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Abstract. In this paper, we show how to quantify graph complexity
in terms of the normalized entropies of convex Birkhoff combinations.
We commence by demonstrating how the heat kernel of a graph can
be decomposed in terms of Birkhoff polytopes. Drawing on the work of
Birkhoff and von Neuman, we next show how to characterise the com-
plexity of the heat kernel. Finally, we provide connections with the per-
manent of a matrix, and in particular those that are doubly stochastic.
We also include graph embedding experiments based on polytopal com-
plexity, mainly in the context of Bioinformatics (like the clustering of
protein-protein interaction networks) and image-based planar graphs.

1 Introduction

The quantification of the intrinsic complexity of undirected graphs has attracted
significant attention due to its fundamental practical importance, not only in
pattern recognition but also other areas such as control theory and network
analysis. Such a quantification not only allows the complexity of different graph
structures to be compared, but also allows the complexity to be traded against
goodness of fit to data when a structure is being learned. Previous complexity
characterizations include: a) the number of spanning trees, its connections with
the Laplacian spectrum, b) methods based on the path-length chromatic decom-
position, c) the number of Boolean operators necessary to build the graph from
generator graphs, and more recently, d) the notion of linear complexity of any
of the associated adjacency matrices.

In pattern recognition and machine learning the problem of quantifying graph
complexity is not only deeply related to embedding methods [1][2] for structural
classification or indexing [3], but is also key to the process of constructing graph
prototypes [4][5]. In this paper we explore the connection between convex poly-
topes (and those of the Birkhoff type in particular), heat kernels in graphs and
graph structure. Our contribution is to propose and characterize a novel multi-
dimensional measure of complexity. This measure is motivated by the notion
of graph entropy introduced by Körner in [6], which provides a useful frame-
work based on convex polytopes. Unfortunately, the graph entropy is defined
for graphs with a probability distribution function over nodes. In this paper we
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focus on more general unweigthed graphs. We commence with a characterisa-
tion based on the heat kernel of a graph, and show how the heat kernel can be
decomposed into Birkoff polytopes. Next, we use the work of Birkhoff and von
Neuman to characterize the complexity of the decomposition, and then establish
links to the permanents of a graph. We experiment with the complexity measure
for the problem of graph-embedding, and provide examples on data provided
by bioinformatics and computer-vision. A preliminary version of the ideas pre-
sented here appear in [7]. Here we provide a deeper theoretical and experimental
analysis of the proposed method.

2 The Birkhoff Polytope

The n−th Birkhoff polytope Bn is the set of doubly stochastic matrices of di-
mension n × n:

Bn =

⎧
⎨

⎩
B = [bij ]n×n :

∑
i bij = 1, ∀j

∑
j bij = 1, ∀i

bij ≥ 0, ∀i∀j

⎫
⎬

⎭
. (1)

Such a polytope is convex, has dimension (n−1)2 and its extreme points are the
set of n! permutation matrices P = [pij ]n×n (entries are 0 except for a single 1 in
each row and column). The Birkhoff-von Newmann (BvN) theorem [8] states that
every doubly stochastic matrix (DSM) can be expressed as a convex combination
of permutation matrices (PM):

B =
∑

α

pαPα, ∀B ∈ Bn and
∑

α pα = 1
pα ≥ 0 ∀α

. (2)

Thus Bn is the convex hull of the set of the n×n permutation matrices. However,
the representation of a DSM in terms of many PMs is not unique because Bn is
not a simplex. The barycenter of Bn is the van der Waerden constant matrix B∗
with all entries equal to 1/n.

