Advanced Homology Computation of Digital
Volumes Via Cell Complexes*

Helena Molina-Abril and Pedro Real

Dpto. Matematica Aplicada I, E.T.S.I. Informatica, Universidad de Sevilla,
Avda. Reina Mercedes, s/n 41012 Sevilla (Spain)
{habril,real}@us.es

Abstract. Given a 3D binary voxel-based digital object V', an algo-
rithm for computing homological information for V via a polyhedral
cell complex is designed. By homological information we understand
not only Betti numbers, representative cycles of homology classes and
homological classification of cycles but also the computation of homol-
ogy numbers related additional algebraic structures defined on homology
(coproduct in homology, product in cohomology, (co)homology opera-
tions,...). The algorithm is mainly based on the following facts: a) a local
3D-polyhedrization of any 2 x 2 x 2 configuration of mutually 26-adjacent
black voxels providing a coherent cell complex at global level; b) a de-
scription of the homology of a digital volume as an algebraic-gradient
vector field on the cell complex (see Discrete Morse Theory [5],AT-model
method [7J5]) . Saving this vector field, we go further obtaining homo-
logical information at no extra time processing cost.

1 Introduction

One possible way for developing techniques for volume recognition can be through
relevant structural descriptors, mainly based on topological-geometrical proper-
ties. Topology deals with connectivity and separability features and although the
global nature of topological properties makes their computation difficult, topol-
ogy seems to be an essential part of the vocabulary by which human visual system
represent and characterize objects [2]. Homology gives us the simplest topological
version of a volume in terms of information about connected components, tun-
nels or holes and cavities on it. Homological numbers commonly used in Pattern
Recognition as robust descriptors are Betti numbers (number of connected com-
ponents, holes and cavities), local topological characterization of voxels and Euler
characteristic. Nowadays, the current interactions between Pattern Recognition
and Computational Topology are mainly at graph-based level and it includes is-
sues such that topological skeletonization and Reeb graphs [I]. Examples of image
analysis and pattern recognition problems that benefit from the use of topologi-
cal considerations include, for example, the use of homology invariants to compare
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objects, for image classification, or shape recognition. At present, there is an inten-
sive research on homology computation in the context of the image ([9] for cubical
homology,[I5I16] for persistent homology, [3] for combinatorial maps,[12] for ma-
trix methods, [13] for graph pyramids,[7] for algebraic-topological models).Even
so, the amount of efficient numerical tools combining homological with geomet-
rical information could be increased using and saving additional algebraic data
structures at no extra computational time.

In this paper, we establish a method for computing homology numbers for
a binary 26-digital volume V. 3D digital homology is developed here in a cell
(more precisely, polyhedral) ambiance. Roughly speaking, a continuous anal-
ogous K (V) of V is a cell complex having the same “homology” than it. In
particular, the homology of V' and K(V) are isomorphics and all the numeri-
cal descriptors derived from homological and geometrical information in both
objects are equals (Betti numbers, Euler characteristic,...) or extremely similar
(size and orientation of geometrically well-adapted representative cycles of ho-
mology generators,...). Due to the fact that we encode homology in terms of an
algebraic gradient vector field on the cell complex, it is possible to deduce not
only Betti numbers, representative cycles of homology classes and homological
classification of cycles but also homology numbers related to additional algebraic
structures defined on homology (coproduct in homology, product in cohomology,
(co)homology operations,...). In discrete context, this idea of encapsulating ”ho-
mology” under an algebraic-topological format has already been used in theories
like AT-model [6] and Discrete Morse theory [5]. For calculating the homology
gradient on K (V), it is possible to adequately modify classical algorithms (Smith
Normal Form, incremental, etc) for computing homology. We deal with here the
incremental Delfinado-Edelsbrunner technique.

The remainder of this paper is organised as follows. In section 2 we construct
the cell complex K (V). Definition and computation of the homology gradient
vector field is given in section 3. Then we briefly comment some advantages
of saving this algebraic information in section 4. We focus our interest in the
canonical coproduct in homology [11].

