Representing and Validating
Digital Business Processes

Lianne Bodenstaff!, Paolo Ceravolo?, Ernesto Damiani?, Cristiano Fugazza?,
Karl Reed?, and Andreas Wombacher?

! Information Systems Group, Dept. of Computer Science,
University of Twente (NI)
1.bodenstaff@utwente.nl

2 Dept. of Information Technologies,
Universita degli Studi, Milan (It)
{ceravolo,damiani,fugazza}@dti.unimi.it
3 Computer Science Dept.,

LaTrobe University, Melbourne, (Aus)
k.reed@latrobe.edu.au
4 School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (Ch)
andreas.wombacher@epfl.ch

1 Introduction

Today, the term extended enterprise (EE) is typically meant to designate any
collection of organizations sharing a common set of goals. In this broad sense,
an enterprise can be a whole corporation, a government organization, or a net-
work of geographically distributed entities. EE applications support digitaliza-
tion of traditional business processes, adding new processes enabled by e-business
technologies (e.g. large scale Customer Relationship Management). Often, they
span company boundaries, describing a network of relationships between not
only a company and its employees, but also partners, customers, suppliers, and
markets. In this scenario, Business Process Modeling (BPM) techniques are be-
coming increasingly important. Less than a decade ago, BPM was known as
workflow design and was aimed at describing human-based processes within a
corporate department. Today, BPM is used to design the orchestration mech-
anisms driving the interaction of complex systems, including communication
with processes defined and executed by third parties according to well-defined
protocols. Also, it can be used to check compatibility and consistency of the
individual business processes that are defined by collaborating business entities.
A large number of methodologies, languages, and software tools have been pro-
posed to support digital BPM; nonetheless, much work remains to be done for
assessing a business process model validity with respect to an existing organiza-
tional structure or w.r.t. external constraints, like the ones imposed by security
compliance regulations. In particular, Web-based business coalitions and other
inter-organizational transactions pose a number of research problems. OMG’s
Model Driven Architecture (MDA) [ABmann et al., 2005] provides a framework

T.S. Dillon et al. (Eds.): Advances in Web Semantics I, LNCS 4891, pp. 219 2008.
© IFIP International Federation for Information Processing 2008

220 L. Bodenstaff et al.

for representing processes at different levels of abstraction. In this paper we rely
on a MDA-driven notion of business process model, constituted by three distinct
components:

— A static domain model, including the domain entities (actors, resources, etc.);
— a workflow model, providing a specification of process activities;
— a value model, describing the value exchange between parties.

In the modeling of static models, we shall focus on expressive formalisms con-
stituted by controlled fragments of natural languages, introducing their transla-
tion into logics-based static domain models, and describing their relations with
Semantic Web (SW) metadata formats [W3C]. In fact, the latter allow to as-
sign a specific semantics to entities in the domain model; particularly, we are
interested in the entities that, for a number of reasons, may result in under-
specified descriptions. This distinction will prove of foremost importance with
regard to the derivation of implicit knowledge. The static model can also be
used to provide a comprehensive description of the entities that interact with
each other in the workflow model and the resources that are exchanged during
workflow execution. Visual languages are typically used to produce business pro-
cess descriptions that regulate the interaction between the different actors in the
EE scenario. Logic-based formalismsmodels can be easily derived from business
process descriptions and can therefore be integrated with the static model for
checking consistency and computing a wide range of business metrics that take
into account dynamic aspects of the business environment. Finally, although the
process model represents the main source of information driving the actual im-
plementation of business activities, it may not be the focus for business analysts
that are required to evaluate the net outcome of transactions in terms of the
value exchange between the interacting parties. Consequently, the overall model
will be completed by providing the value model underlying business processes.
As for process models, these are also typically expressed by means of visual lan-
guages and can be translated into logic-based to obtain data structures that are
amenable to automated processing.

The Chapter is structured as follows: in Section 2, we introduce rule-based
business modeling and its translation into a logic-based formalism. Section
addresses two distinct semantics that can be applied to the knowledge base
that is derived from business rules, highlighting the need for integration of both
paradigms into a hybrid deduction system. Furthermore, Section [Z4] introduces
the issues related with the different modal interpretations of business rules that
are required. Section [3] provides an overview of formalisms for modeling process
workflows and then focuses on a practical example of BPMN diagram describing
the orchestration of independent processes. Section] completes the picture with
a value model to be associated with the entities that have been introduced in the
static model and have been instantiated in the workflow model in order to define
processes. Section Bl is addressing the relations between the three models that
have been introduced by indicating some of the possible cross-checking mech-
anisms that can bind the distinct layers in the actual implementation. Finally,
Section [6] draws the conclusions and highlights the main open issues.

Representing and Validating Digital Business Processes 221

2 Rule-Based Structural Description

This Section introduces the business rules (BR) approach to business domain
modeling [Ross, 2003]. BR allows for a thorough specification of the entities
that populate a specific state of affairs and the mutual relations between them.
The high expressivity that is required by rules has led business analysts to-
ward the adoption of natural language as the encoding formalism for BR. This
strategy clearly fulfils the needs of knowledge sharing between humans, but
inevitably complicates any sort of automated processing on rules. A tradeoff
between expressivity and formal specification of statements is constituted by
controlled natural languages and, among them, controlled English (CE): these
formalizations are derived from natural languages by constraining the admis-
sible sentential forms to a subset that is both unambiguous and expressive. A
widely acknowledged example of CE is the Attempto Controlled English (ACE)
[Fuchs et al., 1999], a general-purpose controlled natural language supporting
specification of complex data structures, such as ontologies. As an example, a
simple rule in ACE that may contribute to the definition of a business domain
is the following:

A customer provides a credit card to a retailer. (1)

General-purpose controlled languages can be provided with a formal (e.g., logics-
based) semantics; however, they fall short of being capable to model all the as-
pects of a business domain. With regard to the expressive power required by
BR, rule-based languages may need to cover higher order logics and also, as
explained in Section [Z4] may specify the modal interpretation to be associ-
ated with a statement. Also, as we discussed in Section [3] the static description
provided by BR needs to integrate with process descriptions and, possibly, orig-
inate object-oriented data structures that software developers may use to flesh
out applications. The recognition of these requirements was a major driver of
OMG’s Semantics of Business Vocabulary and Business Rules (SBVR) proposal
[OMG, 2006], aimed at specifying a business semantics definition layer on top
of its software-oriented layers. In the OMG vision, BR can then be integrated
with the development process represented by OMG’s own Model Driven Ar-
chitecture (MDA) and, consequently, extend the applicability of object-oriented
modeling not only to software product development but also to business pro-
cess modeling and maintenance. SBVR provides business analysts with a very
general controlled language, whose syntax visually separates the different to-
kens in a sentence (nouns, verbs, reserved keywords) with different styles and
colordl. As an example, the rule in () corresponds to the following SBVR fact

type.
Obligaton: a customer provides a credit card to a retailer (2)

! Here we shall not deal with color markup of rules, which is primarily intended to
ease the reading of a large rule corpus.

222 L. Bodenstaff et al.

For the sake of clarity, in the remainder of this Section we are not going to stick
to any specific Controlled English (CE) formalism for expressing rules. However,
we stress the importance of carefully evaluating the expressivity of candidate CE
languages, prior to encoding business intelligence into one of these formalisms,
because it may not necessarily meet the requirements of more comprehensive
frameworks for corporate data reuse. ACE and SBVR represent only two of the
many available CE formalisms, which may vary according to i) the syntactic
restrictions that are applied to the corresponding natural language, ii) the frag-
ment of first-order logic (FOL) that can be conveyed by statements, and i) the
applicability of automated reasoning. The reader can refer to [CLT] for a more
complete survey of controlled natural language formalisms. Here, we investigate
the feasibility of automated deductions over business rules, particularly in the
EE scenario where independent business entities are required to integrate.

