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Abstract. Graph kernels methods are based on an implicit embedding
of graphs within a vector space of large dimension. This implicit embed-
ding allows to apply to graphs methods which where until recently solely
reserved to numerical data. Within the shape classification framework,
graphs are often produced by a skeletonization step which is sensitive
to noise. We propose in this paper to integrate the robustness to struc-
tural noise by using a kernel based on a bag of path where each path
is associated to a hierarchy encoding successive simplifications of the
path. Several experiments prove the robustness and the flexibility of our
approach compared to alternative shape classification methods.
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1 Introduction

The skeleton of a 2D shape is defined as the location of the singularities of the
signed distance function to the border of the shape. This structure has several
interesting properties: it is thin, homotopic to the shape, invariant under rigid
transformations of the plane and most importantly it has a natural interpretation
as a graph. The representation of a shape by a skeletal (or shock) graph has
become popular owing the good properties of this representation inherited from
the properties of the skeleton. However, beside all this good properties, the
skeletonization is not continuous and small perturbations of the boundary insert
structural noise within the graph encoding the shape.

Several graph based methods have been proposed to compute a distance be-
tween shapes robust to such a structural noise. Sharvit et al. [I] propose a graph
matching method based on a graduated assignment algorithm. Siddiqi [2] pro-
poses to transform the shock graph into a tree and then applies a tree matching
algorithm. Pellilo [3] uses the same tree representation but transforms the tree
matching problem into a maximal clique problem within a specific association
graph.
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All the above graph methods operate directly on the space of graphs which
contains almost no mathematical structure. This lack of mathematical structure
forbids the use of basic statistical tools such as the mean or the variance. Graph
kernels provide an elegant solution to this problem. Using appropriate kernels,
graphs can be mapped either explicitly or implicitly into a vector space whose
dot product corresponds to the kernel function. All the “natural” operations
on a set of graphs which were not defined in the original graph space are now
possible into this transformed vector space. In particular, graph kernels may be
combined with the kernelised version of robust classification algorithms such as
the Support Vector Machine (SVM).

A Graph kernel used within the shape representation framework should take
into account the structural noise induced by the skeletonization process. Bunke
[4] proposes to combine edit distance and graph kernels by using a set of n
prototype graphs {gi,...,9n}. Given a graph edit distance d(.,.), Bunke as-
sociates to each graph g the vector ¢(g) = (d(g,¢1)...,d(g,9n)). The kernel
k(g1,92) between the two graphs ¢1 and g is then defined as the dot product
< é(g1), ¢(g2) >.

Neuhaus [5] proposes a similar idea by defining for a prototype graph g, the
kernel: kg, (g9,9') = 3 (d*(g, 90) + d*(g0, 9') — d*(g,9’)), where d(.,.) denotes the
graph edit distance. Several graph prototypes may be incorporated by summing
or multiplying such kernels. Using both Neuhaus [5] and Bunke [4] kernels two
close graphs should have close edit distance to the different graph prototypes.
The metric induced by such graph kernels is thus relative both to the weights
used to define the edit distance and to the graph prototypes. This explicit use
of prototype graphs may appear as artificial in some application. Moreover, the
definite positive property of these kernels may not in general be guaranteed.

Suard [6] proposes to use the notion of bag of paths of finite length for shape
matching. This method associates to each graph all its paths whose length is
lower than a given threshold. The basic idea of this approach is that two close
shapes should share a large amount of paths. A kernel between these sets should
thus reflect this proximity. However, small perturbations may drastically reduce
the number of common paths between two shapes (Section [3.2)). Moreover, the
straightforward definition of a kernel between set of paths does not lead to a
definite positive kernel (Section 2).

This paper proposes a new definite positive kernel between set of paths which
takes into account the structural noise induced by the skeletonization process.
We first present in Section [2] the bag of paths approach for shape similarity. Our
contributions to this field are then presented in Section Bl The effectiveness of
our method is demonstrated through experiments in Section [l

2 Kernels on Bag of Paths

Let us consider a graph G = (V, E) where V denotes the set of vertices and
E C V xV the set of edges. As mentioned in Section [Il a bag of paths P of
length s associated to G contains all the paths of G of length lower than s. We
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denote by |P| the number of paths inside P. Let us denote by Kpq:n a generic
kernel between paths. Given two graphs G; and G2 and two paths h; € Py
and hy € P» of respectively G1 and Ga2, Kpain(hi, he) may be interpreted as a
measure of similarity between h; and hy and thus as a local measure of similarity
between these two graphs. The aim of a kernel between bags of paths consits to
agregate all these local measures between pairs of paths into a global similarity
measure between the two graphs.