2 3D Polyhedrization

In algebraic topology, specifically homotopy theory, shapes are often constructed
out of contractile cells (having the homotopy type of a point) of different dimen-
sion which are coherently attached one to each other. Intuitively, a contractile
cell is one that can be continuously shrunk to a point. In that way, cell complexes
appear (see [I1] for a formal definition) and constitute a class of spaces that is
broader than simplicial complexes. They retain a combinatorial nature, so that
computational consideration can still be applied in that context. In fact, the cell
complex generalizes both the notion of graph adding cells of dimension greater
than 1 as well as the notion of a simplicial complex in that triangles become
polygons and tetrahedra become polyhedra. Note also that the cells need not be
straight, such that a polygon may contain as few as a single edge connecting a
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Fig. 1. A simplicial complex (a) and a cell complex (b)

single vertex to itself, and a polyhedron may contain as few as a single face, a
single vertex and no edges.

A cell complex or simply complex in R? is a set K = {K4}q>0 of convex
polyhedra (called cells). A face of a cell consist of each lower dimension cell,
which make it up, in satisfying two conditions: (1) Every face of a cell is a cell
(i.e. in K), and (2) If o and o’ are cells, then their intersection is a common face
of both. A simplicial complex is a cell complex whose cells are all simplices.

We associate here a three-dimensional cell complex K (V') to a digital object
V' with 26-adjacency relationship. The complex K (V') and the cubical complex
canonically associated to V' consisting in the set of geometric realizations of
the voxels forming V' are homotopically equivalent, and consequently, present
the same homological information. To obtain the cell complex K (V) we do as
follows. Each black voxel can be seen as a point (0-cell) of our complex. The
algorithm consist on dividing the volume into overlapped (its intersection being a
"square” of four voxels mutually 26-adjacent) unit cubes formed by eight voxels
mutually 26-adjacents, and to associate each unit cube configuration with its
corresponding cell. We scan the complete volume, always taking as elementary
step a unit cube.

The cell associated to a unit cube configuration is a 0-cell if there is a single
point. If there are two points, the complex is a 1-cell which is the edge conecting
both of them. With three or four coplanar points on the set, the 2-cell associ-
ated is a polygon. If there are four non coplanar points or more, the 3-cell is a
polyhedra. In other words, the cell associated to a unit cube configuration is just
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the convex hull of the black points and all its lower dimension faces. Note that
for 3-cells, their 2-dimension faces are either triangles or squares.

Once we have covered all the volume and joined all the cells, we build the
complete cell complex without incoherences.

Our method gives us the possibility of canonically associate a simplicial com-
plex equivalent to V' and this fact allows us to define in a straightforward manner
the boundary operator of each cell in the complex. For doing that, we limit our-
selves to say that we here slightly modify the idea proposed in [I0] to create a
new triangulation method on the surface of a digital volume. Because a 2 x 2 x 2
volume includes eight points, each of which can be black or white, there are 256
possible patterns in a unit cube. If we ignore the congruent patterns differing
only by the rotations of the center of the unit cube, the 256 patterns can be
reduced to 23.

On a simplicial complex, a 0O-simplex (v0) is a point; a l-simplex (v0, v1)
is a line connecting vertex v0 and v1; a 2-simplex (v0, v1, v2) is the triangle
defined by these three vertex; and a 3-simplex (v0, v1, v2; v3) is a tetrahedra.
The aim is to divide each cell into points, edges, triangles or tetraedra to build
the simplicial complex.

Using 26-adjacency to divide each cell, we will find crossing simplex when
there are four coplanar points into the cube. In all these cases we will choose
one direction we will give preference, to avoid simplex crossing.

The problematic situations arise only when there are four or more black points
into a 2x2x2 set, so we have to study each possibility separately.

As is shown in figure 3, given a cube with five black points, there are three
possible positions of this points not considering cube rotations.

In figure 3.a we have to choose a direction, such that no incoherencies will
appear between one cube and their neighbours. That is why all possible rotations
of this point configuration must be considered separately, because depending on
the cube’s face we find the four coplanar points, we should choose a different
tetrahedrization, according to the decision adopted for the four points. We have
then six different configurations to consider for this case.

The other two situations (3.b, 3.c) are easier to carry out, because we can
apply the tetrahedrization showed in the picture, to all of the possible rotations
in each case without incoherencies.