2.1 Formal Grounding of Business Rules

By using CE formalisms for expressing BR, it is possible to apply translation
mechanisms that lead to a univocal logic formulation of statements. As an exam-
ple, the grounding in formal logic provided by ACE is constituted by Discourse
Representation Structures (DRS) [Fuchs and Schwertel, 2003] that represent a
subset of FOL and provide a pathway to executable logic formulations B. More
importantly, an Attempto Parsing Engine (APE) is available either as a stan-
dard Web interface and as a webservice, so that the engine can be remotely
queried by programming logic developed by third parties. As an example, the
DRS corresponding to the simple rule in () is the following:

[A, B,C, D]

object(A, atomic, customer, person, cardinality, count unit,eq,1) — 1
object(B, atomic, credit card, object, cardinality, count unit,eq,1) — 1
object(C, atomic, retailer, person, cardinality, count unit,eq,1) — 1

predicate(D, unspeci fied, provide to, A, B,C) — 1

APE also provides a mapping between a subset of ACE and the OWL DL on-
tology language [W3C, 2004]; it can therefore take advantage of DL reason-
ers [Haarslev and Moller, 2001}, [Parsia et al., 2003] to infer implied knowledge.
As will be shown in the following of this Section, DL represents only a small
fragment of FOL; particularly, it is also limited to expressing binary relations
between entities. As a consequence of this, even the simple ternary relation bind-
ing customers, resellers, and credit cards in ([{Il) cannot be expressed without
“objectifying” the relation by means of a newly introduced concept definition.
This amounts to expressing predicate D in the corresponding DRS as a concept

2 Recall that full FOL is proven to be undecidable; therefore, deriving the DRS corre-
sponding to an ACE statement does not imply that such logic formulation can also
be executed by programs.

Representing and Validating Digital Business Processes 223

definition that is the domain of three binary relations whose ranges (i.e., the
categories of entities the relations map to) are concepts customer, reseller, and
credit card, respectively. For a more traditional processing of ACE rules, DRS
can also be translated into RuleML [Boley et al., 2001] to be processed by rule
engines, such as the Jena framework [Jenal. Note that, in this case, the term
“rule” is not indicating a BR, but instead the Horn fragment of FOL which guar-
antees a sound and complete reasoning on rules by applying either forward- or
backward-chaining derivations. One of the main challenges of drawing inferences
based on a BR model is the capability of applying the so-called hybrid reasoning
on the knowledge base. The distinct inference paradigms which are associated,
respectively, with OWL DL reasoning and Horn rules execution need to be inte-
grated. It is not possible to adopt a single inference technique, because the enti-
ties in the business domain may have a different semantics associated with them.
Information under full control of the stakeholder (e.g., a company) writing the
model (e.g., the notion of employee) can be modeled as in traditional database
design. In this case, BR simply provide a lingua franca by means of which busi-
ness analysts and software developers can more easily translate company data
requirements into real-world implementations. Other knowledge, however, needs
to be introduced in order to compete and cooperate in the EE scenario (e.g., the
notion of competitor); this knowledge is not under the modeler’s full control, and
may therefore be incomplete@. We indicate by closed-world assumption (CWA)
the approach implemented by applications that only process complete data un-
der the full control of their owner. In this case, failing to retrieve answers to a
query (say, ‘retrieve the credit card data associated with customer John Smith’)
automatically implies that such data do not exist. Consequently, customer John
Smith constitutes a valid answer to the query ‘retrieve customers that do not
have a credit card associated with them’ because incomplete knowledge amounts
to false (i.e., negative) knowledge. This notion of negation (generally referred
to as negation as failure) leads to the non-monotonic reasoning that provides
the correct interpretation of closed systems. In the context of logic inference,
the term ‘non-monotonic’ essentially means that conclusions (e.g., that John
Smith is a valid answer to the previously defined query) may be contradicted
by adding information to the knowledge base (e.g., the assertion John Smith pro-
vides VISA-041). On the contrary, we indicate by open-world assumption (OWA)
the monotonic approach to inference that should be applied to heterogeneous
data sources, such as those collected by individual systems in the EE scenario,
and also (according to business analysts) to proprietary descriptions expressed
by business rules, wherever not explicitly stated otherwise. OWA represents a
fundamental requirement for Semantic Web (SW) languages [W3C] and, conse-
quently, SW applications may also process data structures expressed by BR that
cannot be considered as complete knowledge.

3 This kind of incomplete descriptions may also express proprietary entities from
within the business model. In fact, the complexity of business descriptions that
need to be expressed by BR may not make it possible to exhaustively express the
business domain.

224 L. Bodenstaff et al.

2.2 Interpreting Entities in the Business Domain

The semantics of BR is typically described by providing a mapping from the
rules syntax to some well-known logic formalism. Three (potentially conflicting)
basic requirements of such formal models have been identified:

1. High expressive power. A basic requirement for the underlying logic is to
match the high expressive power of the specific CE without further con-
straining the sentential forms that can be interpreted. Business analysts are
accustomed to using plain English and would not accept any too severe lim-
itation to the expressive power of the modeling language.

2. Tractability. In order to automate rule checking and execution, the underly-
ing logics’s expressive power has to be carefully balanced against tractability.

3. Non-falsifiability. BR semantics should rely on monotonic reasoning, i.e. on
inference paradigms whose conclusions cannot be contradicted by simply
adding new knowledge to the system.

These three requirements have been emphasized by business analysts and re-
searchers as guidelines toward finding the correct logical interpretation of busi-
ness models, but are NOT satisfied by current BR modeling. Furthermore, as
anticipated above, managing this category of descriptions in the EE may pose
novel requirements. Specifically, aggregating heterogeneous data sources that are
not under full control of each system participating in the EE demands more at-
tention when data is evaluated. The first set of entities that will be described
belong to this category of open descriptions and we will show that only some of
them can lead to automated deductions in such a way that their full semantics
is preserved. The business rules that follow are meant to describe a generic prod-
uct that is made available in a market as a consequence of cooperation among
manufacturers, distributors, and resellers. These entities are to be considered
external to the system that will process the information; you may suppose that
a company is doing this in order to monitor markets that are interested by their
business. Consequently, we are going to consider each of these entities as open;
that is, incomplete with regard to their formal definition and also with regard
to existing instance data associated with them. As an example, consider the
following business rules:

a product is produced by exactly one manufacturer (3)
a product is distributed by at least one distributor (4)
a product is reselled by at least one reseller (5)

Clearly, the rules above define constraints that instances of concept product must
satisfy. Furthermore, they refer to attributes of a product instance (produced by,
distributed by, and reselled by) that relate product instances with (possibly com-
plex) data structures expressing manufacturers, distributors, and resellers. They
may also indicate datatype attributes, such as price, weight, etc., that are re-
quired by metrics based on numeric calculations. Considering state of the art

Representing and Validating Digital Business Processes 225

paradigms for data storage, constraints (3)-(&l) cannot take the form of manda-
tory attributes in a relational schema (or more expressive trigger-based con-
straints) because we assume that instance data may be incomplete, e.g. both
the following tuples do indicate, in the knowledge base, valid product instances:

product manufacturer distributor reseller
ITEM-01 COMP-01 - -
ITEM-02 - - SHOP-01

On the contrary, rules [B)-(E) can be easily translated into the following FOL
statementd:

Product(x) — Jly.Manufacturer(y) A producedBy(z, y) (6)
Product(x) — Jy.Distributor(y) A distributedBy(x, y) (7)
Product(x) — Jy.Reseller(y) A reselledBy(z, y) (8)

Unfortunately, existing FOL reasoners cannot process statements (@)-(8) because
they do not comply with the Horn fragment: Specifically, all variables in a Horn
rule consequent (head) must match variables in the rule antecedent (body), while
variable y in statements ({B)-(8]) is not bound to any variable in the rule body.
When applying reasoning, enforcing these rules clearly amount to asserting the
existence of hypothetical class instances related with a product instance by the
three properties. Because of the CWA approach of rule reasoners, the semantics
of ([@)-(@) cannot be expressed.