2.1 The Max Kernel

This first method, proposed by Suard [6], uses the kernel K4, as a measure of
similarity and computes for each path h; € P; the similarity with its closest path
in Py(maxy;ep, Kpatn(hi,hj)). A first global measure of similarity between Py
and Ps is then defined as:

1
‘Pl‘ Z hrneal}é Kpath(hthj)' (1)
h,ePy

maw(GluGQ) maw(Plu-PQ)

The function K'ﬂwﬂc(crﬁ7 G2) is however not symmetric according to G1 and

G. Suard obtains a symmetric fL}HCtiOH interpreted as a graph kernel by taking
the mean of K,,4.(G1,G2) and Ke.(G2, G1):

Kmaz(GlaGZ) = % Kmaz(G17G2) +Rmaz(G2aGl)] . (2)

This kernel is not positive definite in general. However as shown by Haasdonk
[7], SVM with indefinite kernels have in some cases a geometrical interpretation
as the maximization of distances between convex hulls. Moreover, experiments
(section Ml and [6]) show that this kernel usually leads to valuable results.

2.2 The Matching Kernel

The non definite positiveness of the kernel K., is mainly due to the max oper-
ator. Suard [6] proposes to replace the kernel K4, by a kernel which decreases
abruptly when the two paths are different. The resulting kernel is defined as:

Kmatching(G17 GQ) = Kmatching(Plv PQ) = (3)

pat (h’lvh)
> Zexp( 20 )

hi€P1 h;€P;

where dpqtp is the distance associated to the kernel K., and defined by:
dpath(hl, ha) = Kpain(hi, k1) + Kpan(ha, ha) — 2Kpain(ha, he).

The resulting function defines a definite positive kernel. This kernel relies
on the assumption that using a small value of o, the couple of paths with the
smallest distance will predominate the others in equation Bl This kernel may
thus lead to erroneous results if the distance are of the same order of magnitude
than o or if several couples of paths have nearly similar distances.
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(a) Sets on the unit (b) original (c) edge protru-  (d) node
sphere sion insertion

Fig. 1. Separating two sets using one-class SVM (a). The symbols (w1, p1) and (w2, p2)
denote the parameters of the two hyperplanes which are represented by dashed lines.
Influence of small perturbations on the bag of paths ((b), (c) and (d)).

2.3 The Change Detection Kernel

Desobry [8] proposed a general approach for the comparison of two sets which
has straightforward applications in the design of a kernel between bags (sets)
of paths. Desobry models the two sets as the observation of two sets of random
variables in a feature space and proposes to estimate a distance between the two
distributions without explicitly building the pdf of the two sets.

The feature space considered by Desobry is based on the normalised kernel
(K(h, 1) = Kpatn(hy 1)/ \/(Kpatn (hy h) Kpain (R, 1'))). Using such a kernel we
have ||h||% = K (h,h) = 1 for any path. The image in the feature space of our set
of paths lies thus on an hypersphere of radius 1 centered at the origin (Fig. [I).
Desobry defines a region on this sphere by using a single class »-SVM. This
region corresponds to the density support estimate of the unknown pdf of the
set of paths [§].

Using Desobry’s method, two set of vectors are thus map onto two regions
of the unit sphere and the distance between the two regions corresponds to a
distance between the two sets. Several kernels based on this mapping have been
proposed:

1. Desobry proposed [8] to define the distance between the two spherical arcs as

'lel,zwz)

arccos(
ol w2l

a contrast measure defined by: d3,, oy, (P1, P2) = snccon( 21, ) arceon( 72,)
flwr I llwall

This distance is connected to the Fisher ratio (see [8, Section IV]). However,
the definite positiveness of the Gaussian RBF kernel based on this distance
remains to be shown.

2. Suard [6] proposed the following kernel: Kgyara(G1, G2) = Ksuard(P1, P2) =
P1pP2 ZhiEPl Zh_]‘EPQ aq g Kpath(hi7 hj)ag’j with wy, = (OZLh ey O[17|p1|) and
Wy = (ag)h ey a27|p2|).