With six black points, there are also three possible configurations.In two of
them we have to consider every rotation separately, and there are twelve possi-
bilities for each one. When there are seven points, we have just eight possibilities,
and we should build a different tetrahedralization for each one. Finally, when
all the points are black into the cube, there is only one possible tetrahedrization

b) c)
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Fig. 3. Five black points
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Fig. 4. Cell complex K (V) of a trabecular bone volume with 21938 cells

according to the direction we chose for each cube’s face. Once we have the entire
cube’s volume and their simplicial complex, we have to build a general simplicial
complex for the total volume.

If we just join the different complexes, taking into account not to take two
times the same simplex, we will not find incoherences obtaining the simplicial
final complex.

3 Homology Gradient Vector Field for a 3D Digital
Object

In this section we extend the Discrete Morse Theory notion of gradient vector
field of a Morse function [5]. Homology is encoded here in terms of an algebraic
vector field (so-called homology gradient vector field) from which it is possible
to compute not only Betti numbers (number of connected components, holes
and cavities), representative cycles of homology classes and homological clas-
sification of cycles but also homology numbers related to additional algebraic
structures defined on homology (coproduct in homology, product in cohomol-
ogy, (co)homology operations,...). In discrete setting, this idea of considering a
linear map for defining homology has been extensively developed in Discrete
Morse and AT-model [7] theories. In the first one, this map is a vector field and
in the second one, it is a chain homotopy operator determining a strong alge-
braic relationship between the 3D object and its homology. Here, we suitably
combine concepts and techniques of both theories in order to specify an adequate
framework for efficiently computing homological information.

To explain the notion of homology gradient vector field, we first describe some
elementary concepts from Homological Algebra (see [§]).

Since the objects considered in this paper are embedded in R? then the ho-
mology groups vanish for dimensions greater than 3 and they are torsion—free for
dimensions 0, 1 and 2. Throughout the paper, we consider that the ground ring is
a finite field F. Let K be a three-dimensional cell complex. A g—chain a is a formal
sum of simplices of K(9. We denote ¢ € a if 0 € K@ is a summand of a. The
g—chains form a group with respect to the component—wise addition; this group is
the gth chain group of K, denoted by Cy(K). There is a chain group for every inte-
ger ¢ > 0, but for a complex in R3, only the ones for 0 < ¢ < 3 may be non-trivial.
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The boundary map 9, : Cy(K) — Cy—1(K) applied to a g—cell o gives us the col-
lection of all its (¢ — 1)—faces which is a (¢ — 1)—chain. By linearity, the boundary
operator d, can be extended to g—chains. In the concrete case of a simplicial com-
plex, the boundary of a g-simplex defined in terms of vertices ¢ = (vg,...,vq)
is defined by: 94(c) = > (vo, ..., Vs, ..., vq), where the hat means that vertex v;
is omitted. In our case, taking into account that the 3-cells of our cell complexes
can automatically be subdivided into tetrahedra, its boundary map can directly
be derived from that of the component tetrahedra. It is clear that 9,19, = 0.
A chain a € C is called a g—cycle if 9 ¢ (a) = 0. If a = 9 g+ 1(a’) for some
a’ € Cyy1 then a is called a g—boundary. Define the gth homology group to be the
quotient group of g—cycles and g—boundaries, denoted by H,(C). Let C = {Cy, 9 4}
and C" = {C}, 0} be two chain complexes. A chain map f : C — C' is a family of
homomorphisms { f, : C; — Cy }4>0 such that 0 | f; = f4—10 4.

Now, we are ready for giving an algebraic version of the Discrete Morse Theory
notion of gradient vector field, which is not necessarily associated with a Morse
function. ([5]).

Definition 1. [5] Let K be a finite cell complex. A linear map of chains ¢ :
C.(K) — Cuy1(K) is a gradient vector field on K if the following conditions
hold:

1. For any cell a € K, ¢(a) is a ¢+ 1-cell.
9. ¢2 =0

The first condition means that ¢ is a combinatorial function and the second that
V induces the following partition on the g-cells of K:

{g—rcellsa of K} = {a such that ¢(a) # 0}
U{a such that ¢ € Im¢} U{a such that ¢(a) =0 and a ¢ Im¢}

Let us note that 0 is an specimen of C.(K). The cells constituting the last
set are called critical cells.

In [T4], elementary algebraic operations are used for designing an algorithm
for computing homology which can be seen as a kind of algebraic-topological
thinning. These elementary operations are called integral operators and they
can be defined as algebraic versions of the notion gradient vector field (in the
sense that ¢ applied on a cell gives us not necessarily a cell of higher dimension
but possibly a sum of cells).

a) b)
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Fig. 5. Combinatorial gradients (a) and algebraic gradients (b)
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The notion of homology gradient vector field of K generalizes that of gradient
vector field and integral operator and it condenses all the significant homological
information of the cell complex.