3 The Link: DSMs and Heat Kernels

The BvN decomposition has been applied to traffic problems [9](where the Pα

are crossbar switch configurations and pα are the probabilities of choosing such
configurations). Moreover, Birkhoff polytopes are special cases of transportation
polytopes. Consider an undirected graph G = (V, E) where |V | = n, and adja-
cency matrix A, as the model of a network. The so called n×n heat/diffusion ker-
nel of the graph is found by the matrix exponentiation K(G) = exp(−βL), (with
β > 0) of the graph Laplacian L = A−D where D = diag(di =

∑
j∈V Aij , i ∈ V )

is the degree matrix. It turns out that K is a DSM where Kij encodes the prob-
ability of reaching vertex j from vertex i, and viceversa, through lazy random
walks [10]. Therefore, the decomposition K(G) =

∑
α pαPα will not only map a
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P1 =

[
1 0 0
0 1 0
0 0 1

]

P2 =

[
1 0 0
0 0 1
0 1 0

]

P3 =

[
0 1 0
1 0 0
0 0 1

]

P4 =

[
0 1 0
0 0 1
1 0 0

]

P5 =

[
0 0 1
0 1 0
1 0 0

]

P6 =

[
0 0 1
1 0 0
0 1 0

]

.

�1 = p1P1 + p3P3 + p5P5 =

[
p1 p3 p5

p5 p1 p3

p3 p5 p1

]

p1 + p3 + p5 = 1

�2 = p2P2 + p4P4 + p6P6 =

[
p2 p4 p6

p4 p6 p2

p6 p2 p4

]

p2 + p4 + p6 = 1

Fig. 1. The B3 polytope. It has 6 · 5/2 = 15 edges (all of them extremal, which is not
the usual case). There are 6 long edges with D2 = Tr(A − B)(AT − BT ) = 6 of the
triangles sides and 9 short ones with length D2 = 4. All the 2-faces of B3 are triangles
with one long and two short edges. Finally Tr(�1 − B∗)(�T

2 − BT
∗ ) = 0

graph into Bn but also the probability distribution induced by the convex com-
bination will weight with each pα the interactions between vertices encoded by
the corresponding Pα. An interesting example is the complete graph of n ver-
tices Cn whose diffusion kernel is the barycenter K(Cn) = B∗, that is, the van
der Waerden matrix. In addition, the probability distribution, with exactly n
coefficients, associated to the BvN decomposition is the uniform one Un where
pα = 1/n, ∀α (see for instance B3 in Fig. 1).

4 Polytopal Complexity

4.1 The BvN Constructive Decomposition

The most intuitive way of computing the BvN is to exploit the constructive
proof of the theorem [11] follows: (i) Initially pose K(G), which is a DSM, as a
convex combination of a permutation matrix and another DSM K(G) ≡ K1 =
λ1P1 +(1−λ1)K2; and (ii) Iteratively decompose K2 = λ2P2 +(1−λ2)K3 until
the final DSM is a permutation. Let γ be the number of permutations needed
to encode K, satisfying 2 < γ < n2, and let i be the step number of the iterative
process. With these ingredients, the decomposition is

K(G) = λ1P1 + (1 − λ1)λ2P2 + . . . =
γ∑

α=1

{
α−1∏

i=1

(1 − λi)}λα

︸ ︷︷ ︸
pα

Pα , (3)
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if γ = 1 or it is even, and it is the expression above from which we remove the last
λα otherwise. What is more important, from the point of view of graph theory, is
the way permutations are selected at each step. Let K be the DSM which we wish
to decompose. Such a matrix induces a weighted bipartite graph H = (V ′, E′, W )
where V ′ = {s1, . . . , sn, r1, . . . , rn} and there is an edge eij = (si, rj) ∈ E′

when Kij �= 0 and has weight Wij = Kij . As H is bipartite, V ′ is disjointly
partitioned into S = {si} and R = {rj}. Thus, for any vertex si its neighbors
satisfy the condition N(si) ⊂ R, and for rj we have N(rj) ⊂ S. Given that
K is a DSM, we have that

∑
u∈N(si) Wiu =

∑
v∈N(rj) Wvj = 1. Therefore, if

A ⊂ R, the sum of weights connecting vertices x ∈ A and y ∈ N(A) is exactly
|A| =

∑
x∈A,y∈N(A) Wxy =

∑
x∈A

∑
z∈N(y) Wzx =

∑
x∈A 1. Similarly, the size of

N(A) ⊂ S is given by the sum of the weights connecting the vertices of N(A)
and the vertices of N(N(A)) which are a superset of the vertices of A. Therefore,
|N(A)| ≥ |A|. This allows us to apply the Hall’s Marriage Theorem on H , and
this in turn ensures the existence of a perfect matching. This matching contains
n edges, being the largest matching possible, and which can be computed with
the Kuhn-Munkres algorithm. Finally, the latter match may be encoded by the
permutation P , which is the one selected for decomposing K.