This kernel is definite positive, but does not correspond to any straightfor-
ward geometric interpretation.
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2.4 Path Kernel

All the kernels between bags of paths defined in Section[2 are based on a generic

kernel Kpqp between paths. A kernel between two paths by = (v1,...,v,) and
h' = (vy,...,v,) is classically [9] built by considering each path as a sequence of

nodes and a sequence of edges. This kernel denoted K jqssic is then defined as 0
if both paths have not the same size and as follows otherwise:

||
Ketassic(h, h') = Ky (p(v1), W(Ui))HKe(w(eviqvi)a d’(ev;_lv;))Kv(SO(Ui)v e(v;))

where ¢(v) and ¥ (e) denote respectively the vectors of features associated to
the node v and the edge e. The terms K, and K. denote two kernels between
respectively nodes and edge’s features. For the sake of simplicity, we have used
Gaussian RBF kernels between the attributes of nodes and edges (Section [)).

3 Hierarchical Kernels

Since the main focus of this paper is a new kernel method for shape classification,
the construction of skeletal graphs from shapes has been adressed using classical
methods. We first build a skeleton using the method proposed by Siddiqi [2].
However the graph we build from the skeleton does not correspond to the shock
graph proposed by Siddiqi. Indeed, this graph provides a precise description
of the shape but remains sensitive to small perturbations of the boundary. We
rather use the construction scheme proposed by Suard [6] and Ruberto [10] which
consists to select as node all the pixels of the skeleton which correspond to end
points or junctions. These nodes are then connected by edges, each edge being
associated to one branch of the skeleton. Given a skeletal graph G we valuate
each of its edge by an additive weight measure and we consider the maximal
spanning tree T of G. The bag of path associated to G is built on the tree T
Note that, the skeletonization being homotopic we have G = T if the 2D shape
does not contain any hole.

3.1 Bag of Path Kernel

None of the bag of path kernels proposed by Desobry or Suard (Section ) is
both definite positive and provides a clear geometrical interpretation. We thus
propose a new kernel based on the following distance:

w1K1,2w2)

d2
[[wa [} [Jwz]]

change(

Py, Py) = arccos ( (5)

This distance corresponds to the angle o between the two mean vectors w; and
wy of each region (Fig. [[). Such an angle may be interpreted as the geodesic
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distance between two points on the sphere and has thus a clear geometrical
interpretation. Based on this distance we use the Gaussian RBF kernel:

_dghange(Pl’ PQ)
Kchange(Glu GQ) = Kchange(Ph PQ) = €exp 252 . (6)
This kernel is definite positive since the normalized scalar product is positive
definite and arccos is bijective on [0, 1]. The Gaussian RBF kernel based on this
distance is thus definite positive (see [II] for further details).

3.2 Hierarchical Kernel between Paths

A mentioned in Section [I the use of kernels between bags of paths within the
shape matching framework relies on the assumption that the graphs associated
to two similar shapes share a large amount of similar paths. This assumption
is partially false since a small amount of structural noise may have important
consequences on the set of paths. Let us for example, consider the small defor-
mation of the square (Fig.[I(b)) represented on Fig.[Il(c). This small deformation
transforms the central node in Fig. [[[(b) into an edge (Fig.[Ic)). Consequently
graphs associated to these two shapes only share two paths of length 2 (the ones
which connect the two corners on the left and right sides). In the same way,
a small perturbation of the boundary of the shape may add branches to the
skeleton(Fig. [l(d)). Such additional branches i) split existing edges into two sub
edges by adding a node and ii) increase the size of the bag of path either by
adding new paths or by adding edges within existing paths.

The influence of small perturbations of the shape onto an existing set of paths
may thus be modeled by node and edge insertions along these paths. In order
to get a path kernel robust against structural noise we associate to each path a
sequence of successively reduced paths, thus forming a hierarchy of paths. Our
implicit assumption is that, if a path has been elongated by structural noise one
of its reduced version should corresponds to the original path.

The reduction of a path is performed either by node removal or edge con-
traction along the path. Such a set of reduction operations is compatible with
the taxinomy of topological transition of the skeleton compiled by Giblin and
Kimia [12]. Note that, since all vertices have a degree lower than 2 along the path
these operations are well defined. In order to select both the type of operation
and the node or the edge to respectively remove or contract we have to associate
a weight to each node and edge which reflects its importance according to the
considered path and the whole graph.