Instead, languages that are specifically designed for modeling incomplete data
sources (like the ones used in the SW) can express these constraints without
requiring instances of concept Product to actually refer to instances of concepts
Manufacturer, Distributor, and Reseller:

Product C = 1 producedBy.Manufacturer
Product C > 1 distributedBy.Distributor
Product C > 1 reselledBy.Reseller

For the sake of clarity, here we express OWL structures by means of the corre-
sponding Description Logics (DL) syntax. However, there is a one-to-one corre-
spondence between OWL constructs and DL assertiond]. Inference procedures
that are associated with SW languages allow to evaluate data structures ac-
cording to the OWA, while querying a (structurally equivalent) relational data
model may not derive all possible conclusions. In fact, as for the Horn fragment
of FOL, databases are bound to consider only existing data instances when ex-
ecuting queries. Consider for example the following query:

retrieve all instances that have a reseller associated with them

4 In knowledge representation (KR), concept definitions are typically indicated by a
leading uppercase letter; instead, property definitions start with a lowercase letter.

5 The OWL Lite and OWL DL sub-languages are isomorphic to the SHZF (D) and
SHOZIN (D) DLs [Baader et al., 2003], respectively, where (D) indicates support for
XML Schema datatypes.

226 L. Bodenstaff et al.

Clearly, a database query would return ITEM-02 as the only individual satisfy-
ing the query because no reseller is associated with the other tuple. Instead, DL
reasoning paradigms may derive that, because of rule (@), ITEM-01 must have
a reseller, even if its identity is not known to the system at the moment. Con-
sequently, the relational data model grounding mainstream dataware housing
cannot be as expressive as SW formalisms when modeling data structures that
are, by definition, incomplete. This not a minor difference, as incompleteness is
the most common feature of information exchanged in an inter-organizational
business process; it may also be an explicit decision that is taken to avoid defin-
ing aspects that are not relevant to the model and, nevertheless, cannot be
considered as false knowledge. Unfortunately, the restricted set of constructs
that are provided by SW languages, such as OWL DL, can express only a lim-
ited subset of the FOL structures that may stem from BR formalization. Firstly,
although OWL is very good at expressing constraints on concept and property
definitions, business rules often need to take into consideration data instances
for their enforcement. Secondly, the model-theoretic approach to OWL reason-
ing services has dramatic consequences on computational complexity and this
inevitably narrows the set of logic structures that can be expressed. As an ex-
ample, the following definition cannot be modeled with OWL DL:

a direct distributor is a manufacturer of a product 9)

that is also a distributor of the product

In fact, translating this rule amounts to comparing the fillers of properties pro-
ducedBy and distributedBy (i.e., the instances at the other end of these relations)
for any given product, in order to determine if the product’s manufacturer is
also a distributor for the same product. Instead, (@) can be easily translated into
a Horn rule of the following form:

Product(x) A producedBy(z, y) A distributedBy(z,y) — DirectDistributor(y) (10)

In order to straightforwardly integrate Horn rules with the structural com-
ponent of the knowledge base, rules are expressed in the SWRL formalism
[Boley et al., 2004]. Since the entities on the left-hand side of the formula are to
be considered open with regard to inference, it is possible that evaluating them
under the CWA (the only possible interpretation for Horn rules) may not reflect
the actual semantics of ([@). Moreover, constraints expressed by BR on n-ary
relations may not be expressed with OWL by objectifying the relation; consider
the following rules introducing the notion of market.

a product is distributed in at least one market (11)
a product that is distributed in a market is distributed (12)

by exactly one distributor in the market

While it is possible to express (1) as a DL concept definition, the constraint
expressed by ([[2) cannot. In fact, the triples market-product-distributor should

Representing and Validating Digital Business Processes 227

first be grouped according to the market, then according to the product, and
only then it may be checked whether the constraint holds. This degree of com-
plexity cannot be expressed as DL concept and property definitions. The second
category of entities that can populate the business domain is constituted by
closed entities, i.e. data structures that are under full control of the system.
These data can be expressed with the wide range of SWRL constructs and can
be evaluated according to CWA, with no loss in the semantics being expressed.
Let us introduce in the business vocabulary the notion of article to indicate,
among products in a market, those that are produced by the company under
consideration:

an article is a product that is produced by the company (13)

Whereas article represents a closed entity (i.e., the company is supposed to ex-
haustively enumerate its products in the knowledge base), rule ([I3]) defines it
as a specialization of product, which is an open entity. This is a major motiva-
tion for the conjunct evaluation of both categories of constructs. Moreover, the
open/closed status of an entity may also be implicitly derived by those of the
entities defining the former. Consider the following definition of target market:

a target market is a market and an article is distributed in the market

Since knowledge on articles is, by definition, complete, the rule identifies a closed
specialization of the open concept market whose instances are of direct interest to
the company because some of its products are distributed in that market. Even if,
singularly taken, articles and products can be expressed in their full semantics
by SWRL rules and OWL constructs, mixing them up may not preserve this
property. This is due to information interchange between the distinct reasoning
engines that are processing, respectively, closed and open constructs.

2.3 Interpretation Issues

So far, we have been using the term ‘interpretation’ in the broader sense of ‘the
act of interpreting’. Now, in order to explain the differences between CWA and
OWA reasoning, we must shift to the precise notion of ‘interpretation’ used in
model theory, that is a ‘mapping from the language to a world’. In the bare-
bones knowledge base introduced in this Section, interpretations can be roughly
assimilated to assignments of individuals to variables in the logic structures de-
rived from BR. In order to exemplify this, we further specialize concept reseller
with concepts shop retailer and web-enabled retailer. These concepts distinguish
resellers that are capable of selling goods online from those that don'’t.

a reseller is a shop retailer or a web-enabled retailer (14)

Note that rule (Id]) also implies that, in our simple example, a reseller has to be
either a shop retailer or a web-enabled retailer. These new open entities may be
straightforwardly expressed with OWL DL through the union operator:

Retailer = ShopRetailer LI WebEnabledRetailer

228 L. Bodenstaff et al.

Now suppose that two distinct rules are created (it may be by different peo-
ple and for different purposes) associating the newly introduced entities with
discount rates that can be applied to them.

a shop retailer has a discount of 10% (15)
a web-enabled retailer has a discount of 15% (16)

These kind of associations generally require SWRL definitions because rules
([@3) and ([I0) amount to declaring new property instances relating individuals
to literals ‘10%’ or ‘15%’.

ShopRetailer(z) — hasDiscount(x, ‘10%")
WebEnabledRetailer(x) — hasDiscount(x, ‘15%")

Finally, suppose that individual SHOP-01 in the knowledge base is known to be
a reseller, but it is not known whether it is a shop or a web-enabled retailer
(this can be formalized with the assertion Reseller(SHOP-01)). Now, in order to
show that it may not be straightforward to derive all possible answers to a
query, it is sufficient to query the knowledge base for individuals that have
a discount rate associated with them. Intuitively SHOP-01 should be returned
because, by rule ([I4)), either of the rules should be applicable to the individual
(albeit it is not known, at the moment, which one). On the contrary, this is the
typical situation where the model-theoretic approach of OWL reasoning cannot
be integrated with the single-model approach of SWRL reasoning without losing
information. Specifically, the former will consider SHOP-01 as either instance
of ShopRetailer and WebEnabledRetailer in each of the interpretations that are
compute(ﬁ; instead, SWRL reasoning would not consider either assignment to
hold in the interpretation computed on the basis of facts that are explicitly
known to the system.

2.4 Modal Evaluation of Business Rules

Business rules determine which states and state transitions are possible or per-
mitted for a given business domain. Modal BR can be of alethic or deontic
modality. Alethic rules are used to model necessities (e.g., implied by physical
laws) which cannot be violated, even in principle. For example, an alethic rule
may state that an employee must be born on at most one date. Deontic rules are
used to model obligations (e.g., resulting from company policy) which ought to
be obeyed, but may be violated in real world scenarios. For example, a deontic
rule may state that it is forbidden that any person smokes inside any company
building. It is important to remark that widespread domain modeling languages
such as the Unified Modeling Language (UML) typically express alethic state-
ments only. When drawing a UML class diagram, for instance, the modeler is

5 Actually, also as instances of both concepts at the same time, because this is not
explicitly prohibited by definition (I4]).

