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Abstract. Epidemic thresholds were deduced and simulated from SIR models 
of Susceptible – Infected – Recovered individuals, through local stability 
analysis of the disease free and endemic equilibrium, with an algorithmic 
method. One and two types of infected individuals were modeled, considering 
the influence of sub clinical, undiagnosed or unrecognized infected cases in 
disease transmission. 
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1   Introduction 

Recently, Brown et al. [1], proposed an algorithm for symbolic deduction of the basic 
reproductive rate through a local analysis of the disease-free state and endemic 
equilibrium. 

The basic reproductive rate (R0) is a critical magnitude or epidemic threshold that 
helps to understand the dynamics of emerging and re emerging disease transmission, 
identify measures to prevent and control epidemics and establish criteria for 
elimination / eradication of diseases. [2] 

R0 measures the average number of secondary cases generated by a primary case 
during its period of infectivity, when the case is introduced into a partially susceptible 
population. [3],[4] 

When R0 is the critical parameter deducted from a SIR model with homogeneous 
mixing between susceptible and infectious individuals, R0 is a ratio between the 
infection rate of susceptible individuals and the recovered rate of infected individuals 
and multiplied by the susceptible size of population. [4] 

Epidemic threshold is established according to R0: If R0 > 1, there will be 
instability of disease and outbreaks will occur because susceptible individuals 
accumulate long enough to start the outbreak or the infection rate is higher than the 
recovered rate. If R0 <1 , there will be stability of disease, outbreak will be minor or 
will not occur at all because there are less susceptible individuals or there is a lower 
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infection rate than the recovered rate by increasing of immunization, quarantine or 
mortality. [1] 

A disease-free equilibrium is one in which all dependent variables corresponding 
to the presence of the disease in the population are zero. This equilibrium is 
asymptotically stable,  if after a long period of time a state involving a small number 
of infected individuals will converge back to this disease-free equilibrium i.e., R0 <1.  
It will be unstable, if secondary cases of the disease are generated i.e., R0 > 1. [1] 

Brown et al., analyzed the epidemic threshold in the following models in 
differential equations: the SEIRS model (susceptible,  exposed –not yet infected-, 
infected,  recovered –currently immuned-;  the SEIT model adding a group T of 
individuals under treatment for the disease,  the  MSEIRS model whose newborn 
children of mothers (M) who are immune to a specific disease are passively protected 
by maternal antibodies for a certain time and the SIS model (susceptible,  infected and 
vaccinated). [1]  

These authors discussed the desirability of symbolic computation to analyze the 
properties of the parameters and influence of these in the epidemic threshold with an 
algorithmic approach that avoids tedious work by hand. [1] 

This work continues Brown’s algorithm by comparing the epidemic threshold in 
the SIR model with a single infected state and the SIIR model with two infected 
states. In both cases, the influence of immunization rate and loss of immunity rate are 
analyzed. 

Modeling two infected states is important to understand the dynamics of transmission 
of sub clinical infections or asymptomatic cases, unrecognized or undiagnosed cases and 
diseases with different levels of severity. This is especially important when 
“undiagnosed” infected individuals may influence the transmission of infection, either by 
threatening the reemergence of the disease or limiting its elimination, such as influenza, 
SARS, polio, rubella, some sexually transmitted diseases, among others.  [5], [6], [7] 

2   Methods 

An epidemic model is defined by a system of differential equations which describes the 
evolution of the number of individuals in each state of the epidemic process. [2], [8].   

The SIR model reflects transitions from susceptible state to infected state when 
individuals have effective contact, according to the infection rate (β). Similarly, 
infected individuals are transferred to recovery state according to the recovery rate (γ), 
through isolation and recovery of infected individuals or through immunization of 
susceptible individuals [8].    

In the SIIR model, susceptible individuals may be transferred to infected state 
number 1 (clinical, diagnosed, and recognized) or to the infected state number 2 (sub 
clinical, undiagnosed, and unrecognized), according to the infection rate β1 and β2, 
respectively.  Similarly, infected individuals in each state are transferred to recovery 
state at the recovery rate γ1 and γ2.  Immunization of susceptible individuals (p) and 
loss of immunity of recovered individuals (q) are analyzed in both models. 
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Throughout this paper we assume that birth and death rates (µ) are equal keeping a 
constant host population size, the population is homogeneously mixed and 
transmission is according to the mass-action principle. [8] 

Epidemic thresholds are deducted through an analysis of local stability with a 
semiautomatic algorithm. [1] The algorithm is implemented in Maple 11 (Maplesoft 
Inc, Ontario Canada) and simulations are executed showing epidemic thresholds when 
there are changes of critical population size (N=10, N=100, N=1000).  Packages for 
Groebner basis and Polynomial Ideals are exploited using as a background the power 
packages “LinearAlgebra” and “LargeExpressions”.  

