 frames long and the distance between con-
secutive frames is 1-3 meters. This sequence is challenging for recovering the
camera trajectory due to sharp turns, objects moving in the scene, and natural
complex environment. The benefit of wide field of view can be seen in Figure 3.
The camera motions are reasonably recovered by using the features detected from
stational rigid objects. Figure 6(b) shows the camera positions and the world

(a)

(b)

Fig. 6. Camera trajectory of the CITY WALK sequence. (a) A bird’s eye view of the
city area used for the acquisition of our test sequence. The trajectory is drawn with a
white line. (b) The bird’s eye view of the resulting 3D model view. Red dots represent
the camera positions recovered by our proposed method. Small gray dots represent the
reconstructed world 3D points.
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(a) Central projection

(b) Non-central projection

Fig. 7. Results of image transformations of frame 67 in the CITY WALK sequence.
The images are stabilized w.r.t. the ground plane and panoramic images transformed
by (a) central cylindrical projection and (b) non-central cylindrical projection. Note the
pedestrians are less deformed on the non-central cylindrical projection while convening
larger field of view than the central one.

3D points reconstructed by our structure from motion. The reconstruction is
comparable to the walking trajectory shown in Figure 6(a). Since the sequence
is captured walking along the planar street, all the images are stabilized using
the recovered camera pose and trajectory w.r.t. the ground plane. Figure 7 shows
the images generated by using central and non-central cylindrical projections. It
can be seen that the non-central cylindrical projection in Figure 7(b) successfully
suppresses the deformation at the top and bottom and makes people standing
close to the camera looking much more natural.

The FREE MOTION sequence is 187 frames long and the distance between
consecutive frames is 0.3-2 meters. This sequence is also challenging for recov-
ering the camera pose and trajectory due to the large view changes by camera
rotation and translation. Figure 8(a) shows several frames of the original images
in the FREE MOTION sequence. Figure 8(b) shows the panoramic images gen-
erated by the non-central cylindrical projection. Since the motion is completely
irrelevant w.r.t. the ground plane, all images are stabilized w.r.t. the gravity vec-
tor in the coordinate system of the first camera. Figure 8(c) shows the panoramic
images stabilized using the recovered camera pose and trajectory. It can be seen
clearly from this result that the large image rotation is successfully canceled
using the recovered camera pose and trajectory.
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(a) (b) (c)

Fig. 8. Results of our image stabilization and transformation in the FREE MOTION
sequence. (a) Original images. (b) Non-stabilized images. (c) Stabilized images w.r.t.
the gravity vector in the first camera coordinates. The rotation is successfully canceled
and all images are stabilized using the recovered camera pose and trajectory.
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4 Conclusions

The pipeline for camera pose and trajectory estimation, and image stabilization
and rectification for an image sequence acquired by a single omnidirectional
camera is presented. The experiments demonstrated that the robust camera pose
and trajectory estimation based on epipolar geometry is useful to stabilize the
image sequence. Furthermore, the non-central cylindrical projection can generate
perspective-projection-like images while preserving a large field of view. The
stabilized images can be instantly used as the preprocess for the recognition
techniques [6,7] that assume ground plane positions and codebooks trained on
perspective images.
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