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Abstract. Most previous methods for generic object recognition explic-
itly or implicitly assume that an image contains objects from a single cat-
egory, although objects from multiple categories often appear together in
an image. In this paper, we present a novel method for object recognition
that explicitly deals with objects of multiple categories coexisting in an
image. Furthermore, our proposed method aims to recognize objects by
taking advantage of a scene’s context represented by the co-occurrence
relationship between object categories. Specifically, our method estimates
the mixture ratios of multiple categories in an image via MAP regression,
where the likelihood is computed based on the linear combination model
of frequency distributions of local features, and the prior probability is
computed from the co-occurrence relation. We conducted a number of
experiments using the PASCAL dataset, and obtained the results that
lend support to the effectiveness of the proposed method.

1 Introduction

With the proliferation of digital cameras, enormous numbers of digital images
have been accumulated on the Internet. Since manually processing such a huge
amount of data is almost impossible, automatic image classification and retrieval
are research areas of increasing importance. Thus, a research topic called generic
object recognition has recently been brought back into the spotlight in the com-
puter vision community. In this study, we focus on the problem of object cate-
gorization among various tasks of generic object recognition.

It is generally recognized that object categorization is a very difficult task
due to the following two reasons. First, objects of the same category differ in
both color and shape, that is, intra-category variation. Second, the appearance
of an object varies drastically depending on imaging conditions such as cam-
era viewpoints, the object’s pose, and illumination. To cope with these difficul-
ties, previous work mainly studies feature detection[8,14], object and category
representation[4,2,11], or classifiers[5,14] robust against appearance changes due
to intra-category variation and variable imaging conditions.

T. Wada, F. Huang, and S. Lin (Eds.): PSIVT 2009, LNCS 5414, pp. 497–508, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



498 T. Okabe et al.

The previous studies however share a common limitation. That is, most previ-
ous methods explicitly or implicitly assume that an image contains objects from
a single category, and evaluate whether objects of each category are present or
not, independent of the presence or absence of objects of the other categories.
Therefore, they are not well suited for recognizing objects of various categories
coexisting in an image and do not consider the fact that certain combinations
of categories are more likely to appear together than others. For example, given
an image of a street, it is highly probable that a “car” will coexist with a “mo-
torbike”, while it is very unlikely that a “car” and a “cow” will appear together.

Accordingly, we present a novel method for object recognition that explicitly
deals with objects of multiple categories coexisting in an image. Furthermore,
our proposed method aims to recognize objects by taking advantage of a scene’s
context represented by the co-occurrence relationship between object categories.
The use of such contextual cues makes it possible to classify objects of different
categories but with similar appearance.

In order to achieve our objective, we chose to use the bag-of-features (BoF)
paradigm[2], which is now known as one of the most promising paradigms for
generic object recognition. In particuloar, our proposed method estimates the
mixture ratios of multiple categories in an image via maximum a posteriori
(MAP) regression, where the likelihood is computed based on the linear combi-
nation model of frequency distributions (i.e. histograms) of local features, and
the prior probability is computed from the co-occurrence relation. We conducted
a number of experiments using the PASCAL dataset, and obtained the results
that give support to the effectiveness of the proposed method.

The rest of this paper is organized as follows. We briefly summarize related work
in Section 2. We describe our proposed method in Section 3, and report the exper-
imental results in Section 4. Finally, in Section 5, we present concluding remarks.

2 Related Work

We briefly summarize previous studies relating to the basic idea of our proposed
method from two distinct points of view; multiple categories and context.

Multiple Categories

In order to recognize objects of various categories coexisting in an image, a
segmentation-based approach and a regression-based approach have been devel-
oped. The former approach segments an image into regions so that each seg-
mented region contains objects of a single category, and then conducts object
categorization for each region[10]. However, segmenting images of complex scenes
is not necessarily an easy task, and the accuracy of classification depends on that
of image segmentation.

The latter approach estimates the mixture ratios of multiple categories in an
image via regression, where the mixture ratio is defined based on the number of
feature points arising from each category in the BoF paradigm (see Section 3.1).
For example, Sivic et al.[12] estimate the mixture ratios of various categories in
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an individual image by applying probabilistic Latent Semantic Analysis (pLSA)
to a set of unlabeled images. Their regression-based method is similar to ours
in the sense that the frequency distribution of feature points in an image is
modeled by the linear combination of frequency distributions of feature points
arising from various categories. However, their method finds the mixture ratios
based on the framework of maximum likelihood (ML) estimation, and the prior
information other than images that can be inferred from scene’s context is not
taken into account. Consequently, it is difficult to classify objects of different
categories but with similar appearance.

