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Abstract. Current feature-based gesture recognition systems use human-
chosen features to perform recognition. Effective features for classification
can also be automatically learned and chosen by the computer. In other
recognition domains, such as face recognition, manifold learning methods
have been found to be good nonlinear feature extractors. Few manifold
learning algorithms, however, have been applied to gesture recognition.
Current manifold learning techniques focus only on spatial information,
making them undesirable for use in the domain of gesture recognition where
stroke timing data can provide helpful insight into the recognition of hand-
drawn symbols. In this paper, we develop a new algorithm for multi-stroke
gesture recognition, which integrates timing data into a manifold learning
algorithm based on a kernel Isomap. Experimental results show it to per-
form better than traditional human-chosen feature-based systems.
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1 Introduction

Sketched gestures are a natural form of input for many domains, such as draw-
ing mathematical symbols, graphs, binary trees, finite state machines, electrical
circuit diagrams, military course of action diagrams and many more. To allow
the computer to understand these diagrams, gesture recognition systems have
been built for a large number of domain [TU2BIAIEI6I7IRIGTOITT]. Many techniques
for gesture recognition have been developed; however, current gesture recogni-
tion systems still struggle with trying to get high recognition accuracy while
still providing drawing freedom. As in other recognition domains (such as image
and speech), feature selection is crucial for efficient and qualified performance
in gesture recognition. Previous research has provided several suggestions for
good feature sets [T2T3IT4ITT]. Rubine suggested 13 features based on stylistic
drawing features and time [I2]. Long modified Rubine’s features by adding 11
new features and removing 2 time-based features [I3]. Also, ink features were
proposed in [I1]. These feature sets were well designed, but they are based on
manual entry of methods to extract them, which becomes tiresome.

As Mahoney says in [15], designing features manually is a tedious task and may
be extended by designer’s intuition, which is subjective. Moreover, feature design
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is sensitive to problems such as jitters. More interestingly, machine learning
research in other domains have shown that computers are able to select their
own features with similar results. As stated in [I5], some researchers have tried to
learn some features automatically as well as manually, which leads to a mixture of
hand-chosen and machine-generated features. Human-generated features are not
easily extendable, whereas it is trivial to add some dimensions in feature space
for a computer. In addition, hand-chosen features are extracted based on human-
observable properties, whereas machine-generated features can be optimized for
clear advantages in classification.

In machine learning, the Hidden Markov Models (HMMs) [I6], which use
temporal and spatial structure, have been widely used for gesture recognition.
Several sketch recognition systems have been built which use HMMs to help
predict stroke ordering [I7II8TI9]. Bayesian Networks have also been applied
[20] to recognize multi-stroke shapes using LADDER shape descriptions [21].
Some dissimilarity-based approaches have been proposed in [22] with image-
based methods and in [23] with graph-based methods.

To our knowledge, however, manifold learning has not yet been applied to
gesture recognition despite evidence that has shown manifold learning meth-
ods to be good nonlinear feature extractors. Manifold learning is an effective
method for representation that works by recovering meaningful low dimensional
structures hidden in high-dimensional data [24J25]2627I28]. Previous research
has attempted to use manifold learning to analyze 3D hand-gestures [29], but
manifold learning has not yet been applied to gesture (or sketch) recognition.

In this work we apply the kernel Isomap manifold learning method to classify
sketch data, because it has a projection property, which provides the ability to
project (map) new test data into (onto) the same feature space as training data.
Kernel Isomap requires a dissimilarity matrix to find a low-dimensional mapping
from which it produces a feature set. We introduce a new algorithm to measure
dissimilarity distance between shapes that is based on both spatial and temporal
information. We also show how this algorithm can be modified to accommodate
for shapes drawn with multiple strokes. For recognizing shapes, we compare our
method with the widely used Rubine method [12] and the $1 recognizer [30],
which is a recently proposed automatic sketch recognizer.

