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Abstract. This paper presents a method for visualizing a pedestrian
traffic flow using results of feature point tracking. The Kanade-Lucas-
Tomasi feature tracker algorithm for point feature tracking is widely
used because it is fast; however, it is sometimes fails to accurately track
non-rigid objects such as pedestrians. We have developod a method of
point feature tracking using a scale invariant feature transform (SIFT).
Our approach uses mean-shift searching to track a point based on the
information obtained by a SIFT. We augment the mean-shift tracker
by using two interleaved mean-shift procedures to track the mode in
image and scale spaces, which represents the spatial location and the
scale parameter of the keypoint, respectively. Since a SIFT feature is
invariant to changes caused by rotation, scaling, and illumination, we
can obtain a beter tracking performance than that of a conventional
approach. Using the trajectory of the points obtained by our method, it
is possible to visualize traffic pedestrian traffic flow using the location
and scale obtained by SIFT feature point tracking.

1 Introduction

Visualizing a pedestrian traffic flow and its analysis are important for visual
surveillance, marketing, and etc,. This paper presents a method for visualizing a
pedestrian traffic flow using results of feature point tracking. Using a scale invari-
ant feature transform (SIFT) is a method for detecting keypoints and describing
the characteristic features of these keypoints, which are invariant to changes
caused by rotation, scaling, and illumination [1]. Mikolajczyk and Schmid [2]
recently evaluated a variety of approaches and identified the SIFT algorithm
as being the most resistant to common image deformations. Therefore, SIFT
is commonly used in a number of real-world applications, such as image regis-
tration [3] and object recognition [4]. Keypoint matching using the Euclidean
distance between SIFT features is a simple and very efficient way to track key-
points through an image sequence if the keypoints belong to rigid objects such
as vehicles, as shown in Figure 1(a). However, keypoint matching sometimes fails
to accurately track the keypoints on non-rigid objects such as pedestrians, as
shown in Figure 1(b). This is because SIFTs are very sensitive to shape change
in the image.
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Fig. 1. Examples of SIFT keypoint matching. (a) Vodeo of vehicle passing from left to
right; (b) Video of pedestrians walking in different directions.

We have developed a new approach to keypoint tracking using the SIFT tech-
nique. In our approach, we use mean-shift searching to track a keypoint based
on the information obtained from the SIFT technique. The mean-shift algorithm
[5,6] locates the nearest mode of a point sample distribution [7,8]. Collins [9] pro-
posed using a method of scale change mean-shift based on color features, and
She et al. [10] proposed a method that uses edge features. These features are
used to form a weight-map of the mean-shift and are suitable for tracking the
regions of a non-rigid object, but not suitable for the tracking of keypoints.

In this paper, we propose a mean-shift tracker to search the mode in image and
scale spaces using a weight-map obtained by the SIFT technique. Our approach
uses two interleaved mean-shift procedures to track the spatial location and to
estimate the scale parameter of keypoints in an image. Since the SIFT feature
is invariant to changes caused by rotation, scaling, and illumination, we obtain
better tracking performance than that of conventional approaches such as the
widely-used Kande-Lucas-Tomasi (KLT) feature tracker algorithm [11,12]. Using
the trajectory of the points obtained by the proposed method, we also show that
it is possible to visualize a pedestrian traffic flow.

The rest of this paper is organized as follows; Section 2 describes SIFT feature
point tracking using two interleaved mean-shift procedures; Section 3 shows the
experimental results; Section 4 shows visualization examples of pedestrian traffic
flow by the proposed method; Section 5 summarizes and describes consideration
and future work.

2 SIFT Feature Point Tracking

Since the SIFT descriptor computes invariant features from a local image patch,
SIFT features around the keypoint tend to have high similarity in neighboring
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pixels. Our algorithm uses mean-shift searching based on a weight-map computed
using the SIFT technique around the tracked keypoints. The weight-map is used
to search a mode in image and scale spaces by using two interleaved mean-shift
procedures. These two procedures are described below.

2.1 Algorithm

Figure 2 shows a process of keypoint tracking using an image sequence following
our method.

 

Fig. 2. Process of keypoint tracking using an image sequence

Initial Tracking Point Detection. Initial keypoints are detected by the SIFT
keypoint detector and represented as a local feature by the SIFT descriptor;
therefore, each detected keypoint has a 128-dimensional vector v = (v0, · · · v127)
and a scale parameter s.

Mean-Shift Searching. The mean-shift algorithm is a simple nonparametric
method for locating the nearest mode of a sample distribution. It has recently
been adopted as an efficient tracking technique. When the mean-shift method
is applied to keypoint tracking, the gradient density is formed by the weight
ω(xi, s) at each image pixel xi. The core of the mean-shift tracking algorithm
is the computation of a keypoint motion vector from a location x to a new
location x′.

Generally, a weight map is determined using a color-based appearance model.
In the work done by Comaniciu et al. [6], the weights were obtained by com-
paring a histogram qu, where u is the histogram bin index, with a histogram of
colors qu(x0) observed within a mean-shift window at the current location x0.
In this paper, weight-maps are determined using the similarity between SIFT
features at the location x0 of the previous frame t − 1 and the current frame t.
We augment the mean-shift tracker by using two interleaved mean-shift proce-
dures to track the mode in image and scale spaces, which represents the spatial
location and the scale parameter of the keypoint, repectively.

