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Abstract. Delaunay tessellation describes a set of arbitrarily distributed
points as unique triangular graphs which preserves most local point con-
figuration called a clique regardless of noise addition and partial occlusion.
In this paper, this structure is utilised in a matching method and proposed
a clique-based Hausdorff Distance (HD) to address point pattern match-
ing problems. Since the proposed distance exploits similarity invariant fea-
tures extracted from a clique, it is invariant to rotation, translation and
scaling. Furthermore, it inherits noise robustness from HD and has par-
tial matching ability because matching performs on local entities. Exper-
imental results show that the proposed method performs better than the
existing variants of the general HD.

Keywords: Point pattern matching, Delaunay tessellation, Hausdorff
distance, Similarity invariant distance.

1 Introduction

Point Pattern Matching (PPM) is a problem that searches the best point corre-
spondences by investigating underlying point pattern and it includes many vi-
sion applications, e.g., motion estimation, image registration and object recog-
nition [1, 2, 3, 4]. Although much research has been intensely done to address the
problem, the PPM result is not reliable particularly when a point set includes noise
or outliers, when whole or part of the data has been similarity transformed (e.g.,
rotated, translated and scaled) and when the number of matching points is differ-
ent, i.e., some points should have either multiple matching opponents or none.

One classical approach to PPM is a spectral method that compares corre-
lation of eigen vectors of a distance matrix referred to as a proximity matrix.
The intra-distances between all possible pairs of points in an image are mea-
sured by a Gaussian-weighted distance metric and stored as a matrix in which
eigen vectors are extracted as new features for matching [2]. Although the ear-
lier methods show a weakness in dealing with partial matching, noise and sig-
nificant image transformation, more recent methods address partial matching
using a sub-matrix matching algorithm [5] and achieve robustness against noise
by combining the spectral analysis with the Expectation Maximization (EM)
framework [6]. Caelli et al. improve the accuracy of matching by re-normalising
the eigen vectors and values used in comparison. The similarity of graph or tree
of vertices is then measured by the distance of clusters in a tree or graph in the
re-normalised subspace instead of the general point distance [7].
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Another approach is the Hausdorff Distance (HD) matching. The key advan-
tage of using HD is that exact matching is not required when computing distance.
Without a knowledge of exact point correspondences, HD measures distance be-
tween two sets of points. Moreover, it allows small perturbation and partial point
pattern matching [8]. HD is a non-directional and nonlinear operation, and by
making some changes in the distance function and combining two directional HDs,
useful variants of HD can be generated, e.g., ranked HD and modified HD [9].
These methods have been extended to line and curve features in accurate recog-
nition systems [10,11,13]. A recent algorithm which associates an affine invariant
coordinate called a homogeneous barycentric coordinate with HD, has been in-
troduced to address the affine transformed point pattern matching [14], but the
barycentric coordinate relies on the convex shape of points and its mean position.
Therefore, if the convex shape is deformed by an outlier, result is not reliable.

Since Euclidean distance of point features is not always sufficient for matching,
some methods utilise contextual conditions derived from the point pattern.These
methods structure points as a tree or a graph, and use the structure to solve the
general PPM problems. In particular, weighted connection of nodes in a graph
indicates the strength of connection and this concept is utilised by stochastic
approaches, e.g., probabilitic relaxation methods [15]. Li et al. introduced a tree
structure which is obtained by applying k-D tree algorithm to partition points,
and the similarity of trees is measured for sparsely distributed point patterns [16].
Strickland et al. suggested a method that uses an iterative relaxation algorithm
based on the probability defined by a separation of length and angle between con-
nected branches in a non-rigid shape [1]. Zheng et al. considered point matching
as an optimisation problem in order to preserve local neighbourhood structure,
and the optimal solution is searched using relaxation labelling [3]. Andrew et al.
focussed on the Delaunay graph of a set of data points and suggested a relax-
ation labelling solution for Delaunay graph matching which simplifies the joint
probabilities defined by neighbouring nodes and reduces the computation time
of the iteration [17]. The concept is extended to a transform estimation in an
EM framework in their later work [18]. Despite these extensive researches, PPM
still remains a challenging task: spectral methods are not robust to corruption in
structure (e.g., due to noise) and the performance of relaxation methods degrade
when there are significant increases in the sizes of the point sets since defining
every joint probability is complicated [4].