Representing and Validating Digital Business Processes 229

stating that domain objects belonging to each UML class MUST have the at-
tribute list reported in the class definition, implicitly taking an alethic approach
to domain modeling. In business practice, however, many statements are deon-
tic, and it is often important (e.g., for computing metrics) to know if and how
often they are violated. Much research work has been done to provide a logics-
based model for BR including modalities. Indeed, supporting modalities does
not mean that it is mandatory to map the BR to a modal logic. For instance,
work by the BR OMG team and specifically by Terry Halpin (including his
package NORMA [Curland and Halpin, 2007], an open-source tool which sup-
ports deontic and alethic rules) addresses logical formalization for SBVR by
mapping BR’s deontic modalities into modal operators obligatory (O), permitted
(P) (used when no modality is specified in the rule), and forbidden (F). Deontic
modal operators have the following rules w.r.t. negation:

~Op=P~p
~Pp=0~p=Fp

Other modal operators used for mapping BR alethic rules are necessary (O), i.e.
true in all possible states of the business domain, possible (¢), i.e. true in some
state of the business domain, and impossible (~ ¢). Alethic operators’ negation
rules are as follows:

~Op=U~p
~Op=0~p

Terry Halpin’s NORMA approach represents BR as rules where the only modal
operator is the main rule operator, thus avoiding the need for a modal logics
model. Some allowed BR formulations that violate this restriction may be trans-
formed into an equivalent NORMA expression by applying modal negation rules,
the Barcan formulae, and their converses:

VpOFp = OVpFEp
IpOFp = OIpFp

For instance, the BR For each customer, it is necessary that he provides a credit
card is transformed into It is necessary that each customer provides a credit cardl.
However, BR rules emerging from business modeling cannot always be trans-
formed into rules where the only modal operator is the main operator. To support
such cases, in principle there is no alternative but to adopt a semantics based on
a modal logic; but the choice of the “right” modal logic is by no means a triv-
ial exercise, due to tractability and expressive power problems |[Linehan, 2000].
Modal logics engines do exist; for instance, MOLOG [Farinas del Cerro, 1986]

" Another transformation that could be used in this context is the one based on
Barcan formulae’s deontic variations, i.e. VpOFp = OVpFp. We shall not discuss
here the application of these transformations to normalizing modal logic formulas;
the interested reader can refer to [Linehan, 2006].

230 L. Bodenstaff et al.

has been developed by the Applied Logic Group at IRIT from 1985 on, initially
supported by the ESPRIT project ALPES. MOLOG is a general inference ma-
chine for building a large class of meta-interpreters. It handles Prolog clauses
(with conjunctions and implications) qualified by modal operators. The language
used by MOLOG can be multi-modal (i.e., contain several modal operators at the
same time). Classical resolution is extended with modal resolution rules defin-
ing the operations that can be performed on the modal operators, according to
the modal logics that are chosen. However, instead of choosing a modal logics
and applying MOLOG-style modal reasoning, most current approaches to BR
semantics are based on Horn rules, which is the basis of Logic Programming
and counts on many robust implementations. Actually, DLs also provide all the
necessary constructs to evaluate multi-modal formulas (by mapping operators
to universal and existential quantifiers) but, for DL as for Horn FOL, processing
modal formulations in conjunction with the OWL and SWRL constructs intro-
duced so far can easily lead to undecidability. Consequently, much work has to
be done to translate BR into models that can be safely executed by reasoners
preserving most of the semantics of the original definitions.

3 Declarative Process Flow Description

An important component of a successful business strategy is related with the
organization of process work flows. To this purpose, a business process is viewed
as the sequence of activities and decisions arranged with the purpose of deliv-
ering a service, assuring security and effectiveness, in accordance to the service
life cycle. Due the the procedural nature of notations typically used for these
descriptions, process flows are usually validated against process termination,
verifying the absence of interferences and procedural inconsistencies. Violation
metrics based on this validation can be easily devised; still, they do not exhaust
the possible metrics that can be calculated on a flow. This Section discusses pro-
cess flow description, underlining the role played by declarative representations
in supporting model cross-checking or sharing a process description among a
community of users.

3.1 Workflow Languages

Graphical notations aimed at describing process flows are one of the most
widespread tools for supporting business process modeling. Their popularity
is due to the capability of supporting both immediate reading and rigor-
ous formalization. Another important advantage is that graphical notations
are understandable by all business users (e.g., business analysts designing a
process, technical developers implementing it, business people monitoring the
process, etc.). A broad range of standards allowing formalization of process
flows exist. A partial list of more relevant standards includes: UML Activ-
ity Diagram, UML EDOC Business Processes, IDEF, ebXML BPSS, Activity-
Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains

Representing and Validating Digital Business Processes 231

(EPCs)[van der Aalst et al., 2003] In May 2004, OMG proposed a standard
aimed at reducing the fragmentation of notations and methodologies. This stan-
dard was named Business Process Modeling Notation (BPMN) [Bauer et all]
and was designed as a tradeoff between simplicity of notation and expressivity.
Another very diffused standard is constituted by UML Activity Diagrams. Cur-
rently, these two standards are gaining a large diffusion: on the one hand, the
first is more popular in the business analysts community; on the other hand,
the latter is more popular in the software analysts community. A recent OMG
initiative [BMI] is aimed at reconciling UML AD with BPMN by means of an
integrated metamodel.

In general, the properties of a flow of transaction cannot be captured by a
declarative formalization. This is primarily due to the dynamic nature of trans-
actions that describe dependencies among events and may require the specifi-
cation of complex processes with the presence of event-driven behaviors, loops,
real-time evaluation of actions, and parallelism. Model checkers for declarative
theories require a finite state space whereas dynamic process, in general, have
an infinite state space. Nowadays, Petri nets are widely adopted for workflow
modelling and they have a formal semantics by means of which model checkers
can be implemented [Grahlmann, 1997]. Another widely adopted formalization
is m-calculus [H Smith, 2003] and it is a process algebra describing mobile sys-
tems. Key notions of this formalization are communication and change. Distinct
m-calculus processes may communicate by referring to other processes trough
links and pointers. By doing this, the development of a process can be inserted
into another and generate a new development cycle. Activities in a workflow are
conceptually mapped to independent w-calculus processes. This way, processes
use events as the form of communication to determine the behavior of the work-
flow. Another option is to use formalizations based on higher-order logic, such as
situation calculus or temporal logic. Situation calculus was introduced by John
McCarthy in 1963, it is a logic formalism designed for reasoning about dynamic
domains. Recently, it was used as a base for designing a programming language
named ConGolog [De Giacomo et al., 2000]. Temporal logic is a logic aimed at
reasoning about propositions qualified in terms of time. Traditionally, tempo-
ral Logic formalizes only one of the two paradigms that are required in order
to deal with dynamic and concurrent systems. In fact, the information to be
derived from the formalization of a dynamic system can involve either the prop-
erties a state must satisfy and also the temporal dependencies between events.
Some early works, such as [Nicola, 1995], proposed a formalization including
both states and events. In [Gnesi and Mazzanti, 2003], such a formalization is
applied to system modeling, i.e. UML diagrams.

3.2 A Temporal Logic for UML Statecharts

The main problem in applying model checking to business processes is the state
space explosion: for real-life case studies, the state space is usually too large to
be efficiently mapped. One solution is to encode the state space symbolically,
using predicates, rather than enumerating it. This way, we may work on a more

232 L. Bodenstaff et al.

abstract representation while preserving the structure of the dynamic model.
The most common way to adopt a predicate-based model is the adoption of
temporal logics. In particular we can mention Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL)[Jain et al., 2005]. In order to deal with the
infinite states generated by loops, special model checkers have been implemented.
These model checkers develop algorithms for strong fairness. A strong fairness
constraint is aimed at excluding loops. If p and g are properties, we state that if
p is true infinitely often, then ¢ must be true infinitely often as well. Intuitively,
a property p can only be true infinitely often if there is some kind of loop in the
model in which p is made true. Consequently, the strong fairness constraint on
(p, q) says that if there is some loop which makes p true infinitely often, then ¢
must be made true infinitely often by the loop as well. If this is not the case,
the loop is not strongly fair and the loop must be exited after a finite number
of iterations.

3.3 Declarative Representation

Despite the limitations in describing dynamic and concurrent systems, declara-
tive formalizations are not irrelevant to dynamic and concurrent systems, and
can be exploited for some important tasks related to validation such as:

— consistency checking;
— data exportation;
— annotation.