2.1   The SIR Model 

The system of equations describing the change in time of susceptible X(t), infected 
Y(t),  and recovered Z(t) individuals,  without immunization and loss of immunity 
rate, is: 

 = 
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2.2   The SIR Model with Immunization and Loss of Immunity 

The differential equations are: 
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2.3   The SIIR Model 

This model describes the epidemics with four states: Susceptible individuals X(t), 
Infected individuals of type 1- Y1(t) (clinical,  diagnosed, recognized), Infected 
individuals of type 2 – Y2(t)  (sub clinical, undiagnosed, unrecognized) and 
Recovered individuals Z(t).  Immunization and loss of immunity rates are not 
included in this model. 
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2.4   The SIIR Model with Immunization and Loss of Immunity 

The corresponding system of equations is now:  
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3   Results 

3.1   Analysis of Local Stability  

The points of diseases-free and endemic equilibrium of each model are presented in 
Table 1. The SIR models have a unique epidemic threshold with the presence of a 
single point of disease -free and endemic equilibrium, regardless of the presence of 
immunization and loss of immunity rates. 

The SIIR models have both disease-free equilibrium states as endemic equilibrium 
states. This model exhibits two critical magnitudes corresponding to the basic 
reproductive rate of two sub-populations of infected individuals considered separately.  

Details of the algorithm implementation are presented only to the SIIR model with 
immunization and loss of immunity rates. 

Theorem 1. The system (11)-(14) admits the following equilibrium points:   
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Table 1. Disease free and endemic equilibrium points and thresholds by SIR and SIIR model, 
with or without immuization rate (p) and loss of immunity rate (q) 
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Table 1. (continued) 
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Proof: 
Equations of equilibrium 
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Resolving (15)-(18) was obtained a), b) y c) 

Theorem 2. In the system (11)-(14), the disease – free equilibrium point is locally 
stable if and only if, R0,1<1 and R 0,2<1,  where 
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Proof: 
The Jacobian of the system (11)-(14) evaluated at the disease – free equilibrium point 
is: 
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and the corresponding stability conditions are 
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These two stability conditions can be rewritten respectively as R0,1 < 1 and R0,2 < 1, 
where 
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Theorem 3. In the system (11)-(14), the first point of the endemic equilibrium is 
locally stable when it exists, that is, when R0,2>1, where 
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The Jacobian for the first endemic equilibrium point is: 
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Finally, given that  
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The condition of existence of the first endemic state is R0,2>1. 
 
Theorem 4. In the system (11)-(14), the second point of the endemic equilibrium is 
locally stable when it exists, that is, when R0,1>1, where 

 

 = R
,0 1

β
1

( ) + μ q N

( ) + γ
1

μ ( ) +  + μ q p  

Proof: In analogy with the demonstration of Theorem 3. 

3.2   Numerical Simulations 

The Table 2 shows numerical simulation of epidemic thresholds and mathematical 
expresions for y1(t) clinical and y2(t) subclinical cases,  with different critical 
population sizes and according to Theorem 2.  Parameter values correspond to data 
from rubella (infection rate ∼ incidence rate) in Latin America and the Caribbean in 
1998, a few years after the start of mass vaccination against rubella. It is assumed a 
relationship 2:1 of clinical to subclinic infection, because 30-40% of rubella cases are 
subclinical.[9] 

In the first simulation, R0,1 < 1 and R0,2 < ,  there is not epidemic outbreak. The 
Figure 1 a) shows the corresponding epidemic curves and the typical behaviour of 
stability are observed:  the number of infected individuals is decreased to zero and 
finally only susceptible and recovered individuals remain; which means there is not 
an outbreak. 

The Table 2 shows the second numerical simulation corresponding with the case 
when R0,1 < 1 and R0,2 > 1.  We observe explicitly that y1(t) decays exponentially but 
y2(t) grows exponentially, which is a symptom of instability, and in this case there is 
partially developed outbreak.  The Figure 1b) shows the corresponding epidemic 
curves and the typical behaviour of instability:  the number of susceptible individuals 
is decreased to zero and the number of infected people grows exponentially, which 
means there is a partially developed outbreak. 