2 Kernel Isomap

Manifold learning involves inducing a smooth, nonlinear, low-dimensional man-
ifold from a set of data points. Recently, various mapping methods (for example
see [2412526/27]) have been developed in the machine learning community, and
their wide applications have started to draw attention in pattern recognition and
signal processing. Isomap is one of the representative isometric mapping meth-
ods, which extends metric multidimensional scaling (MDS), by using Dijkstra’s
geodesic distances (shortest paths) on a weighted graph, instead of Euclidean
distances [25].
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The geodesic distance matrix used in Isomap can be interpreted as a kernel
matrix. However, the kernel matrix based on the doubly centered geodesic dis-
tance matrix is not always positive semi-definite. Kernel Isomap [31] exploits
a constant-shifting method such that the geodesic distance-based kernel ma-
trix is guaranteed to be positive semi-definite as a Mercer kernel [32] matrix.
This kernel Isomap has a generalization property, enabling us to project test
data points onto an associated low-dimensional manifold, using a kernel trick
as in kernel PCA [33], whereas, in general, most embedding methods (including
Isomap, LLE, and Laplacian eigenmap) do not have such a property. See [31] for
the details.

3 Implementation

3.1 Dissimilarity from Sketch Data

To apply the kernel Isomap to sketch classification, what we need is not the data
points, but a dissimilarity matrix, which is enough to find a low dimensional
space. The first step in our algorithm is to scale each character to be the same
width and height. Then, we need a consistent (and large) number of points in
each sketch. Thus, we interpolate points between any two consecutive points
that are adjacent in time, but far away in distance to ensure that each gesture
has the same number of points.

Dissimilarity. To calculate the dissimilarity matrix, we calculate the sum of
squared distance between two points of the same order in each sketch as in Fig. [Tl
This is the squared dissimilarity in our algorithm. The dissimilarity between the
ith sketch data and the jth sketch data, D;;, is then given by

S

Dij = | > _(di)?, (1)

k=1

where dj, is the Euclidean distance between the kth points of two sketches, and
S is the number of points in one stroke.

Fig. 1. Dissimilarity between two sketches
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In addition to normalizing each stroke by resampling, we use different weights
for different points. When we connect the two parts of ‘4’ or ‘5°, the connection
causes confusion in calculating the distance. If we use different weights so that the
fake points have less importance than real parts of the stroke, we can eliminate
some of the confusion. Finally, the distance between two points is given by

S

D;; = Z(dk)Qwikwjk7 (2)
=1

where w;y, is the normalized weight of the kth point in the ith stroke, which is
given by

3)

€

B Zl if the point is original in the stroke,
Wik z, Otherwise,

where Z; is the normalization term and ¢ is a constant between 0 and 1.

We call a kernel Isomap equipped with weighted distance weighted kernel
Isoma. The weighted kernel Isomap works well with multi-strokes shapes. For
example, some characters such as the digit ‘7’ might be drawn as one stroke
or two strokes even by one user. In this case, weighted kernel Isomap works
well since the weights make the boundary between one stroke and multi-strokes
smooth so that the distance between two same characters can be closer.

There have been proposed some dissimilarities for sketch data [22]. However,
those dissimilarities are based on images, while our proposed dissimilarity is
based on sketch data including time information.

3.2 Classification

After getting features through kernel Isomap, we use the k nearest neighbor
(kKNN) method, which is a simple classifier, to check how good the features ar

In kNN, we use Mahalanobis distance instead of Euclidean distance between
points, since the variances of Rubine features are too different from each other,
thus Euclidean distance does not find any meaningful structure from Rubine’s
features. On the other hand, in the case of kernel Isomap, the variances of the
features are similar to each other, so Euclidean distance also shows good results.

4 Experiments

We carried out numerical experiments with three different data sets: (a) 26
small letters in English written by one user, where all characters are drawn by

! When weighted kernel Isomap and kernel Isomap work in the same way, we name
(weighted) kernel Isomap

2 Applying kNN to the projected space does not give any significant benefit in clas-
sification compared to applying it directly to the input data space. However, the
results from kNN is enough to show how much our methods have the information
for classification after the projection to the feature space.
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one stroke and each letter has 25 data points; a third of the examples of each
letter were drawn two weeks later, so there is a reasonable amount of variability
in the example data, (b) 10 digits from 0 to 9, drawn by another user, where each
class has 25 characters and (c) 8 different mathematical symbols (‘+, -’) ‘x’, /7,
‘=", ‘sin’, ‘cos’ and ‘tan’), drawn by 10 subjects, where each class of each person
has 5 characters, each of which is by one stroke. In order to show the improved
accuracy of our method, we compared our method with Rubine’s algorithm and

the $1 recognizer.