Consistency Checking. This is a task where declarative formalizations play the
main role. Traditional formalisms are aimed at verifying performance properties
of workflow models. For instance, a typical problem is to identify if a path is
terminating or which tasks are in dependency with others. Declarative formal-
izations cannot support this kind of controls but act very well for evaluating the
consistency of the objects acting in the transaction or the data objects exchanged
in the transaction, as discussed in [Haarslev and Moller, 2001].

Data Exportation. Basically any notation used for representing process flow rely
on an XML format used for exporting data. This is a declarative description of
the flow, usually limited to a syntactic description of the elements in the nota-
tion, that in principle could be queried for consistency checking purposes. This
approach is not straightforward, because it requires reconstructing the semantics
of the notation directly in the query step. Since the usual approach is to pro-
vide a semantic mapping between XMI and the individual format to be queried
|[Fox and Borenstein, 2005].

Annotation. In [Melnik and Decker, 2000], a RDF format has been provided for
representing UML diagrams. RDF is a language for data annotation that allows
to attach complex assertions (in the form of triples subject-predicate-object) to
URIs, i.e. any type of resource. Typically this language is used in systems for
cooperative design, such as described in [Ceravolo et al., 2007]. The final out-
put of this approach allows to share process flow annotations and cooperatively
update the description of a process.

Representing and Validating Digital Business Processes 233

3.4 Consistency Checking

Here we propose an example of consistency check between the structural part of
the model and the process flow. Fig.[[lshows a BPMN diagram describing process
coordination between distinct actors, represented by different swim lanes in the
diagram. A declarative description of the flow can describe business transactions
in terms of the actors involved in the transaction plus input and output data
required for executing the transaction. As an example, the static model may

Delivery Service Web-enabled Retailer Target Market Retailer

wawfed
1senbay
9
1
Vv
8210AU|
ans0ey

2 g
] a c jus s]
of2| 8)20 95| 8, |3
238 a=2 gs - " B> 58
o 2 = :U ® =
“28 o |®= < S |23
w
@
2
54
=
Q,
5]
@

[

LPIEA -t—

uswhed puesg
o)

Aed
8010AU|
aneosy
A
8010AU| BPIAOIY
o)
Juswihed
1senbay

S
w
Lo ! !
D Do OZ Do
g 2eg| (€2 5 B 2a
= == c2p-§-F e aER
5 2 555| (538 2 s
ﬂ5 n<2da g ;_5
| | l
2 v
k=] om oD =l pNw)
ANES: o 22 32 | g3
A R e o go|* =3
3| |=® o] 25 =
<
o
S

EEN
!

1

I

I

1

I

1

i

]

UoNEDIION

i

I

I

1

1

]

I

:

I
o)

Menjjeqg
Aynon
sah

o
o]

& o 3z
ST | a s
i 3

Fig. 1. An example of process flow

234 L. Bodenstaff et al.

feature concept definitions for Event, Activity, Gateway, and all the other BPMN
constructs. Entities in Fig. [T such as the tasks activated by the Retailer in the
first lane, can then be expressed in terms of assertions (i.e., subject-predicate-
object triples), such as the following:

ReceivePayment rdf:type Task
RequestPayment rdf:type Task

Instances of these concepts may be related with each other in order to express
general requirements that should be satisfied by processes, such as the following:

ReceivePayment follows RequestPayment

Clearly, a diagram that contradicts the requirement can be spotted at design
time. Another possible usage of the static model is to constrain the instances of
concept message that can be exchanged between Tasks. As an example, refer-
ence to a specific instance of concept Message named invoice can be restricted
to Tasks that are contained in the Retailer lane. More interestingly, dynamic
requirements that are related with run-time execution of processes can also be
expressed. In this case, logfiles produced by the execution of processes are inter-
preted as concept instances and properties relating them with each other.

4 Declarative Value Model Description

Before implementing and executing a business collaboration, models describing
this collaboration can be developed. These models help to analyze a priori the
collaboration with different stakeholders. Agreements and clarifications can be
made on different levels of the collaboration. A model especially important for
describing inter-organizational collaborations is a value model, estimating prof-
itability for every actor involved in the collaboration. In a collaboration each
stakeholder is profit and loss responsible. Analyzing a priori profit opportunities
as well as agreeing on the exchanges of value between the different stakeholders
is highly important. In this Section, we use a running example for illustration.
In our example, a manufacturer develops a global value model in order to es-
timate profitability of his business, before implementing his business, and to
monitor his business during the life cycle of the collaboration. Several mod-
eling techniques can be used to estimate profitability of a collaboration, e.g.
Business Modeling Ontology [Osterwalder and Pigneur, 2002] and REA model-
ing [McCarthy, 1982]. Although modeling techniques differ, value models depict
always which entities of value are exchanged between stakeholders. Here, we
refer to entities of value as wvalue transfers. We discuss two different modeling
techniques by means of our running example.

4.1 Graphical Based Value Modelling

REA modelling [McCarthy, 1982] is a widely acknowledged business modeling
technique using a graphical representation of the actors and their relations. Here,

Representing and Validating Digital Business Processes 235

-,

v
i
Manufacturer i . -_s esse

e SRR Exlpluslmn. OR-part AND-part
_C‘ﬁ Y at Implosian
= Setar M= Element
Mon=y1y N _ Praducts
Money2{ | Setof
‘-‘ Products
Distributar | | | I]
I Web-enabled
(7 Retailer Siatiat .
i =) :E Segment
Setof
] 3
I eroducts
Retaier | [} =
etailer
: . 9 @
H honeys Hame Yalue Dependenty
H Delivery honeys Exchange path
Product

Service
De\iveryx

Semme mme

\ _Targethtarket

Fig. 2. Business Case as Value Model

Table 1. Estimations

Moneyl Money2 Money3 Money4 Money5 Money6

Total Value 2000 850 450 50 48 3
of Products 50 20 10 1 1 1
Euros per Product 40 42.50 45 50 48 3

we use another modeling technique which also has a graphical representation, e3-
value modeling [Gordijn and Akkermans, 2003]. Figure[2ldepicts our example as
an e3-value model. The manufacturer sells products to distributors and to web-
enabled retailers. Distributors sell products to retailers who, in turn sell products
to clients in the target market. Web-enabled retailers sell products directly to
clients in the target market. Furthermore, they need logistics to deliver products
to clients. A consumer need is fulfilled by one or more value transfers. Value
transfers dependent on each other are connected through a dependency path.
Quantifications of constructs in a dependency path influence the quantification of
other constructs in that path. For example, the manufacturer gets higher profits
from selling to a target market constituted by two hundred clients than to a
market of one hundred only. This model also supports quantification of relations
(not shown in the picture). Furthermore, the manufacturer gets higher profits
from selling to web-enabled retailers than from selling via distributors. Table [Tl
depicts estimations the manufacturer made on the number of sold products and
the value of each product. These estimations, together with the graphical model,
provide an estimation of profitability.

236 L. Bodenstaff et al.

4.2 Logic Based Value Modelling

Another modeling technique for value based modeling, closer to the other ones
used in this chapter, is using a logical formalism. Here, we depict the running
example as a value model in Prolog style in FOL. Again, value transfers as well
as dependencies between these value transfers are modeled. Each construct in
e3-value can be mapped to a predicate in this model. Each construct has several
arguments, at least denoting the actor to which they belong, their name and
estimated quantification, e.g. number of occurrences. A connection element has
a unique id and connects two constructs. In e3-value this is the part of a depen-
dency path connecting two constructs. Furthermore, each construct in the model
captures an equation. We demonstrate the general approach by formalizing two
predicates. The first is modeling a consumer need and its dependencies on other
constructs. In e3-value this is modeled as a start stimulus and corresponds to
predicate Start. The second is modeling a choice in fulfilling a consumer need and
dependencies related to this choice. For example, the consumer need is to buy a
product which might be fulfilled by either buying it online or by purchasing it in
a store. In e3-value this is modeled with an OR-port and corresponds to predicate
Or Split. To create the equation denoting dependencies of a consumer need in
a value model, a distinction between equations resulting from market segments
(Equation StartMS) and actors (Equation StartActor) is made. To derive the
equation, first the estimated number of occurrences of the start stimulus (con-
sumer need) is required. When the equation depicts a market segment, also the
number of customers in the market segment (count) is necessary. Furthermore,
the id of the connection element, indicating dependency on other constructs, is
necessary. For the equation of a choice, again the id of the connection element is
needed. Furthermore, the estimated number of times a choice is made (fraction)
is needed.