Step1 Mean-Shift in Image Space
Given the scale s in the current frame, the SIFT features vi are computed
using equation (3). Then, we compute a location weight map ω(xi, s) from the
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distance between reference SIFT feature v0 and the SIFT feature SIFT(xi, s) at
the location xi with the scale s using the following equation:

ω(xi, s) = exp
(

−d(xi, s)2

2σ2
d

)
, (1)

d(x, s) = ||SIFT(x, s) − v0||,

=

√√√√ 127∑
k=0

(vxs,k − v0,k)2, (2)

SIFT(x, s) = vxs = (vxs,0, · · · , vxs,127). (3)

Then the spatial mean-shift vector is obtained as

Δx =
�N

i=0 Kloc(xi − x, σxy)ω(xi, s)(xi − x0)�N
i=0 Kloc(xi − x, σxy)ω(xi, s)

, (4)

where Kloc is a spatial kernel function given by

Kloc(x, σxy) = exp
�

−(x2 + y2)
2σ2

xy

�
. (5)

Finally, we can get the new location x′ = x+ Δx from the mean-shift vector as
shown in Figure 3(a).

Step2 Mean-Shift in Scale Space
Our approach uses a mean-shift procedure to estimate the scale parameter of
the keypoint at the location obtained in step1. We create a scale weight-map
ω(xi, s), which is a 1D array, using the following equation:

ω(x′, sSj) = exp
(

−d(x′, sSj)2

2σ2
d

)
. (6)

This mean-shift in scale space is performed on the 1D array of results to locate
the mode, as shown in Figure 3(b). The scale mean-shift vector is then obtained
using this equation:

ΔS =

�M
j=0 Kscale(Sj − 1, σs)ω(x′, sSj)Sj�M

j=0 Kscale(Sj − 1, σs)ω(x′, sSj)
, (7)

where S is the current scale, and Kscale is a kernel function for scale space
given by

Kscale(S, σs) = exp
(

−S2

2σ2
s

)
. (8)

Here, Sj(j = 0, · · · , M) is a numeric sequence that increases at equal intervals,
and its median value is 1.0 (For example, Sj = · · · , 0.9, 1.0, 1.1, · · ·). Sj is not a
value on the scale parameter of the keypoint. Sj means a scaling factor of the
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Fig. 3. Weight-Map Examples

scale parameter s for reference. If the value of Sj is 1.0, it means that there are
no scale changes in the current frame. In the equation (7), we use S − 1 so that
the response of the kernel function Kscale will be a maximum value where there
is no scale change. The scale is updated by s′ = sΔS using the mean-shift vector
ΔS in scale space.

Step3 Iteration
Iterate by interleaving steps 1 and 2 until both |Δx| < εxy and |ΔS − 1| < εS .

Rejection of Tracking Failure Point. Our keypoint tracker sometimes loses
features when they became occluded or leave an image. To make a decision
whether a feature is lost or not, we compute the Euclidean distance of the SIFT
features at the new location x′, and previous location x using equation (2). If
the distance is above a given threshold, the keypoint at the new location x is
deemed a lost feature point and rejected.

Association of Keypoints. As shown in Figure 2, we use the SIFT keypoint
detector in parallel with a mean-shift procedure for keypoint tracking in order
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to add new keypoints that belong to any new objects appearing in the image.
Finally, we obtain trajectories of these keypoints by associating tracked keypoints
and newly detected keypoints.

2.2 Example of Scale Searching

The value of scale s corresponds to a local region centered on the keypoint for
describing SIFT features. Figure 4 shows a tracking example of the location and
scale when the image is magnified. White circles in Figure 4(a) show the location
of the tracked keypoint, and blue circles show the size of the scale estimated by
our proposed method. We can see that the same range of keypoints has been
selected automatically, even though the size of the image has changed. Figure
4(b) shows the scaling rate of the image and the rate of the scaling rate estimated
using our method. From the graph, we see that the ratio of scale estimated by
our proposed method is almost the same as the ratio of image magnification.
We used the least-square method to fit the plots, and we obtained a gradient of
0.91, which indicates a high correlation. Our proposed method can calculate the
scale and the location of the feature point at the same time because it iterates
the mean-shift search in image and in scale space.

 

 

 

 

Fig. 4. Tracking Example of Location and Scale

3 Experimental Results

First, we outline our experimental setup and discuss the issue of generating
ground-truth data. Then, this section contains our experimental results obtained
using a synthesized image sequence and shows a pedestrian sequence as a track-
ing example.
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Fig. 5. Example of Experimental Image

3.1 Experimental Setup

We used synthetic images to quantify our method. We collected a dataset of
images and applied the following transformations to each image: (1) translation;
(2) rotation; and (3) scaling. To generate an image sequence, we overlapped the
transformed image and the background image, as shown in Figure 5(a). For each
image, we generated an image sequence of 180 frames par transformation. We
investigated the difference in tracking performance between the KLT tracker
and our method. To make the difference clear, the same initial keypoints were
used in this experiment by both methods for translation and rotation sequences.
Figure 5(b) shows examples of initial keypoints for each tracked image.