In this paper a Delaunay graph is investigated as a method for uniquely
constructing a local configuration called a clique, and propose a clique-based
HD which exploits a graphical shape difference between cliques. In the proposed
method, an idea of robust matching is motivated by HD and the affine invariant
features from the cross ratio, and it effectively addresses noise, outliers, occlusion
and inexact graph matching. The proposed distance measures inter-distance, i.e.,
it measures a clique distance directly from a model to a test data unlike a spectral
method. Thus, when the sizes of the two graphs being compared are different, a
rectangular matrix stores all the possible distances between cliques and strong
correspondences are identified to define initial transform between two sets. Once
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the local transform is estimated initially, the guided matching increases point
correspondences by collecting point pairs (called supporting pairs) that reside
within an error bound of the estimated transform and repeating the estimation.

The paper is organised as follows. A Delaunay tessellation and its characteris-
tics are explained in Sect. 2, which also introduces the theoretical representation
of data points used in the proposed method. Section 3 explains how the dis-
tance between two cliques is measured and how it is related to HD. Finally,
experimental results and conclusions are presented in Sect. 4 and 5, respectively.

2 Point Set Representation

A Delaunay graph is a result of Delaunay tessellation. As a dual of a Voronoi
diagram which divides distinct n points according to the nearest neighbour rule,
the Delaunay graph can be constructed from connecting points of Voronoi poly-
gons that are adjacent to one another [see Fig.1(a) and (b)] and result thus forms
a pattern of packed convex polygons [19, 20]. One characteristic of a Delaunay
graph is that no point is allowed within a circumcircle of a triangle. In other
words, noise only affects local graph where circumcircles are contaminated [see
Fig.1(c)]. Furthermore, even when points are patly occluded, resulting graph is
similar to that prat of the original graph (see Fig.1(d)).

Mathematically, the representation of a Delaunay graph is similar to that
of an ordinary graph. Suppose that there are point sets of a model Vm =
{v1, · · · , v|Vm|}, where | · | is the cardinality of a point set and Vt is a test
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Fig. 1. (a) A Voronoi diagram of 20 feature points (denoted by ‘*’) that are randomly
generated and ranged [0 1]. (b) A Delaunay graph, the dual of the Voronoi diagram
in (a). (c) The general shape of Delaunay graph in (b) is not changed by the addition
of a noise point ‘o’. (d) A randomly selected small portion of features does not change
the local graph significantly.
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set. A Delaunay graph is then defined by sets of points, edges and faces, i.e., a
graph Gm = (Vm, Em, Fm), where Em is the list of node connections (i.e., Em =
{(i, j) | ∀vi, vj ∈ Vm}), and Fm is a set of triplets of indices, in which each triplet
represents a triangle such as Fm = {(i, j, k) | ∀(i, j), (j, k) and (j, k) ∈ Em}. Lo-
cal entity of a graph called a clique is then defined as a cluster of points connected
by Em. By using clique notation in [17], a model clique centred at a point vi is
given by

Cm
i = {i} ∪ {j|∀(i, j) ∈ Em} . (1)

A centre point vi of a clique Cm
i is especially referred to as the seed of a clique,

and the indices of the other points are called neighbours, which are ordered in
the clockwise direction.

One benefit of using this structured points is that it creates unique local
configuration of points and the connections of nodes are not as complicated
as a generic non-directional graphical model, e.g., Markov random fields. This
is because the Delauany graph restricts the number of point connections as
a triangle and the connections are only made within the nearest neighbours.
However, a problem occurs when the sizes of the two cliques being compared are
different, i.e., |Cm

i | �= |Ct
j |. Thus, if a general point-pair based distance is used

for matching, it is necessary to establish inexact matching of neighbour points
in advance, e.g., some points should have multiple opponents, or a null point
concept is required [3, 18]. However, the proposed matching framework enables
distance of two data sets with different sizes to be measured.

3 Clique Distance

A similarity transform Hs is normally designed with 4 degrees of freedom, i.e.,
the transform matrix in a 2D projective space P

2 is defined by

Hs(s, θ, tx, ty) =

⎡
⎣

s cos θ s sin θ tx
−s sin θ s cos θ ty

0 0 1

⎤
⎦ , (2)

where s is a scaling factor, θ is a rotational angle, and tx and ty represent
translations in two orthogonal directions. Therefore, Hs describes a rigid motion
of an object with a change in scale in 2D space. Some of the useful invariant
properties under the similarity transform are that length ratio, the combination
of vectors (e.g., centroid), and area ratio are preserved [21]. In particular the
angle ratio is not affected by this transformation so that the Delaunay graph
of a transformed point pattern also remains unchanged. These properties are
exploited in a new distance between cliques, which makes the new measure more
reliable for a transformed point pattern.