Equation StartMS(id, occurrences, count) — «
Start(actor, name, occurrences) A
Connection(id, name, names) A
Market Segment(actor, count)

Equation StartActor(id, occurrences) — «
Start(actor, name, occurrences) A
Connection(id, name, names) A
Actor(actor)
Equation Split(idy, fraction, fractions,ids)
Or Split(actor, namey, fraction up, fraction down) A
Connection(idy, namey, names) A
Connection(ids, names, namey) A
((fractiony = fraction up A fractions = fraction down)
\
(fractions = fraction up A fractiony = fraction down))

Now, we illustrate the creation of the equations based on the gathered data.
There are two sets of equations calculated. The first set is the set of equations

Representing and Validating Digital Business Processes 237

without instantiations. The second set of equations consists of equations which
are instantiated with the values as estimated. In our example these are the es-
timations made by the manufacturer in Table [l Predicate Value contains two
arguments representing these estimations. The first argument is the correspond-
ing name in the equation and the second argument is the estimated value. Next,
the derivations of both sets of equations are depicted.
r=y

Equation StartActor(z,y)

V

(Equation StartActor(z, occurrences) A Value(occurrences,y))

Equation StartMS(z,y, 2)
V
(Equation StartMS(x, occurrences, count) A Value(name,y) A
Value(count, z))
Y= r:-s " x -
Equation Split(y,r, s, x)
\
(Equation Split(idy, fractiony, fractions,ids) A Value(fractionq,r) A
Value(fractions, s))

Next, formalization for the market segment TargetMarket is depicted, illus-
trating formalizing our running example. When formalizing a value model, all
market segments and actors, as well as each construct and connection element,
are described. Furthermore, the estimations made by the manufacturer are added
with the Value predicate. Predicate Value Transfer represents the actual value
transfer where the last argument is the estimated average value which are also
represented in Table [l

Market Segment(TargetMarket, County)
Start(T'arget M arket, Start,, Occurrencesy)

Or Split(TargetMarket,Ory, S, R)

Value Transfer(Targetmarket, Transfery,Valuey)
Value Tranfser(Targetmarket, Transfers, Values)
Connection(Idy, Starty, Ory)

Connection(Idg, Ory, Transfery)

Connection(Ids, Ory, Trans fers)

Value(County, 100)

Value(Occurrencesy, 5)
Value(S, 2)
Value(R, 1)
Value(Valueh 50)
Value(Valuez, 48)

238 L. Bodenstaff et al.

Expressing the value model in a logical formalism and quantifying it with
estimations enables profitability calculations on the collaboration. These calcu-
lations are used for decision making. In this Section we showed different repre-
sentations of value models. Both representations, graphical as well as logic based,
enable reasoning on the profitability of the collaboration. Although these are two
distinct representations, both model explicitly actors and value exchanges be-
tween those actors. Essentially, this is the important part for a priori evaluating
profitability of a collaboration.

5 Relations between Models

Models are per se an abstraction of the real world focusing on a particular as-
pect like, for example, the flow or the value aspect. Dependent on the model, the
analyses that can be performed differ: in case of the process flow model it can
be checked whether there are dead ends in the execution or whether deadlocks
can occur; on the other hand, in the value model, profitability can be investi-
gated. However, all these models describe the same system and therefore the
different models can be related with each other. The aim would be to have a
description of the system according to the different aspects. To check whether
different models fulfill this property, relations between the different models have
to be investigated. Well known relations are equivalence checking, whether two
models describe exactly the same, and consistency checking, whether two sys-
tems are contradicting each other. Equivalence of two different model types (like
for example process flow and value model) will never be given since the different
models focus on different aspects while neglecting other aspects. With regard
to process flows and value models, the former focus on the order of message
exchanges, while the latter disregards these aspects and focuses on the occur-
rences and values of exchanged value objects. As a consequence, consistenc
seems more appropriate, since it focuses on contradiction free models which can
be checked on the communalities of the involved models.

There are plenty of potential pitfalls that could make models inconsistent, like
for example different understandings of the architects of the different models on
how the actual system really works (in case it has been already implemented),
modifications of a single model without maintaining the remaining models, or
the discrepancy between the modeled behavior and the behavior of customers
in concrete business situations. Furthermore, there are plenty of cases where
consistency between two models cannot be checked at all like, for example, in
case models are representing the system on a different level of granularity. In
case of the process flow and the value model, this means that the value model
considers the modeling at the granularity of companies, while the process flow
model is based on the notion of business units within companies. However, the
investigation of relations between the models, as well as the actual behavior of

8 In some literature the term compatibility or soundness is used instead of consistency
but addressing the same problem.

Representing and Validating Digital Business Processes 239

Ontology: Business Rules

Business Layer

Value Model

\ Customer Insurance
company
p-Fremium-ts) -
Monitoring €[curanee i "@ \ Static and |
Consistency Semi-dynamic
& Consistency

Process Layer

Coordination Model

Gustomer nsurance
T
[Jnater
e
Consistency I
g PayD—{J\ Prkcoss
" 3 Prpmium
Compliance & ") Implementation
Process P St and
Discovery [Terminate Execution
N
Wena
Implementation LayeN P ~
Log Information
files System

Fig. 3. Consistency Relations

the system, are valuable to improve, correct, or adapt the models according to
a continuously changing environmentl.

In the following of this Section, different relations between the models in-
troduced in Sections (see Figure Bl) are mentioned and some references
are provided. Afterwards, an overview of two sample consistency relations are
presented.

5.1 Overview

Figure B is structured in four layers according to the usual information system
life cycle: specifically, the business rules, business, process, and implementation
layers. First, understanding how a particular business works and what the de-
pendencies between the different parties and business objects are is important.
Second, a business idea containing a business model showing the profitability of
the business is constructed. Third, it is specified how you want to do business
and how to coordinate the different parties involved. Finally, the information
system is implemented deployed and and becomes operational, resulting in log
files representing the execution of the information system to a specific level of
detail.

9 We want to point out that, in the following, the focus is on relations of different
model types. There exist quite some work on relations between models of the same

type.

240 L. Bodenstaff et al.

The relations depicted in Figure [3 are defined between the different layers.
One set of relations is between the business rules and the remaining layers. In
particular, the business rules terminology is used in the value model to describe
the different actors or value objects. In our examples we used terms like ”target
market” or ”product” in business rules and value model. Also, the process flow
model relies on the terminology provided in the business rules, for example,
to name swim lanes or to express what business objects are related to which
messages exchanged between the swim lanes. As an example, ”target market”
and "product” represent, respectively, a swim lane and a business object. This
common terminology is essential for direct comparison between value and process
flow models. Since the process flow describes the exchange of messages sent and
received by an information system, the log file generated by an information
system uses the same messages. This relation indirectly allows to relate some
messages to business objects in the value model, which in there turn can be
related to terminology in the business rules. As a consequence, value model,
process flow model, as well as the log files can be related to the terminology
in the business rules. This set of relations allows a first checking whether the
dependencies in each underlying layer is consistent with the rules specified in
the business rules declaration. Further, the terminology provided by the business
rules and the relation to a value exchange, a message exchange, and a log file
entry as well as to an actor, a swim lane, and a communication partner enables
checking of relations between the different models.

Figure [B] shows three consistency relations between value and process flow
model: static, semi-static and dynamic consistency.

— Static consistency. Checks whether the set of exchanged values in the
value model corresponds to the business objects exchanged in the process
flow model represented by message exchanges. Here the aim is to relate the
value objects and business objects exchanged, as well as the dependencies
between value exchanges and business object exchanges. A more detailed
description can be found in Section

— Semi-dynamic consistency. Checks whether the forecast of a value model
can be accomplished by the process flow model. This is mainly focusing
on investigating expected changes in a business scenario, like for example
the increase of the amount of expected customers using the system or an
expected change of user behavior for example because of price changes for
a particular modeled product group compared to other modeled product
groups.