4.1 Accuracies

For more robust results, we executed 10-fold cross validation 50 times. Figs.
and [B] show the hit rates of classification in three data sets, respectively, by
three approaches: (1) Rubine’s method, (2) $1 recognizer (3) kernel Isomap and
(4) weighted kernel Isomap. To make it fair, we extracted 13 features from the
(weighted) kernel Isomap as Rubine’d.
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Fig. 2. For (a) alphabetical characters (b) digits, the classification accuracies of three
methods: (Method 1) Rubine method (Method 2) $1 recognizer (Method 3) kernel
Isomap and (Method 4) weighted kernel Isomap

Fig.[Blis the boxplots of 50 time experiments in the cases of the English letters
set and digits. In these figures, weighted kernel Isomap and kernel Isomap features
are better than Rubine features in the classification, but similar to each other.
Moreover, we can easily extend the number of features in (weighted) kernel Isomap
by taking more eigenvalues and eigenvectors of the kernel matrix, which might
produce better performance, whereas the number of Rubine features is 13 and it is
hard to add another feature to them. Note that in (b), some digits such as ‘4’ and ‘5’
are composed of 2 strokes. This verifies that the weights for points in strokes work
for the classification especially when characters are composed of multiple strokes.
The average hit rates for (a) are 77.31%, 90.96%, 87.19% and 87.04%, respectively,
and for (b) they are 91.80%, 97.28%, 95.90% and 97.80%, respectively.

3 $1 recognizer does not extract any features. Actually it is like using all features.
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Fig. 3. For mathematical symbols (‘+’, ‘-, ‘x’, ¢/, ‘=, ‘sin’, ‘cos’ and ‘tan’), the clas-

sification accuracies of three methods: (Method 1) Rubine method (Method 2) $1
recognizer (Method 3) kernel Isomap and (Method 4) weighted kernel Isomap. The
average hit rates are 60.46%, 82.41%, 92.77% and 92.41%, respectively.

The previous two experiments used one user’s data set. As for the mathe-
matical symbols, the data set was made by 10 different subjects. However, since
each character in the data set was drawn by one stroke, there is no big difference
between kernel Isomap and weighted kernel Isomap as in the first experiment. In
Fig.[3l the accuracies of our proposed methods are much better than Rubine’s.

4.2 Feature Spaces

Figs. @ and Bl show us how good the features are. We plotted the 4 best features
from the English letters data set. In Fig. Bl which is from kernel Isomap, we
can see that sketches in the same classes share similar feature values for most
features, whereas in Fig. @ which uses the Rubine feature set, just a few features
are useful for classification.
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Fig. 4. Four features from Rubine’s. Each axis represents one Rubine feature. Note
that the features do not effectively separate the different gestures.
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Fig. 5. Four features corresponding to the 4 largest eigenvalues of kernel matrix. Each
axis represents an automatically generated feature. Note that the features effectively
separate the different gestures.

Fig. 6. Correlation matrices between 13 features (Red color represents high correlation
and each axis represents 13 features): (Left) Rubine Features; (Right) (weighted) kernel
Isomap Features. Note that in the figure on the right all of the automatically chosen
Isomap features are highly uncorrelated, meaning that they are much more effective to
include distinguishable information.

We calculated the correlation matrix of each feature set (see Fig.[6]). (Weighted)
kernel Isomap features are uncorrelated, which means they are more efficient than
the heavily correlated and redundant Rubine features (seen particularly between
features 10 and 11).

5 Discussion

As shown in the figures above, the features from (weighted) kernel Isomap are
more accurate and more efficient than Rubine’s for the classification. But, there
are two drawbacks in the (weighted) kernel Isomap approach. To get the fea-
tures, a kernel Isomap requires a lot of training data because it is assumed in
manifold learning that data points should be dense. In addition, it takes some
time to extract those features for training. However, after training, time does
not matter when testing new data points. Also, although the Rubine’s approach
does not need dense data points for training, it also needs training data for the
classification. More importantly, as we gather more data points, the features
of a (weighted) kernel Isomap become better, whereas Rubine’s features do not.
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The weighted kernel Isomap works well with multi-strokes shapes. Sometimes,
it is hard to say if the input character is composed of one stroke or multiple
strokes. In this case, weighted kernel Isomap works well since the weights make
the boundary between single stroke and multi-strokes smooth. There is some
room to improve the classification hit rate by providing better weights.