Table 2. Simulations of epidemic thresholds and prevalence of clinical and subclinical cases 
according to the critical population size 

Simulation Critical 
population size 

N 

R 0,1 
(clinical 
cases) 

R 0,2 
(sub 

clinical 
cases) 

y1(t) 
Prevalence of 
clinical cases 

y2(t) 
Prevalence of 
sub clinical 

cases 
1 10 0,019 0,112 y1(t)=e(-0,11*t) y2(t)=2*e(-0,008*t) 
2 100 0,195 1,123 y1(t)=e(-0,09*t) y2(t)=2*e(-0,001*t) 
3 1000 1,955 11,143 y1(t)=e(0,11*t) y2(t)=2*e(0,10*t) 
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(b) 

Fig. 1. Simulations of susceptible individulas (x(t)),  clinical infected individuals (y1(t)), 
subclinical infected individuals (y2(t)), and removed individuals (z(t)) by time, according to the 
critical population size: a) N=10, b) N=100, c) N=1000. Parameter values: Clinical infection 
rate (β1)= 0,00025; subclinical infection rate (β2)=0,00012; natality/mortality rate (μ)=0,00002; 
loss of immunity rate (q)=0,003;  immunization rate (p)=0,0002; recovery rate of clinical cases 
(γ1)=0,12; recovery rate of sub clinical cases (γ2)=0,01. 
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Fig. 1. (continued) 

 
Finally, the Table 2 shows the third numerical simulation corresponding with the 

case when R0,1 > 1 and R0,2 > 1.We observe explicitly that both y1(t) and y2(t) grow 
exponentially with the time, which is a sign of instability, and in this case there is a 
fully developed outbreak. The Figure 1b) shows the corresponding epidemic curves 
and the typical behaviour of instability:  the number of susceptible individuals is 
decreased to zero and the number of infected people grows exponentially, which 
means there is a fully developed outbreak. 

4   Discussion  

The Table 1 shows that the simple SIR model only has one critical parameter, R0. In 
contrast, according with Theorem 2, the SIIR model has two critical parameters, 
namely R0,1 and R0,2. It is a consequence of the introduction of two type of infected 
states: clinical and sub-clinical individuals.  More over, the stability condition for the 
simple SIR model is merely R0 < 1; but the stability condition for the SIIR model is 
more stringent because the Theorem 2 demands R0,1 < 1 and R0,2 < 1.  The endemic 
states are more difficult to compute than the disease-free states. In general, 
computation of the endemic states demands the application of tools in computational 
commutative algebra and algebraic geometry. [10] 

The epidemiology of sub clinical infections is largely unknown because there is not 
a reliable method to diagnose such infections, and follow-up studies about loss of 
immunity rate are scarce.  However, from a theoretical point of view, studies about 
the effect of these sub clinical infections on the levels of infection,  and the effect of 
waning and boosting of immunity on levels of infection in individuals with low (but 
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detectable) levels of immunity, who have experienced mild or sub clinical infections 
on contact with the virus, have been analyzed.  [11], [12], [13].   

The usefulness of this model is the theoretical illustration of two thresholds when 
considering clinical and sub clinical cases, although there are no real values of 
parameters for simulating the behavior of the disease with sub clinical infection. 
Simulation with rubella incidence in Latin America and the Caribbean in 1998 reflect 
the pattern of disease occurrence, although there are no data on infection rate for sub 
clinical infection over time. [9] 

The algebraic expressions of the basic reproductive rate of the SIIR model give a 
synthesis of all epidemic parameters in the model and for this reason it is possible to 
appreciate the modifications of the basic reproductive rate when one or several  
epidemic parameters are altered, including cases when  numerical values of such 
parameters are unknown and hard to obtain. It permits to derive control measures 
tending to reduce the basic reproductive rate, such as quarantine, surveillance, 
vaccination, education, sanitation, and so on.  

This study describes the dynamics of the disease with two types of infected 
individuals but does not compare intervention strategies which could be useful 
especially when stochastic approaches of transmission in communities of households 
are considered. [6] However, it is observed that an epidemic with two type of infected 
people, according to a SIIR model, is more difficult to control than an epidemic ruled 
by the simple SIR model with only clinical infected individuals.  Intensive contact 
tracing, syndromic surveillance and innovations in case detection could be required, 
when sub clinical and clinical infected individuals are considered. [4,6,13,14] 
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