— Dynamic consistency. Checks whether the execution of the process flow
model is consistent with the expected behavior represented in the value
model. This relation cannot be evaluated directly since the process flow
is not executed directly. However, the information system implementing the
process flow model is executed directly. Therefore, dynamic consistency can
be derived from investigating the three relations between value model, log
files (hence implicitly the information system) and the process flow model
depicted in Figure[3 first this is monitoring consistency, second the relation

Representing and Validating Digital Business Processes 241

between log file and information system representing the behavior of the in-
formation system in Figure Bl and third the relation between process flow
model and information system describing the implementation and execution
of the process flow model by the information system. The dynamic consis-
tency relation is essential since it gives an a-posteriori evaluation of whether
the process flow and the value model are indeed describing the implemented
information system. In case there are inconsistencies, the models have to be
adapted and re-evaluated with regard to the expected profitability and be-
havior respectively. A more detailed description of the dynamic monitoring
relation can be found in Section B3

The compliance and process discovery relation has not been men-
tioned so far. One aspect of this relation is also known as process mining
[van der Aalst and Weijters, 2005], where the aim is to derive a process model
from log file data. This relation can be applied for example in case of exceptional
behavior in information systems, which is not reflected in the process flow model.
It is closely related to the dynamic monitoring relation between value model and
log files.

5.2 A Priori Model Evaluation: Static Consistency

During the modeling phase it can be checked whether the value model and the
process flow model are still consistent, that is, are not contradicting each other.
This check is performed on the commonalities between the two models, which
are the actors and swim lanes, the value exchanges and message exchanges,
and the dependencies between exchanges in the corresponding model. Relating
swim lanes and actors to each other is done using business rules. Considering
the Delivery Service swim lane in the process flow model (see Figure [I]) and
the Logistics actor in the value model (see Figure [2)) different terms are used
describing the same concept. A business rule describing that a logistics company
provides a delivery service is necessary to indicate that the Delivery Service swim
lane and the Logistics actor are not contradicting. The same requirement of a
business rule applies to the message exchange payment and the value exchange
money. Obviously money is used to perform a payment.

Based on this concept relations of value models and process flow models, a
consistency checking can be performed. A value model and a process flow model
are consistent if for every set of message exchanges representing an execution
sequence in the process flow model there exist a set of value exchanges repre-
senting a single dependency path in the value model and vice versa. However,
there exist value exchanges which do not result in a message exchange, like an
experience or a knowledge gain. Further, there exist message exchanges in the
process flow which do not have a corresponding value exchange. In the example
depicted in Figure[I], the message exchanges request product and provide invoice
do not have a corresponding value exchange since these message exchanges are
for coordination purposes only. A more detailed description of the approach has
been discussed in [Zlatev and Wombacher, 2005].

242 L. Bodenstaff et al.

5.3 A Posteriori Model Evaluation: Monitoring Consistency

After the modeling phase, the system is implemented and executed. It is impor-
tant to check during the life-cycle of the collaboration whether estimations in the
a priori value model are met by the running system. One approach for checking
this dynamic consistency is to monitor the running system. This is the moni-
toring consistency relation in Figure [between log file and value model. Here,
we show monitoring of the running system based on log files produced by the
information systems. This approach has been formally introduced in previous
work by one of the authors of this chapter |[Bodenstaff et al., 2007].

In our running example, the manufacturer monitors the collaboration. His
main interest is monitoring the ratio between products sold to distributors and
web-enabled retailers, since he gets higher profits from selling to web-enabled re-
tailers than from selling to distributors. The tool used for the monitoring shows
the realized number of value exchanges with distributors as well as web-enabled
retailers. The manufacturer can now compare these realized values with estima-
tions made in the original value model. Furthermore, the tool enables reasoning
over the relation between the realized values and the different constructs in the
value model. The equations derived from the value model are added to the mon-
itoring tool, showing all quantified values and their relations. Figure @ depicts

/' Ratios Actor Web-enabl

Ratio

exlmg Fiatio

i sz " =13

intexf: jrerfz el i Setrating by entering ratio of the preferred construct and press "Set'!

interfe interfz exin inte Fat

inteife - intaite At Nt ealr Ratio Mame: Realized Value:

interfe logres N8l log eplr interfaceCardinality]id5= IinterfacaCardinaIity1id15 zet

interf: logres ntel log inte interfaceCardinalindid1G= |interfaceCardinaIity1id18 g

interfe logres INt81 ma inte interfaceCardinality]id24= IinterfacaCardinaIity1id24 s_et

interf: logres logn sto jnte interfaceCardinality3id32= |interfaceCardinaIity3id82 s_et

logres marke logn inte interfaceCardinality3id93= IinterfacaCardinaIityBidSE s_et

logres - stopid ‘UDT‘_ logr logresulsinterfacelccurences1HomeD eliveryigoid] 33= Iinterfacetardinalitwid24‘[-\g0id150+st‘s_et

logre: logresult Jogy lagresultsinterfacel counrences1MoneySigoid114= IinterfacaCardinaIity1id18*[-\goid150+st‘s_et

logres logr logresulsinterfacel counences 1 Productgoid] 07 = Iinterfacetardinalitw id15‘[-\g0id150+st‘s_et

logresultsinte logr logresultzinterfacelcourences 3 oneydjgoid156= Iinterfac:BCardinaIityBidSB*igoidT50 s_et

logresultzinterfacel ooy logresultzinterfacel courrences 3Productigoid 161 = |interfaceCardinaIity3id82‘igoid1 50 s_et

Iogresultsinterfaceﬂccl_ marketsegmentid1 0= Imarketsegmentidw s_et
oFort2iddd= ||g0|d'|5EI"DrF'0rt2|d85f’[-|g0|d'I5El+sla|t|ts_et
oiPort2id85= orPortzides set]
startidall= | startic20 st

Fig. 4. Monitoring Collaboration - Screen Shot

Representing and Validating Digital Business Processes 243

a screen shot of the tool where the realized values and their relation to the dif-
ferent constructs are shown. Showing these relations enables the manufacturer
to reason over effects the constructs have on the value exchanges and on which
constructs are influenced by the realized values.

6 Conclusions

In the last few years, the concept of the business process model has become in-
creasingly popular. When designing a new business process, modeling accuracy is
likely to be a crucial factor for being able to assess its strength and weaknesses.
The Web infrastructure and the availability of Semantic Web-style metadata
have enabled new types of inter-organizational business processes, which in turn
need new business process models. Despite the surge of interest in representing
business process models, reasoning on process descriptions still faces many open
issues, mostly due to lack of a shared notion of business process representation.
Many approaches focus on producing taxonomies or categorizations, or on stat-
ing what aspects of business process models should be included in (or excluded
from) modeling. The capability of representing multiple facets is indeed an im-
portant requirement for business process models. In this chapter, we discussed
the different facets such a representation must possess, starting from standard
ones like workflow representation and arriving to the capability of defining the
structure of a companys value chain and describing the position of the process
actors within the value network. Also, evidence has shown that initial business
process models are often unsuccessful and need to keep being modified until a
viable model is found; therefore, a multi-faceted representation of the process
needs %) to support a priori evaluation of feasibility ii) to be able to evolve based
on run-time evidence. While we believe a visual approach to modeling to be
preferable from the modelers point of view, in this chapter we focused on the
logics-based models underlying each facet of the process representation. Namely,
we developed on the idea that the different facets of a business process model
require different formalizations, involving different inference techniques, some
of them Semantic Web-style, other closer to classical Prolog reasoning. Using
a simple business process model, we discussed how well our multi-faceted rep-
resentation can be integrated by a hybrid approach to reasoning, transferring
knowledge and metrics obtained reasoning on each part of the model to the
other parts. While we believe results to be encouraging, more work is needed.
Specifically, we wish to highlight the following open issues;

— Critical areas detection: A multi-faceted business process model needs to
include a way of finding necessary changes, when the original model does
not work as envisaged. This might be done by including more options in
the original model, plus decision points on when to start using these options
based on constraints expressed un the value-model.

— Representing pragmatics: Reasons for stakeholders: actions should be part
of the model. Our sample model shows what is meant to happen, but not
why. Research on agent-based systems has shown that reasons for actions

244 L. Bodenstaff et al.

are difficult to express using logics-based modeling. Also, current business
process models focus on the point of view of the business owner. It might be
useful to enlarge the model including the point of view of potential customers,
e.g. based on market research data.