The reason why (weighted) kernel Isomap is better than Rubine’s for the
classification is that they try to find the best features to represent the data set
in an efficient way, whereas Rubine’s features are already determined according
to stylistic drawing properties. Therefore, the feature set of kernel Isomap reflects
the domain or context dependent features.

With the letter data set which has large amount of orientation variability, the
$1 recognizer is slightly better than our method because of their rotation invariant
distance metrid]. However, our method outperforms the $1 recognizer with math
data set because it contained much less rotational variability. Furthermore, some
shapes, such as ‘+’” and ‘x’, contain rotational ambiguity which makes them hard
to distinguish with $1. When a domain calls for rotation invariant features, we can
improve our technique by simply using the distance measure in the $1 recognizer.
Another disadvantage of the $1 recognizer is that it does not extract any features,
$0 it can not improve anymore (it is fixed in its method of classification), whereas
our method can be integrated with other types of classifiers, such as a quadratic
classifier or support vector machine, which may improve overall performance. For
the purposes of this work, we used a simple kNN classifier as proof that our man-
ifold learning technique can be used to extract features from sketched data.

6 Conclusion

Gesture recognition is a natural form of human-computer interaction. As in other
recognition problems, features are crucial for efficient and qualified performance in
gesture recognition. In general pattern recognition problems, machines can learn
effective features which may perform better than the hand-chosen ones in classifica-
tion. Though, in many research areas, manifold learning methods have been shown
to be good nonlinear feature extractors, only a few of them have been applied to
gesture recognition. In this paper, we developed a new technique for gesture clas-
sification using a manifold learning approach that combines temporal and spatial
information, while handling multiple strokes with weighted distances. Experimen-
tal results confirmed the performance to be better than the Rubine’s feature set.

Acknowledgements

One of the authors was supported by StarVision Technologies’s student spon-
sorship program and this work funded in part by NSF IIS grant 0744150: Devel-
oping Perception-based Geometric Primitive-shape and Constraint Recognizers
to Empower Instructors to Build Sketch Systems in the Classroom.

4 It is computationally so expensive to calculate rotation-invariant distances. So it takes
much time even to classify a new point.



Gesture Recognition Based on Manifold Learning 255

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

LaViola, J., Zeleznik, R.: Mathpad2: A system for the creation and exploration
of mathematical sketches. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH) 23(3) (2004)

. Stahovich, T., Davis, R., Shrobe, H.: Qualitative rigid body mechanics. Artificial

Intelligence (2000)

Landay, J.A., Myers, B.A.: Sketching interfaces: Toward more human interface
design. IEEE Computer 34(3), 56-64 (2001)

Forbus, K.D., Usher, J., Chapman, V.: Sketching for military course of action
diagrams. In: Proceedings of TUT 2003 (2003)

Do, E.Y.L.: VR sketchpad - create instant 3D worlds by sketching on a transparent
window. In: de Vries, B., van Leeuwen, J.P., Achten, H.H. (eds.) CAAD Futures
2001, pp. 161-172 (July 2001)

Forsberg, A.S., Dieterich, M.K., Zeleznik, R.C.: The music notepad. In: Proceedings
of UIST 1998, ACM SIGGRAPH (1998)

Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A sketching interface for 3d freeform
design. In: SIGGRAPH 1999, pp. 409-416 (August 1999)

Mahoney, J.V., Fromherz, M.P.J.: Interpreting sloppy stick figures by graph rectifi-
cation and constraint-based matching. In: Fourth TAPR Int. Workshop on Graphics
Recognition, Kingston, Ontario, Canada (2001)

Muzumdar, M.: ICEMENDR: Intelligent capture environment for mechanical en-
gineering drawing. Master’s thesis, Massachusetts Institute of Technology (1999)
Hammond, T., Davis, R.: Tahuti: A geometrical sketch recognition system for UML
class diagrams. In: AAAT Spring Symposium on Sketch Understanding, March 25-
27, pp. 59-68 (2002)