The shape difference of a clique is measured by a graphical distance. Instead
of direct use of edge length and angles, the proposed graphical distance compares
a set of cross ratios of a clique. The cross ratio is the length ratio defined by four
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distinct points on a collinear line, e.g., the cross ratio of four points, v1, v2, v3,
and v4 is

fcr(v1, v2, v3, v4) =
||v1 − v3|| · ||v2 − v4||
||v1 − v4|| · ||v2 − v3||

. (3)

Because the cross ratio is invariant up to a projective transform, it can correctly
measure the shape difference of two similarity transformed graphs. To retain
four points for the cross ratio estimation, the proposed method exploits the
midpoints of two sides of a triangle belonging to a clique, and the two ends of
the boundary edge. Since these four points are not collinear, the two midpoints
are projected onto the boundary line. Suppose a neighbour index of Cm

i is denoted
as ni1, · · · , ni(|Cm

i |−1). The boundary of a clique Cm
i is then defined as

Bm
i = {(nij , ni(j+1))|j = 1, · · · , |Cm

i | − 2} . (4)

If the seed of a clique is enclosed by its neighbours, the boundary set has an-
other element {(ni(|Cm

i |−2), ni1)}. This is because the face of an internal clique
is normally defined by a circular permutation of two adjacent neighbours but a
clique whose boundary is identical to the boundary of a graph is not, i.e., the
maximum size of a boundary set is limited by |Bm

i | ≤ |Cm
i | − 1.

All the midpoints from two side edges of a triangle in Cm
i are stored in

Mm
i = [[μ1

i1μ
2
i1][μ

1
i2μ

2
i2] · · · [μ1

ijμ
2
ij ]] , (5)

where μ1
ij = 0.5(vi + vnij ) and μ2

ij = 0.5(vi + vni(j+1) ). Consequently, each
triangle in a clique is represented by the cross ratio. For example, a triangle of
(i, nij , ni(j+1)) is defined by

rij = fcr

(
fo(vnij , μ

1′

ij , μ
2′

ij , vni(j+1))
)

, (6)

where μk′

ij is a projection point of μk
ij onto the boundary vector vni(j+1) − vnij ,

and fo(·) represents an ordering function which orders four points in the di-
rection of the boundary vector. Figure 2 illustrates some examples of graphical
distances of a Delaunay graph from 20 random points. When a triangular face
has an obtuse angle, the projections of midpoints lie outside of the triangle [see
Fig.2(b)]. In this case, the order of four points is different from the order of
the acute triangle shown in Fig. 2(a). To make the order of points consistent,
an ordering function fo(·) rearranges four points in the direction of the bound-
ary vector and any direction of the boundary gives the same cross ratio, i.e.,
fcr(v1, v2, v3, v4) is equal to fcr(v4, v3, v2, v1). Thus, the face Fm can also be
represented in terms of the cross ratios of Cm

i , i.e., Fm = {Rm
1 , · · · , Rm

|V m|},
where Rm

i = [ri1 · · · ri(|Bm
i |)].

The graphical distance between two cliques is incorporated in the modified
HD, where the size of the triangle is used for the weight, i.e.,

hg(Rm
k , Rt

l) =
1

|Rm
k |

∑
α∈Rm

k

min
β∈Rt

l

{g(rkα, rlβ)} , (7)
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Fig. 2. Illustration of a graphical distance: (a) A triangle defined by (v7, vn7,2 , vn7,3)
is a face of C7 and its cross ratio is fcr(vn7,2 , μ1′

7,2, μ
2′
7,2, vn7,3); (c) For a face

(v9, vn9,2 , vn9,3) with an obtuse angle, the projection of a midpoint is out side of a
boundary

where g(·) is

g(rkα, rlβ) = (1 + || aα

aCm
k

− aβ

aCt
l

||)||rkα − rlβ || , (8)

and aCm
k

is the total area of a clique Cm
k , and aα represents the area of a triangle

indexed by α. Thus, the graphical distance accounts for the difference of area
ratio in a clique. The non-directional version of the graphical distance h2(Rm

k , Rt
l)

is obtained by choosing the maximum of two directional distances. Finally, a
graphical proximity matrix is defined as

Δg =

⎡
⎢⎣

h2(Rm
1 , Rt

1) h2(Rm
1 , Rt

2) · · · h2(Rm
1 , Rt

|Vt|)
...

... · · ·
...

h2(Rm
|Vm|, C

t
1) h2(Rm

|Vm|, R
t
2) · · · h2(Rm

|Vm|, R
t
|Vt|)

⎤
⎥⎦ , (9)

and the matrix is normalised by the maximum value of its elements.