Acknowledgments

This work was partly funded by the Italian Ministry of Research under FIRB
contract n. RBNEO5FKZ2_004, TEKNE and by the Netherlands Organisation for
Scientific Research (NWO) under contract number 612.063.409. The authors
wish to thank Claudio Pizzi for his valuable comments on modal logic reasoning.

References

[ABmann et al., 2005] ABmann, U., Aksit, M., Rensink, A. (eds.): MDAFA 2003.
LNCS, vol. 3599. Springer, Heidelberg (2005)

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-
Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, Cambridge (2003)

[Bauer et al.] Bauer, B., Miiller, J., Roser, S.: A model-driven approach to designing
cross-enterprise business processes. In: Meersman, R., Tari, Z., Corsaro, A. (eds.)
OTM-WS 2004. LNCS, vol. 3292, pp. 544-555. Springer, Heidelberg (2004)

[BMI] BMI. Business modeling & integration domain task force, http://bmi.omg.org/

[Bodenstaff et al., 2007] Bodenstaff, L., Wombacher, A., Reichert, M., Wieringa, R.:
Monitoring collaboration from a value perspective. In: Proceedings of 2007 In-
augural IEEE International Conference on Digital Ecosystems and Technologies
IEEE-DEST 2007, pp. 134-140 (2007)

[Boley et al., 2004] Boley, H., Dean, M., Grosof, B., Horrocks, I., Patel-Schneider, P.F.,
Tabet, S.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML
(2004)

[Boley et al., 2001] Boley, H., Tabet, S., Wagner, G.: Design rationale of RuleML: A
markup language for semantic web rules (2001),
http://citeseer.ist.psu.edu/boleyOldesign.html

[Ceravolo et al., 2007] Ceravolo, P., Damiani, E., Viviani, M.: Bottom-up extraction
and trust-based refinement of ontology metadata. IEEE Transactions on Knowl-
edge and Data Engineering 19(2), 149-163 (2007)

[CLT] CLT. Controlled Natural Languages,
http://www.ics.mq.edu.au/~rolfs/controlled-natural-languages/

[Curland and Halpin, 2007] Curland, M., Halpin, T.A.: Model driven development
with norma. In: HICSS, p. 286 (2007)

[De Giacomo et al., 2000] De Giacomo, G., Lesperance, Y., Levesque, H.J.: ConGolog,
a concurrent programming language based on the situation calculus. Artificial
Intelligence (2000)

[Farinas del Cerro, 1986] Farifias del Cerro, L.: Molog: A system that extends prolog
with modal logic. New Gen. Comput. 4(1), 35-50 (1986)

http://bmi.omg.org/
http://citeseer.ist.psu.edu/boley01design.html
http://www.ics.mq.edu.au/~rolfs/controlled-natural-languages/

Representing and Validating Digital Business Processes 245

[Fox and Borenstein, 2005] Fox, J., Borenstein, J.: XMI and the many metamodels of
enterprise metadata. In: XML conference and exhibition (2005)

[Fuchs and Schwertel, 2003] Fuchs, N.E., Schwertel, U.: Reasoning in Attempto Con-
trolled English. In: Bry, F., Henze, N., Matuszynski, J. (eds.) PPSWR 2003. LNCS,
vol. 2901, pp. 174-188. Springer, Heidelberg (2003)

[Fuchs et al., 1999] Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled En-
glish (ACE) Language Manual, Version 3.0 (1999),
http://attempto.ifi.unizh.ch/site/pubs/papers/ace3manual.pdf

[Gnesi and Mazzanti, 2003] Gnesi, S., Mazzanti, F.: A mu calculus for temporal logic.
In: ACM Specifying and Verifying and Reasoning about Programs (2003)

[Gordijn and Akkermans, 2003] Gordijn, J., Akkermans, J.M.: Value-based require-
ments engineering: Exploring innovative e-commerce ideas. Requirements Engi-
neering 8(2), 114-134 (2003)

[Grahlmann, 1997] Grahlmann, B.: The PEP tool. In: Proceedings of CAV (1997)

[H Smith, 2003] Smith, H., Fingar, P.: Business Process Management The Third Wave.
Meghan-Kiffer Press (2003)

[Haarslev and Moller, 2001] Haarslev, V., Moller, R.: Description of the RACER sys-
tem and its applications. In: International Workshop on Description Logics (2001)

[Jain et al., 2005] Jain, H., Kroening, D., Sharygina, N., Clarke, E.: Word level predi-
cate abstraction and refinement for verifying rtl verilog. In: DAC 2005: Proceedings
of the 42nd annual conference on Design automation, pp. 445-450. ACM Press,
New York (2005)

[Jena] Jena. Jena, A Semantic Web Framework for Java,
http://jena.sourceforge.net/

[Linehan, 2006] Linehan, M.: Semantics in model-driven business design. In: Proc. of
2nd International Semantic Web Policy Workshop, SWPW 2006 (2006)

[McCarthy, 1982] McCarthy, W.E.: The REA Accounting Model: a Generalized Frame-
work for Accounting Systems in a Shared Data Environment. Accounting Re-
view 57, 554-578 (1982)

[Melnik and Decker, 2000] Melnik, S., Decker, S.: A Layered Approach to Information
Modeling and Interoperability on the Web. In: Semantic Web Workshop (2000)

[Nicola, 1995] Nicola, R.D.: Three logics for branching bisimulation. Journal of the
ACM (1995)

[OMG, 2006] OMG. Semantics of Business Vocabulary and Business Rules Specifica-
tion (2006), http://www.omg.org/cgi-bin/apps/doc?dtc/06-08-05.pdf

[Osterwalder and Pigneur, 2002] Osterwalder, A., Pigneur, Y.: An e-business model
ontology for modeling e-business. In: Proceedings of the 15th Bled E-Commerce
Conference - Constructing the eEconomy (2002)

[Parsia et al., 2003] Parsia, B., Sivrin, E., Grove, M., Alford, R.: Pellet OWL Reasoner.
Maryland Information and Networks Dynamics Lab (2003),
http://www.mindswap.org/2003/pellet/

[Ross, 2003] Ross, R.G.: Principles of the Business Rule Approach. Addison-Wesley
Longman Publishing Co., Inc., Boston (2003)

[van der Aalst et al., 2003] van der Aalst, W., Hofstede, A., Weske, M.: Business pro-
cess management: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 1-12. Springer, Heidelberg
(2003)

[van der Aalst and Weijters, 2005] van der Aalst, W., Weijters, A.: Process-Aware In-
formation Systems: Bridging People and Software through Process Technology.
In: Process Mining, pp. 235-255. Wiley & Sons, Chichester (2005)

http://attempto.ifi.unizh.ch/site/pubs/papers/ace3manual.pdf
http://jena.sourceforge.net/
http://www.omg.org/cgi-bin/apps/doc?dtc/06-08-05.pdf
http://www.mindswap.org/2003/pellet/

246 L. Bodenstaff et al.

[W3C] W3C. Semantic web activity, http://www.w3.org/2001/sw/

[W3C, 2004] W3C. OWL Web Ontology Language Overview (2004),
http://www.w3.org/TR/owl-features/

[Zlatev and Wombacher, 2005] Zlatev, Z., Wombacher, A.: Consistency between 3.

value models and activity diagrams in a multi-perspective development method.
In: OTM Conferences, vol. (1), pp. 520-538 (2005)

http://www.w3.org/2001/sw/
http://www.w3.org/TR/owl-features/

	Representing and Validating Digital Business Processes
	Introduction
	Rule-Based Structural Description
	Formal Grounding of Business Rules
	Interpreting Entities in the Business Domain
	Interpretation Issues
	Modal Evaluation of Business Rules

	Declarative Process Flow Description
	Workflow Languages
	A Temporal Logic for UML Statecharts
	Declarative Representation
	Consistency Checking

	Declarative Value Model Description
	Graphical Based Value Modelling
	Logic Based Value Modelling

	Relations between Models
	Overview
	A Priori Model Evaluation: Static Consistency
	A Posteriori Model Evaluation: Monitoring Consistency

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