Then, the corresponding λ > 0 is selected among the minimum of the com-
ponents determined by P , that is λ = mini,j=1...,n{Kij : Pij �= 0}. Such a
selection ensures the non-negativity of the matrix M = K −λP whose rows and
columns sum to 1 − λ. Therefore, K ′ = 1

1−λM is a DSM. In addition, from the
n components of Kij satisfying Pij = 1, those with value λ will be zero in M
and, obviously, in K ′. This implies that the number of non-zero components will
decrease with each step and, thus, the number of steps is bounded by n2.

For instance, the BvN decomposition of B∗ in B3 using the latter algorithm
is given by:

K =

⎡

⎣

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤

⎦ =
1
3

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ +
2
3

1
(1 − 1

3 )

⎡

⎣
0 1

3
1
3

1
3 0 1

3
1
3

1
3 0

⎤

⎦ =
1
3

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ +
2
3

⎡

⎣
0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

⎤

⎦ =

=
1
3

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ +
2
3

⎧
⎨

⎩

1
2

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ +
1
2

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦

⎫
⎬

⎭
=

1
3
P1 +

1
3
P4 +

1
3
P6

4.2 BvN Graph Complexity

Given an undirected and unweighted graph G = (V, E) with diffusion kernel
Kβ(G), and BvN decomposition Kβ(G) =

∑γ
α=1 pαPα, we define the β-graph

complexity of G as

Cβ(G) =
H(P)
log2 n

=
log2 γ + D(P||Uγ)

log2 n
, (4)

where P = {p1, . . . , pγ} is the probability density function (pdf) induced by
the decomposition, H(.) the entropy and D(.) the Kullback-Leibler divergence
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D(P||Q) =
∑

α pα log pα

qα
. The latter definition considers: a) the size of the graph,

b) the number of components of the decomposition and c) the information con-
tent of the induced pdf. Moreover, as the pdf induced by the complete graph Cn is
Un, our definition of graph complexity is actually the entropy ratio H(P)/H(Un).
Independent of n, we have Cβ(Cn) = 1, and as a result a complete graph has
unit β−graph complexity. Also, Cβ(In) = 0 where In is the graph with all its n
vertices isolated (without neighbors).

As we will show in the experimental section, β−graph complexity is quasi-
invariant to graph permutations, that is Cβ(G) ≈ Cβ(QT AQ), where A is the
adjacency matrix of G and Q any permutation of order n. Quasi-invariance is
fulfilled despite the fact that the BvN decomposition does not yield such invari-
ance in the coefficients. As we will see, the intra-class variability is also useful for
discriminating graph classes. However, such a definition is β−dependent and a
more complete multi-dimensional descriptor is more convenient to describe the
full complexity of the graph. Thus, we define the BvN graph complexity as

C(G) =

⎧
⎪⎪⎨

⎪⎪⎩

[Cβ1(G), . . . , Cβr(G)]T ∈ Rr

β1 ≡ βmax ≥ β2 ≥ . . . ≥ βr ≡ βmin

βmax = min{β ∈ R+ : Cβ(G) = 1}
βmin = max{β ∈ R+ : Cβ(G) = 0}

⎫
⎪⎪⎬

⎪⎪⎭

. (5)

The latter complexity profile, is thus constructed by considering that when it is
treated as a function we have

lim
β→∞

Cβ(G) = 1 and lim
β→0

Cβ(G) = 0 ∀G . (6)

Moreover, βmax and βmin are computed respectively from Λmax = ΦT K(Cn)Φ
and Λmin = ΦT K(In)Φ, given that for β = 1 we have that K(G) = exp(−L) ≡
ΦΛΦT where Φ the eigenvector matrix of −L, Λ = diag(e−λn , e−λn−1 , . . . , e−λ1 =
1), and where λ1 = 0 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of L. More precisely, we
have that the matrix Λmax is of the form diag(e−βλn , e−βλn−1 , . . . , e−βλ1), and
thus βmax may be deduced from the greatest βλi

λi
∈ R+ : K(Cn) ≈ exp(−βL).