Definition 2. A homology (or optimal) gradient vector field for a filtered cell
complex K is a linear map of chains ¢ : Cx(K) — Ciy1(K) such that ¢p = 0,
@Op = ¢ and Op0 = 0, where O is the boundary operator in C(K).

In fact, using homological algebra arguments, it is possible to deduce that ¢
determines a strong algebraic relationship connecting C(K) and its homology
vector space H(K).

Let m = ide(xy — ¢ — ¢9. This chain map satisfies that 72 =m Iflmm = {x €
C(K), such that © = ¢(y) for some y} and Kerm = {z € C(K) such that ¢(x) =
0}, then C(K) = Imm @ Kerr). Let f : C(K) — Im() be the corestriction of 7 to
Im(7) (that is, 7 : C(K) — Im(m)) and g : Im(7) — C(K) be the inclusion. Let d
be the boundary operator of Im (7). We now prove that d = 0. Taking into account
that ide k) + 9f = ¢d + d¢, 00 = 0 and 0¢0 = 0, we then obtain 0 — dgf = 0.
Therefore, dgf = gdf = 0. Since f is onto and g is one- to-one, we deduce that
d = 0. That means that the Morse complex My = I'm¢ is a graded vector space
with null boundary operator isomorphic to the homology H (K).

We obtain a homology gradient vector field for K adequately modifying clas-
sical algorithms for computing homology (boundary matrix reduction based on
Smith Normal Form [I1] , incremental technique [4], ...) existing in the litera-
ture. We describe here a homology gradient version of the incremental homology
method of Delfinado-Edelsbrunner [4]. For designing such an algorithm it is nec-
essary to impose an order on the set of cells of K. We call such an ordering a
filter. In other words, given a cell complex K, K = {c1,...,¢n} is a filter if ¢;
is a face of ¢; for i < j. It is possible to "filter” K by first considering all the
0-cells in a certain order, then an order on all the 1-cells, and so on.

Algorithm 1. Computing a homology gradient vector field for a finite filtered
cell complex K (with filter) over a field.

INPUT: The filter K,, = {co,...,¢m} considered on the chain complex (C(K),d),
and the differential O; for the basis K;, ¢=0...m.

Co := ({co}, Do), ¢olco) := 0.
For 1=1 to m do
Ci = (Cz'—l U {Ci}78i),,
If (87 — 87;_1¢Z~_18i)(ci) =0, then
¢z(cz) =0.
For j=0 to :—1 do,
i(c;) := di-1(c))-
If (81 —8i,1¢i,18i)(6i) is a sum of a kind Z::l it 750 (u; € Ci—1), then:
¢(u1) ;= —A7'¢; and zero in the rest of elements of C; i, .
then For j=0 to ¢ do,

bi(cj) = (i1 + <Z~5 - <1~5¢i7181‘71 - 4381‘71@71)(0;') s

OUTPUT: a homology gradient vector field ¢, forK.
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The algorithm runs in time at most O(m?), where m is the number of cells
of K.

Concerning to the homology computation of a binary digital volume V' with
26-adjacency relation, the homology gradient vector field for the canonical 26-
adjacency cell representation K (V) (with a given filter) of V' provides us the
desired solution.

This method has already been implemented and has been tested on digital
volumes of trabecular bones (courtesy of the Institute of Biomechanics, Zurich,
Swiss). The following table shows the Betti numbers and the computation time
for the homology of digital trabecular bone volumes of different sizes.

Number of cells Betti Numbers Time
21938 bp=3,b1=12,00=0 0,885s.
47448 bp=2,b1=13,00=0 2,055s.

117780 bo =2,b; =406, by =13 5,31s.

4 Advanced Homological Information

In this section, we briefly comment some advantages of saving a homology gra-
dient vector field ¢ for a binary digital volume V.