Context

Obviously the context of the scene is one of the most important clues for un-
derstanding images and has in fact been utilized in the field of generic object
recognition[1,7]. However, the co-occurrence relation of object categories has re-
ceived little attention compared with other contextual information such as size
and position[10].

Recently, Rabinovich et al.[10] proposed a method for object categorization
incorporating the co-occurrence relation of object categories, and Galleguillos et
al.[6] extended their method by incorporating the spatial context with respect to
the relative location of objects. First, they segment an image into regions, and
then tentatively estimate a category label and its confidence for each segmented
region based on the BoF paradigm. Finally, they revise the label based on the
confidence of the tentative label and the co-occurrence relation. As we described
before, however, image segmentation itself is a potential limitation for images
with complex scenes. In addition, our method differs from their segmentation-
based method with respect to the manner in which we describe the co-occurrence
relationship between object categories. They model the co-occurrence relation
based on the presence of objects in terms of frequencies, that is, the number of
times that certain combinations of categories appear together. In contrast, we
model the co-occurrence relation in terms of mixture ratios based on the number
of feature points arising from each category (see Sections 3.3 and 4.1 for details).
The co-occurrence in terms of mixture ratios can capture contextual information
such as an object’s size, beyond the presence of objects.

From the viewpoint of co-occurrence, the method for image categorization
proposed by Qi et al.[9] is related to our study. They also segment an image into
regions, and represent each region by a set of low-level features such as color
and size, and then classify the image based on the co-occurrence of the low-level
features. Their co-occurrence describes the relationship among features arising
from a single category, and is effective for classifying an image into one of given
categories. On the other hand, our co-occurrence that describes the relationship
between multiple categories is essential for estimating mixture ratios of multiple
categories in an image.

As described above, our proposed method is differentiated from related work
by the following: (i) our method is a regression-based approach and avoids
troublesome segmentation for images with complex scenes, and (ii) our method
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Fig. 1. (a) The mixture ratio of a “motorbike” is defined by the ratio between the
number of feature points detected within the bounding box and the total number
of feature points. (b) The histogram of an entire image is described by the linear
combination of a motorbike’s histogram, a person’s histogram, etc.

takes account of the co-occurrence relation of object categories in terms of mix-
ture ratios, which captures more contextual information than that in terms of
frequencies.

3 Proposed Method

3.1 Overview

We represent an image as a set of local features such as SIFT[8] based on the
BoF paradigm. Let us denote the label of a category by c (c = 1, 2, 3, ..., C), and
define the mixture ratio rc of the category in an image as the ratio between the
number of feature points arising from the category c and the total number of
feature points as shown in Fig.1(a). Here, C is the total number of categories
and

∑C
c=1 rc = 1 by definition. We concatenate rc into a vector and denote the

mixture ratios of all categories in the image by r = (r1, r2, r3, · · ·, rC)T .
We compress the local features via vector quantization (see Section 4.1), and

call the quantized features visual words. Let us denote the label of a visual
word by w (w = 1, 2, 3, ..., W ), and the relative frequency of the visual word w
arising from an image by hw. Here, W is the total number of visual words and∑W

w=1 hw = 1 by definition. We concatenate hw into a vector and denote the
relative frequency distribution of the visual words arising from the image by h =
(h1, h2, h3, ..., hW )T . Hereafter, we often call the relative frequency distribution
of visual words the histogram in short.

Our proposed method finds the mixture ratios r from the histogram h of a
given image based on the framework of MAP estimation. The posterior proba-
bility p(r|h) is given by the Bayes’ rule as
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p(r|h) ∝ p(h|r)p(r). (1)
Here, as described in Sections 3.2 and 3.3, the likelihood p(h|r) is derived from
the relative frequency distribution of visual words, and the prior probability p(r)
is derived from the co-occurrence relation of object categories.

3.2 Likelihood

As shown in Fig.1(b), the histogram of an image which includes a motorbike and
a person is represented by the linear combination of a motorbike’s histogram, a
person’s histogram, etc. Therefore, it is clear that the relative frequency distri-
bution h arising from the entire image is described by the linear combination of
relative frequency distributions hc arising from various categories in the image:

h =
C∑

c=1

rchc, (2)

where the mixture ratios are the coefficients of the linear combination.
Assuming that the relative frequency of each visual word is independent of

those of the other visual words, the likelihood p(h|r) is represented by the prod-
uct of individual likelihoods p(hw|r) as

p(h|r) =
W∏

w=1

p(hw|r). (3)

In addition, let us assume that each component hcw of hc obeys a normal
distribution N (μcw, σ2

cw) with the mean μcw and the variance σ2
cw. Then, the

linear combination of relative frequency hw =
∑C

c=1 rchcw also obeys the normal
distribution N (

∑C
c=1 rcμcw,

∑C
c=1 r2

cσ2
cw) due to the reproductive property of the

normal distribution. Hence, the likelihood is given by

p(h|r) =
W∏

w=1

1
√

2π
∑C

c=1 r2
cσ2

cw

exp

[

− (hw −
∑C

c=1 rcμcw)2

2
∑C

c=1 r2
cσ2

cw

]

. (4)

For the sake of simplicity in the following discussion, we define Elike as

Elike = − ln p(h|r) �
W∑

w=1

[
(hw −

∑C
c=1 rcμcw)2

∑C
c=1 r2

cσ2
cw

+ ln

(
C∑

c=1

r2
cσ2

cw

)]

. (5)

Here, we omit constants for estimation.