4 Experimental Results

To evaluate the performance of the proposed method in partial matching, the
Harris detector was used to extract 251 model points from a 348×360 grey
level image of a cup. Figure 3(a) shows the Delaunay graph of the model points
overlaid on the image. To create a portion of the model data, a reference line and
a sweeping line are used in the experiment. The reference line is parallel to the
horizontal axis and has an intersection with the mean point of the model data.
The sweeping line sweeps the model points in a clockwise direction at a sweeping
angle θs measured from the reference line. The sweeping angle determines the size
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of the selected portion. Figure 3(b) shows a selected test data with θs = 60◦, and
its Delaunay graph. Since the general HD is able to cope with partial matching,
the performance of HD and its variants in partial matching are compared with
that of the clique HD from θs = 20◦ to θs = 340◦. The results are shown in
Fig.3(c), where matching distances are nomalised for comparison. Despite the
small portion of model data selected with θs = 60◦, the clique HD matching
distance of 0.589 is the best, whilst HD, MHD, 30% Ranked HD (RHD), 50%
RHD and 70% RHD scores are respectively 0.953, 0.786, 0.388, 0.782 and 0.783.
This is because the local graphical information is not changed. RHDs score 0 as
the size of the portion is close to the model data because they only use the best
ranked score. However, this characteristic is not desirable for identification.

Images of three small objects as shown in Fig.4 are used for evaluating the
identification capability of the proposed method. Two of the objects have a
similar shape except for details of their decoration [see Fig.4(a) and (b)] and
the last test image is generated from Fig.4(a) using a similarity transform. The
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Fig. 3. (a) The 251 model points are extracted from the 348×360 image for the partial
matching experiment. They are denoted by *, with their Delaunay graph overlaid. (b)
The selected data is bounded by the solid reference line and the dashed sweeping line
with θs = 60◦. (c) Normalised matching distances of HD, MHD, 30% RHD, 50% RHD,
70% RHD and clique HD, are respectively denoted by �, ◦, x, +, • and *.
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Fig. 4. Test images for evaluating the identification capability: (a) china 1; (b) china
2; (c) remote controller; and (d) image in (a) rotated by 45◦ and translated.

images in Fig. 4(a), (b) and (c) respectively generate 113, 57 and 68 feature
points.

The normalised matching distances are summarised in Table 1 where a, b,
c and d respectively correspond to the objects in Fig. 4(a), (b), (c) and (d).
Since the overall shapes of object (a) and (b) are similar, the HD score (i.e.,
distance) for these two objects is relatively small. On the other hand, the clique
HD gives a larger distance for object (a) and (b) because their local details are
different, even though the general shape is not. When a model and test data
are related by a similarity transform, clique HD scores 9.83 whereas general
HD scores 60.7 (see mataching distance between a and d in Table 1), i.e, the
HD matching score between (a) and (d) is significantly increased but clique HD
gives a small distance under the transform. These results show that the clique
HD achieves a much better performance in identifying an object, e.g., for model
based matching. However, when general shape of two objects are considerably
different, e.g., rectangular remote and circular china, traditional HD performs
better and the average distances of clique HD and HD in this case are 59.73 and
85.21, respectably (see c column in the table).



Similarity Invariant Delaunay Graph Matching 33

Table 1. Identification test results

clique HD HD

a b c d a b c d
a 0 49.41 38.61 9.83 0 11.92 81.88 60.07
b 49.41 0 100 44.12 11.92 0 73.76 59.89
c 38.61 100 0 40.58 81.88 73.76 0 100
d 9.83 44.12 40.58 0 60.07 59.89 100 0

5 Conclusions

HD-based point matching has advantageous characteristics, e.g., capable of
matching without exact point pairs and partial matching, and robustness against
noise and outliers. Therefore, many variants of HD have been introduced. This
paper proposes a clique HD that incorporates a graphical distance in the tra-
ditional HD matching framework. The proposed method performs matching
at local point sets called cliques, which are uniquely formed by the Delaunay
tessellation.

To achieve similarity invariance, the proposed method uses a set of cross
ratios defined by four collinear points on every boundary edge in a clique. The
normalised area of a face in a clique is used for weight when matching two
triangles. Experiments show that the proposed matching method is robust to
noise and outliers, which normally would deteriorate the performance of graph-
based matching methods. However, the method cannot account for apparent
shape matching (e.g., matching by the boundary or silhouette of an object)
because it is solely based on features from local entities. As future works, the
proposed method can be modified to address an affine transformed data, and
recent estimating techniques that are robust to noise, e.g., LMeds or RANSAC
algorithm will be explored to achieve a more accurate estimation of a local
transform.
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