Patel, R., Plimmer, B., Grundy, J., Ihaka, R.: Ink features for diagram recognition.
In: Sketch Based Interfaces and Modeling IEEE, Eurographics (2007)

Rubine, D.: Specifying gestures by example. Computer Graphics 25(4), 329-337
(1991)

Long, A.C., Landay, J.A., Rowe, L.A., Michiels, J.: Visual similarity of pen ges-
tures. In: Human Factors in Computing Systems (2000)

Sezgin, T.M., Stahovich, T., Davis, R.: Sketch based interfaces: Early processing for
sketch understanding. In: Proceedings of 2001 Perceptive User Interfaces Workshop
(PUI 2001) (2001)

Mahoney, J.V., Fromherz, M.P.J.: Three main concerns in sketch recognition and
an approach to addressing them. In: AAAI Spring Symposium on Sketch Under-
standing, Standord, CA, pp. 105-112 (March 2002)

Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE
Trans. Acoustics, Speech, and Signal Processing Magazine 3, 4-16 (1986)

Sezgin, T.M.: Sketch Interpretation Using Multiscale Stochastic Models of Tempo-
ral Patterns. PhD thesis, Massachusetts Institute of Technology (May 2006)

Sun, Z., Jiang, W., Sun, J.: Adaptive online multi-stroke sketch recognition based
on hidden markov model. In: Yeung, D.S., Liu, Z.-Q., Wang, X.-Z., Yan, H. (eds.)
ICMLC 2005. LNCS, vol. 3930, pp. 948-957. Springer, Heidelberg (2006)

Muller, S., Eickeler, S., Rigoll, G.: Image database retrieval of rotated objects by
user sketch. In: IEEE Workshop on Content-Based Access of Image and Video
Libraries, p. 40 (1998)

Alvarado, C., Davis, R.: Sketchread: A multi-domain sketch recognition engine. In:
Proceedings of UIST 2004, pp. 23-32 (2004)



256

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

H. Choi, B. Paulson, and T. Hammond

Hammond, T., Davis, R.: Ladder, a sketching language for user interface develop-
ers. Elsevier, Computers and Graphics 28, 518-532 (2005)

Kara, L.B., Stahovich, T.F.: An image-based trainable symbol recognizer for
sketch-based interfaces. In: Making Pen-Based Interaction Intelligent and Natu-
ral, Menlo Park, California, October 21-24. AAATI Fall Symposium, pp. 99-105
(2004)

Lee, W., Kara, L.B., Stahovich, T.F.: An efficient graph-based recognizer for hand-
drawn symbols. Computers & Graphics 31, 554-567 (2007)

Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290, 2268-2269
(2000)

Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319-2323 (2000)

Saul, L., Roweis, S.T.: Think globally, fit locally: Unsupervised learning of low
dimensional manifolds. Journal of Machine Learning Research 4, 119-155 (2003)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation 15, 1373-1396 (2003)

de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimension-
ality reduction. In: Advances in Neural Information Processing Systems, vol. 15,
pp. 705-712. MIT Press, Cambridge (2003)

Jenkins, O.C., Matari, M.J.: A spatio-temporal extension to isomap nonlinear di-
mension reduction. In: Proc. Int’l. Conf. Machine Learning, Banff, Canada (2004)
Wobbrock, J., Wilson, A., Li, Y.: Gestures without libraries, toolkits, or training:
A $1 recognizer for user interface prototypes. In: Proc. of the 20th Annual ACM
Symposium on User Interface Software and Technology, Newport, RI, USA (2007)
Choi, H., Choi, S.: Robust Kernel Isomap. Pattern Recognition 40(3), 853-862
(2007)

Girolaini, M.: Mercer kernel-based clustering in feature space. IEEE Transactions
on Neural Networks 13(3), 780-784 (2002)

Scholkopf, B., Smola, A.J., Miiller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10(5), 1299-1319 (1998)



	Gesture Recognition Based on Manifold Learning
	Introduction
	Kernel Isomap
	Implementation
	Dissimilarity from Sketch Data
	Dissimilarity.

	Classification

	Experiments
	Accuracies
	Feature Spaces

	Discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