3.3 Prior Probability

We address the co-occurrence relationship between two object categories. Specif-
ically, we assume that the mixture ratios obey a C-dimensional normal distri-
bution NC(ν, Σ) with the mean vector ν and the covariance matrix Σ. In the
similar way to the above, we define Epri as

Epri = − ln p(r) � (r − ν)T Σ−1(r − ν). (6)
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3.4 Cost Function

Substituting (5) and (6) into the negative logarithm of (1) and introducing a
parameter λ, we define the empirical cost function Epos as

Epos = Elike + λEpri. (7)

Our proposed method estimates the mixture ratios of multiple categories in an
image by minimizing this empirical cost function. Because the mixture ratios
are non-negative and their summation is equal to 1, our method results in a
nonlinear minimization problem with the following constraints:

minimize Epos

subject to rc ≥ 0 (c = 1, 2, 3, ..., C) (8)
C∑

c=1

rc = 1.

The parameter λ is a relative weight between Elike, which represents the degree
by which the linear combination of histograms fits the data, and Epri, which
represents the statistical constraints enforced by the co-occurrence relationship
between object categories. The ML estimation (i.e. without the prior probability)
corresponds to the case when λ = 0.

We note here that the solution of the optimization problem is influenced
by the initializing values. Our current implementation finds the initial values
by minimizing

∑W
w=1(hw −

∑C
c=1 rcμcw)2 under the constraints rc ≥ 0 (c =

1, 2, 3, ..., C) and
∑C

c=1 rc = 1. Then, we optimize the exact cost function by
using fmincon in the MATLAB toolbox.

4 Experiments

4.1 Procedures

Dataset

We used the PASCAL2006 dataset[3] for evaluating the performance of our pro-
posed method. This dataset contains objects of ten categories; “bicycle”, “bus”,
“car”, “cat”, “cow”, “dog”, “horse”, “motorbike”, “person”, and “sheep”. The
dataset consists of a set of data for training and another set for test. In addition,
the annotations describing the labels and bounding boxes of those objects are
given for all images.

Bag of Features

WeusedSIFT [8] for detecting anddescribing local features in images, andk-means
clustering for vector quantization. Although other detectors, descriptors [14], and
quantization algorithms [13] could be used as well, we implemented the above stan-
dard BoF since the main purpose of our experiments is to confirm the advantage
of incorporating the co-occurrence relation into generic object recognition.
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First, we prepared 50 images for each category from the training data by
cropping regions inside the bounding boxes. Then, local features were detected
and vector-quantized via k-means algorithm. The number of visual words W are
32, 64, 128, 256, 512, and 1024. We computed the histograms of those 500 images
and finally obtained the means μcw and variances σ2

cw of relative frequencies for
describing the likelihood in (5).

So far, we implicitly assume that images contain objects of only given cate-
gories. However, objects of other categories generally appear in images. Accord-
ingly, we consider those objects as backgrounds, and investigate the effects of
adding background categories to the ten object categories. We manually clas-
sified backgrounds into two categories: one contains artificial materials such as
buildings and the other contains natural objects such as grass. Then, we se-
lected 50 images for each background category and detected local features from
the outside of the bounding boxes. The calculating statistics of the histograms
is straightforward.

Co-occurrence of Categories

We acquired the following two co-occurrence relations of object categories from
2618 images in the training data. The first type of co-occurrence relation is
described in Section 3.3. Because the labels and bounding boxes are given, cal-
culating the mixture ratio of each category is straightforward. We denote the
mean vector and the covariance matrix of the mixture ratios by νr and Σr.

The second type of co-occurrence relation is used for (partially) comparing
our proposed method with the method proposed by Rabinovich[10]. Specifically,
we confirm the advantage of the co-occurrence relation in terms of mixture ratios
over that in terms of frequencies. We calculate the mean vector νf and covariance
matrix Σf based on the presence of objects: rc = 1 if objects of the category c
are present and rc = 0 otherwise.