3.2 Ground-Truth Data

The transform (expressed as an affine motion) between two frames in a row is
given. Therefore, ground-truth for each frame was made and used for the eval-
uation. We consider the match to be valid if the keypoint and ground truth are
sufficiently close in location. We calculated the Euclidean distance between each
tracked keypoint and ground-truth. If the distance was below the threshold, the
tracked keypoint was determined to be a successfully tracked point. We then com-
puted a tracking success rate from the total number of successfully tracked points.

3.3 Results

Figure 6 shows the tracking success rate calculated from all the frames (180 per
frames for each sequence) used in 5 sequences. The horizontal axis represents
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Fig. 6. Experiment Result

Table 1. Tracking Success Rate [%] in Threshold 5

translation rotation scale-up avg
proposed method 98.3 87.3 46.7 77.3

KLT 93.4 62.7 61.5 72.5

the threshold, and the vertical axis represents the tracking success rate. Table 1
shows the tracking success rate when the threshold is set to within 5 pixels.
Our proposed method can obtain a higher tracking success rate than that of the
KLT in the translation and the rotation. Because the SIFT features are invariant
to rotation, high tracking accuracy is achieved. In the scale-up, the tracking
accuracy of the KLT method is better than that of our proposed method when
tracking threshold is below 18. Since initial keypoints selected by KLT are corner
points, the KLT works well when tracking keypoints even if the scale changes.
However, our proposed method becomes better than the KLT when the value of
threshold is above 18. Because our method can estimate the scale of the keypoint
adaptively, the use of mean-shift searching with a weight-map makes it attract
to the mode in local areas.

3.4 Tracking Example of Non-rigid Object

Figure 7 shows examples of non-rigid object keypoint tracking using our pro-
posed method. In this video, pedestrians are walking in different directions.
Each tracked point expresses the trajectory of the last 50 frames. We can see
that our proposed method can obtain a greater number of long trajectories of
keypoints than that obtained by KLT.

4 Visualization of Tracked Points

This section describes a technique used to visualize a pedestrian flow. The tech-
nique uses the result of feature point tracking by the proposed method. The
visualization procedure consists of two processes: a consistency check and flow
representation.
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Fig. 7. Examples of Feature Point Tracking for Images of Pedestrians

4.1 Consistency Check

In the visualization of pedestrian flow, it is important to be able to observe the
direction and frequency of movement. To visualize pedestrian flow, we first check
the consistency of a keypoint moving in a given direction using the following
equations:

cos θ =
vt · vt−1

|vt||vt−1|
> th, (9)

vt = (xt,xt−1),vt−1 = (xt−1,xt−2). (10)

If the value of cos θ is close to 1, there are no great fluctuations in the direction
of the movement. If the value of cos θ is less than 0.9, we reject the keypoint as
an outlier that is not good for using to visualize flow.

Fig. 8. Color Strength by Density of Points
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Fig. 9. Visualization by using Scale Information

Fig. 10. Visualization Result

4.2 Flow Representation

To express the movement by color information, a color is selected from a hue
corresponding to the direction of the movement. The intensity of dense fd(x) in
direction d at the location x is expressed by the following equation:
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fd(x) =
T∑

t=1

N∑
i=1

δ(x − xt
i, si), (11)

δ(x, s) = exp
(

−(x2 + y2)
2s2

)
, (12)

where T is total frames, N is number of tracking points, xt
i is a location of the

chase point of the number i in frame t, and δ is a Parzen window function, which
is based on Gaussian distribution. At this time, scale si of the tracking point is
used as a standard deviation of Gaussian distribution, as shown in Figure 8. The
color intensity corresponding to the direction of the movement will be strongly
expressed where the distribution density of a keypoint is high. Figure 9 shows the
value of s for a visualization example of pedestrian. Using the location and scale
parameter of keypoints, we can obtain a rough silhouette of people, as shown in
Figure 9(c).

4.3 Visualization Example

Figure 10(a) shows visualization examples of pedestrian flow accumulating
tracked points over 1 hour(100,000 frames). The circle in the left a color map
of the direction of the movement. From the visualization, we can see that there
are a lot of people who were crossing to the left in area A. In area B, we also
see that there are two movements in opposite directions. Figure 10(b) shows
visualization examples of pedestrian flow for every 2 seconds (60 frames). Since
the SIFT feature has a scale parameter, the proposed method can obtain better
human shapes than that of the KLT.

5 Conclusion

We developed a feature point tracking method that used the mean-shift that of
SIFT features. We demonstrated that high accuracy of keypoint tracking was
archived for translation and rotation according to the SIFT features. Even if the
tracking object was scaled up, it was still possible to track it by updating the
scale of the SIFTs adaptively. Moreover, the visualization method of the feature
point tracking result was shown as an example of the tracking of a pedestrian.
In the future, we intend to develop a method to automatically detect movement
in different directions from a regular flow in order to detect unusual events.
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