First, considering homology in terms of a linear map ¢ increasing the dimen-
sion by one allows to give a positive answer to problems so important in object
recognition as detecting null-homological cycles (that is, cycles which become zero
in homology), homologically classifying cycles at any dimension, to deform a cy-
cle guaranteeing a homological control in the process, reversible topological skele-
tonization,... In fact, all these question can be handled using as main tool the triple
of maps (m,inc, ¢) derived from ¢ previously described in the last section. These
maps connect in an algebraic strong way the chain complex C'(K (V")) canonically
associated to the polyhedral complex K (V) to its homology H (V). For instance,
if we are interested in homologically classify a 1-cycle ¢ (d(c¢) = 0), we only need
to compute 7(c) for determining the homology class it belongs. If w(¢) = 0, then
¢ is a boundary and the following equality hold ¢ = d(¢(c)). If we are interested
in comparing two different 1-cycles ¢ and ¢’ belonging to the same homology class
m(c) = m(c'), we can obtain that ¢ — ¢’ = d¢(c — ¢’). This means in particular that
the 2-chain ¢(c — ¢') is a ”surface” in V' which has as part of its boundary ¢ and
¢’. Given a homology class 7(c), if we are interested in obtaining a specific cycle ¢/
belonging to this homology class presenting some properties of geometrical nature
(for example, to be "well-adapted” to the geometry of the object), we only need
to develop the specific geometric algorithm for getting ¢’ and finally to check that
7(c') = w(c). It is possible to generate a (curve, curve-surface, ....) topological
skeleton Sk(K(V)) which is reversible in the sense that we can reconstitute the
cell complex K (V') and consequently, the volume V from the skeleton. In fact, it is
possible to design an algorithm f or computing a chain contraction from C'(K(V))
to C(Sk(K (V) which allows us to ensure the reconstruction of a subvolume of V'
starting from any part of the skeleton.
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Fig. 6. Geometrically well-adapted 1-cycles

Fig. 7. The hollow torus and the representative cycles of homology classes of dimension
1 and 2

Now, we focus our interest in the computation of the coproduct in homology
for simplicially subdivided cell complexes (K (V') is an example of this). There is
acanonical coproduct A : H(V) — H(V)®@H (V) (also called Alexander-Whitney
coproduct) in homology which is well defined in the context of Simplicial Topology.
This coproduct operation at homology level can be seen as a proper decomposition
of 2-cycles into 1-cycles factors. For example in the case of a hollow ring (torus,
see the figure), the homology coproduct applied on the global cavity gives us the
two fundamental 1-cycles. The formula for this operation at complex chain level
applied to a generic triangle (vg, v1, v2) is the following:

AW (vg, v1,v2) = (vo,v1,v2) ® (v2) + (v0) ® (vo,v1,v2) + (v, v1) ® (v1,v2)

This map can be translated to homology level using the triple (m,inc, ¢). Let
A:HWV)— HV)® H(V) be A([z]) = (m,7)AW (z x x)) where [z] means the
homology class with representative 2-cycle x.

In our case, a cell 2-cycle ¢ we must handle is a sum of cubes and polyhedra,
and they can be automatically putted under the form s of sum of the component
tetrahedra of them. We use this simplicial description s for the 2-cell cycle in
the previous formula for the coproduct.

5 Conclusions and Future Work

This paper proposes a polyhedral-based solution to advanced homological com-
putation, opening a door to the design of efficient algorithmic tools which are
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suitable for volume recognition. The fundamental tool in our approach is that
of homology gradient vector field which condenses all the relevant homologi-
cal information of the digital object V. This notion is interpreted in a Homo-
logical Algebra setting as a chain homotopy equivalence. This strong algebraic
”connection” between V and its homology allows to go further in homological
computation.

The main theorem of Discrete Morse Theory establish that a cell complex
K with discrete Morse function is simple homotopy equivalent to another cell-
complex with exactly one cell of dimension p for each critical cell of dimension
p. Then, the fundamental idea here is to reduce the number of cells in a complex
without changing the homotopy type. In this paper, we construct directly from
the boundary operator the homology gradient vector field in an incremental
way. If, for each digital object V' we want to analyze, it would be possible to
coherently install an initial (non-optimal) gradient vector field ¢ in the cubic
grid (2 x 2 x 2 unit cubes) ”containing” all the cells of K (V'), then we reduce the
complexity of the homology calculus, by computing the homology on the Morse
complex My, = Imey, exclusively composed of critical cells. The computational
costs of the method can drastically be reduced if the number of critical cells of
the corresponding Morse complex is small.
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