Fig.2 shows the two covariance matrices Σr and Σf (we show only the lower
left values due to symmetry). The combinations of categories with positive co-
variance tend to appear together, but those with negative covariance have a
tendency not to appear at the same time. For example, a “person” often ap-
pears with a “motorbike” and a “horse”, but a “cat” rarely appears with a
“dog”. Interestingly, we observe that the sign of covariance differ between Σr

and Σf for a few combinations of categories.

Measure for Quantitative Evaluation

We used all of 2686 images from the test data. For quantitative evaluation,
we use a measure known as the Area Under Curve (AUC), i.e. the area under
the Receiver Operating Characteristic (ROC) curve, which is commonly used
in the field of generic object recognition. Specifically, we consider the estimated
mixture ratio of a given category as the probability that objects of that category
are present in an image. Namely, we consider objects of the category c to be
present if rc is greater than a threshold, and draw the ROC curve by varying
the threshold.
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Fig. 2. The covariance matrices in terms of mixture ratios (top) and frequencies (bot-
tom). The numerical values are multiplied by 100 for display purpose.

In general, performance is considered to be better as the AUC grows closer
to one. However, the way of evaluation that regards the ratio as the probability
has some limitations. For example, an object with a small mixture ratio will
be considered to be a false negative even though its mixture ratio is accurately
estimated by our method, and as a result would degrade the AUC. We note that
because our method characterizes the mixture ratios of multiple categories (i.e.
not the presence and absence of objects), the AUC may not provide a holistic
measure.

4.2 Results

Effects of the Co-occurrence Relation in terms of Mixture Ratios

First, we examined the effects of incorporating the co-occurrence relation in
terms of mixture ratios (νr, Σr) into generic object recognition. Fig. 3 (left)
shows the average of AUCs with respect to the ten object categories for various
combinations of the weight λ and the number of visual words W . We can find that
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Fig. 3. AUCs: incorporating the co-occurrence relation in terms of mixture ratios (left)
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occurrence relation in terms of frequencies (MAP: freq)/mixture ratios (MAP: ratio),
and ground truth

the results using the prior probability are better than those of ML estimation
(λ = 0). Our proposed method and ML estimation achieve maximum AUCs of
0.73 and 0.66 respectively. Thus, we can say that the co-occurrence relation in
terms of mixture ratios works well for recognizing multiple objects.

In Fig.4, we show the estimated mixture ratios and the ground truth for some
images. For example, the ML estimation (ML) yields the result of “motorbike”
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for the left image. On the other hand, our method based on MAP estimation
(MAP: ratio) yields the result of “motorbike” and “person”, which is consis-
tent with the ground truth. These results also support the effectiveness of the
proposed method.

Effects of the Co-occurrence Relation in terms of Frequencies

Second, we examined the effects of the co-occurrence relation in terms of fre-
quencies (νf , Σf ). In the similar manner to the above, we show the average of
AUCs in Fig. 3 (right). Also in this case, the results that make use of the prior
probability are better than those of ML estimation in most combinations. How-
ever, the performance of the method using the co-occurrence relation in terms
of frequencies is worse than that using the relation in terms of ratios. Therefore,
one can conclude that the co-occurrence relation in terms of frequencies (i.e.
based only on the presence of categories) is also effective for object recognition,
but the relation considering mixture ratios works better. We show the estimated
mixture ratios (MAP: freq) in Fig.4.

Effects of Background Categories

Finally, we examined the effects of adding background categories to the ten
object categories. Fig. 5 shows the results obtained by using the co-occurrence
relation (νr, Σr). Although the results are similar to the previous experiments in
the sense that the co-occurrence relation works well, the performance becomes
slightly worse than the case without background categories. As described in
Section 4.1, this is because the background categories lower the mixture ratios
of the object categories, and therefore increase the number of false negatives.

We show the estimated mixture ratios and the ground truth in Fig.6. Here,
“bg” stands for the summation of the mixture ratios of two background cate-
gories. When we ignore the background categories (C=10), the estimated ratios
are significantly different from the ground truth, because the histogram of visual
words arising from backgrounds is forced to be described by those arising from
the object categories. On the other hand, when the background categories are
combined (C=12), the mixture ratios of the backgrounds have larger values, and
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those of the object categories come closer to the ground truth. These results
imply the effectiveness of the background categories for recognizing images with
large background area.

5 Conclusions and Future Work

In this paper, we proposed a novel method for recognizing objects of multiple
categories coexisting in an image. In particular, our proposed method estimates
the mixture ratios of multiple categories in an image via regression by incorpo-
rating the co-occurrence relationship between object categories. We implemented
a prototype system of our method, and confirmed its effectiveness through ex-
periments using the PASCAL dataset.

Future directions of this study include incorporating the co-occurrence rela-
tionship among more than three categories and modeling background categories
via unsupervised learning. In addition, individual elements of BoF such as fea-
ture detection, description, and vector quantization should be improved.
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