A similar rationale yields the βmin bound. Thus, the graph complexity trace
C(G) is a signature of the interaction between the heat diffusion process and
the structure/topology of the graph as β (and thus the range of interactions
between vertices) changes. It can also be interpreted as a trajectory in Bn be-
tween the extreme point given by the identity permutation PI = In and the
barycenter B∗ = K(Cn). In addition, the typical signature is heavy tailed, non-
monotonically increasing from βmax to β∗ ≈ arg max{Cβ(G)} and monotonically
decreasing from β∗ to βmin. When Cβ(G) is r−discretized, each k ∈ {1, . . . , r} is
seen as a percentile. The interval [βmax, β∗) reflects intra-class variability, given
that it encodes global aspects of heat diffusion, whereas the interval [β∗, βmin]
reflects inter-class one, because it encodes local (more constrained as we tend
to βmin) diffusion. Both intervals [βmax, β∗) ∪ [β∗, βmin] may be discretized
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individually with the same rate, and then fuse both fragments of the complexity
function for the purpose of pattern analysis (see Fig. 2). All profiles are aligned
according to Eq. 6. In addition, the value of β∗ may be easily approximated by
accounting for the appearing of a increasing number of Kii ≈ 1 (the decay starts
just before that point). Thus, β∗ represents the most significant topological phase
transition regarding the impact of the diffusion process in the topology of the
input graph.

4.3 Connections with Matrix Permanents

The observation that the interval [β∗, βmin] is populated by an increasing number
of elements of the heat kernel for which Kii ≈ 1, or equivalently an increasing
number of elements for which Kij = 0, i �= j motivates the analysis of polytopal
complexity in terms of the rate of loss of perfect matchings over this interval.
Let A be the n×n adjacency matrix associated to a given heat kernel Kβij such
that Aij = 1 if Kβij > 0, for a given value of β. The permanent of A is

per(A) =
∑

π∈Sn

n∏

i=1

Aiπ(i) , (7)

being Sn the set of permutations of {1, 2, . . . , n} and π(i) is the i−th element
of the π permutation. As each product can be only 1 when a perfect matching
exists in the bipartite graph induced by A, the overall sum counts the number
of perfect matchings in the such bipartite graph. As limβ→βmin Kβ = In the
minimum number of perfect matchings in the interval [β, βmin] is 1. However,
preliminary experiments show that per(A) is nearly constant over the latter
interval and sometimes close to its maximum value n!, the one for A = Cn

(complete graph), before falling to 1. Consequently the per(A) profile is it not
qualitatively related to the one of C. However, this is not true if we consider
per(Kβ) that yields the sum of weighted perfect matchings.

The van der Waerden conjecture states that: ∀B ∈ Bn : per(B) ≥ per(B∗) ≡
n!/nn and per(B) = per(B∗) ⇔ B = B∗. The proofs solving the latter con-
jecture (which embodies a minimization problem) reveal that the permanent
is a mixed discriminant of diagonal quadratic forms. Mixed discriminants are
considered generalizations of the permanent. For the sake of polytopal complex-
ity it is useful to note that ∀B ∈ Bn : 0 < per(B) ≤ 1 and per(B) = 1 ⇔
B is a permutation matrix. Thus, an alternative definition of graph complexity
relies on C′

β = 1 − per(Kβ) defining the C′
(G) profile in [βmax, βmin]. However,

the latter profile is typically flat and equal to 1 along [βmax, β∗] and it is only in-
formative at second half of [β∗, βmin] see (Fig. 3). In addition, the computation
of the permanent is a #−P problem and one of the best approximate algo-
rithms [12] takes O(n23) on average only for generating a sample of the Markov
chain in which it it relies. However, when small graphs are available or complex
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Fig. 2. Top: Examples of protein-protein interaction networks (STRING [14]) for
hemoblobin in Haemophilus (left) and flavohemoprotein in Vibrio (right). Bottom:
Complexity profiles for both nets in the ranges [βmax, βmin] (left) and [β∗, βmin] (rigth).

graphs are simplified (see below) we may use the Ryser’s algorithm which takes
Θ(n2n) operations.

4.4 Non-metric Graph Simplification

For a graph G = (V, E) with |V | = n vertices, the BvN decomposition pro-
cess takes O(n2) iterations and in each operation solves a Kuhn-Munkres (Hun-
garian) search for a suitable permutation, which takes O(n3). Hence, we have
a global complexity of O(n5) which is not too expensive for n = 30 nodes,
but becomes unmanageable for n ≥ 70, taking into account that this is the
complexity for each percentile. For this reason, in this paper we extend the
stratified graph simplification method proposed in [13] to the non-metric case.
More precisely, G is augmented with one heat-source node τ which is con-
nected with all v ∈ Periphery(G). The result is the so-called affixation graph
A(G) = (V ∪ {τ}, E ∪ {(τ, u), (u, τ), ∀u ∈ Periphery(G)}). In our case, the
Periphery(G) is not the convex hull of points but it is defined by computing
all vertices u having as excentricity e(u) = maxv∈V d(u, v) (where d(u, v) is the
minimum path length between vertices u and v) equal to the diameter of graph
Diam(G) = maxu∈V e(v). From that point we compute the average path lengths
D(τ, u) using the normalized Laplacian and perform unsupervised clustering to
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Fig. 3. Left: Polytopal vs Permanent-based complexity considering [β∗, βmin]. Rigth:
Complete traces of [βmax, β∗) ∪ [β∗, βmin] considering same discretization.

find layers in the graph. We assign a node l to each cluster and we connect nodes
with adjacency relations in A. So, S(G) is the resulting simplified graph.

5 Experimentation

First, we report the testing of quasi-invariance Cβ(G) = Cβ(QT AQ) ± e(Q), be-
ing e(Q) an error term. For the CMU, MOVI and Chalet sequences we have a
median absolute error (for the sake of robustness) of 0.0215, 0.0167 and 0.0150
respectively, that is O(2 × 10−2), when considering 50 permutations for each
of the 30 simplified graphs. In this case we set β = 1. Second, we have tested
the proposed measure in the context of graph embedding.In Fig. 4(left) we show
the results of PCA/MDS embeddings derived from the complexity and com-
pare them with the embeddings given by the leading eigenvalues [2] showed in
Fig. 4(right). In the first two rows we perform embedding over protein-protein in-
teraction networks from STRING. More precisely, for networks emanating from
the trpA (Tryptophan synthase alpha chain) in 27 sub-species corresponding
to 7 species (classes). In this case, interactions account for similar genetic con-
text, and consider two cases: networks of 10 interactors with trpA (11 nodes)
and networks of 20 ones. Our complexity method (right) allows to discriminate
most of the species except Bacillus in the 10 interactors case. However, they
are segregated when we consider 20 interactors. In the same cases, the leading
eigenvalues method confuses all classes (although it works better with 20 inter-
actors). No simplification was applied. However, in the last row, where we show
the embedding of graphs from de CMU-Chalet-MOVI sequence, graphs are sim-
plified with the method described above. In this latter case, since simplification
may yield small graphs, the number of eigenvectors used for spectral embed-
ding, the result is a complete overlap of the three graph classes. This overlap
does not appear when we consider the original graphs. So in summary, polytopal
complexity seems to yield good embeddings in conditions of low structural vari-
ability where the leading eigenvectors method fails, and acceptable results after
applying simplification.
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Fig. 4. Graph embedding based on C vs leading eigenvalues. Firs row: Protein-
interaction nets with 10 interactors. Second row: with 20 interactors. Third row: for
graphs of the CMU-Chalet-MOVI sequence.

6 Conclusions

In this paper, we have proposed and successfully tested a novel measure of graph
complexity. We have also extended a recently reported method of graph simpli-
fication to the non-metric case. The main question for the future is the formal
characterization of the main phase transition defined by the β∗ value. A attempt
at answering this question approach has been provided in this paper, through
exploring the connections between polytopal complexity and matrix permanents.
Here the progressive loss of ability to form perfect matchings seems to explain
the observed behaviour. However a complete characterization of the phase tran-
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sition in terms of entropy change is a topic for future research. We will also
compare this method with others in the literature.
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