Let us consider a skeletal graph G, its associated maximal spanning tree T’
and a path h = (v1,...,v,) within 7. We valuate each operation on h as follows:

Node removal: Let us denote by v;, i € {2,...,n—1} the removed node of the
path h. The node v; has a degree greater than 2 in T' by construction. Our
basic idea consists to valuate the importance of v; by the total weight of the
additional branches which justify its existence within the path h. For each
neighbor v of v; not equal to v;_1 nor v;41 we compute the weight W (v)
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(a) original skeleton (b) reduction of node 2 (c) reduction of edge ez 3

Fig. 2. Different reductions of a path (in gray) within a skeletal tree

defined as the addition of the weight of the tree rooted on v in T — {e,,,}
and the weight of e,,,. This tree is unique since T is a tree. The weight of
the node v; (and the cost of its removal) is then defined as the sum of weight
W (v) for all neighbors v of v; (excluding v;—1 and v;).

After the removal of this node the edges e,, ,, and e,,,,, are concate-
nated into a single edge in the new path h'. The weight of this new edge is
defined as the sum of the weight of the edges €., ,v,, €v,v,,, and the weight
of the node v; (Fig. 2(a) and (b)).

Edge contraction: The cost of an edge contraction is measured by the rele-
vance of the edge which is encoded by its weight. Let us denote by ey, ,
i < n the contracted edge of the path h = (v1,...,v,). In order to preserve
the total weight of the tree after the contraction, the weight of the edge
€v;v:4:1 18 equally distributed among the edges of T' incident to v; and v;4:

W(€v;v,41)

ve € o) Uelven) —{ewnn} 0O =wlOF oy 4oy

where ¢(v) and d(v) denote respectively the set of edges incident to v and
the cardinal of this set (the vertex’s degree). The symbol w(e) denotes the
weight of the edge e.

For example, the contraction of the edge ez 3 in Fig.[2la) corresponds to a
cost of w(ea 3) = .5. The contraction of this edge induces the incrementation
of the edge’s weights w(ez,1),w(e26),w(esa) by .5/3 ~ .16

Any additive measure encoding the relevance of a branch of the skeleton may
be used as a weight. We choose to use the measure defined by Torsello [13] which
associates to each branch of the skeleton (an thus to each edge) the length of
the boundaries which contributed to the creation of this branch. Such a measure
initially defined for each pixel of the skeleton is trivially additive.

Let us denote by k the function which applies the cheapest operation on a
path. The successive applications of the function x associate to each path h a
sequence of reduced paths (h,k(h),...,xP(h)) where D denotes the maximal
number of reductions. Using K j4ssic for the path comparison, we define the ker-
nel K.q;+ as the mean value of kernels between reduced paths of equal length.
Given two paths h and b/, this kernel is thus equal to 0 if ||| —|#/|| > D. Indeed,
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in this case the maximal reduction of the longuest path remains longuer than
the shortest one. Otherwise, ||h| — [W/|| < D, and Kcgit(h, h') is defined as:

1 D D
Kedit(ha h/) - D + 1 Z ZKclassic(K/k(h)a K/l(h/)) (7)

k=0 1=0

This kernel is proportional (by a factor D + 1) to a sum of R-convolution
kernels [I4, Lemma 1] and is thus definite positive.

Since K¢qssic is equal to 0 for paths of different lengths, K4 is indeed equal
to a sum of kernels between reduced paths of equal length. For example, given
two paths h and h’ whose respective length is equal to 4 and 3 we have for D = 2:

1

Kedit(hv h/) = 3

[Kclassic(ﬂ(h)v h/) + Kclassic(KQ(h)a K(h/))]

4 Experiments

We used the following features for our experiments: Each node is weighted by its
distance to the gravity center of the shape and each edge is assocated to a vector
of two features: The first feature corresponds to the edge’s weight (section B:2]).
The second feature is the angle between the straight line passing through the
two nodes of the edge and the principal axis of the shape. These experiments
are based on the LEMS [15] database which consists of 99 objects divided into
9 classes.

We defined three kernels for these experiments: The kernel Kz classic based
on a conjoint use of the kernels K4, (equation2) and K j4ssic (equation ) has
been introduced by Suard [6]. The kernel Kcpange,ciassic based on a conjoint use of
the kernels Kcpange (equation[B)) and Kcjqssic allows to evaluate the performances
of the kernel K pange compared to the kernel Kpq,. Finally, the kernel K, is
based on a conjoint used of the two kernels Kcq;+ and Kchange proposed in this
paper. The kernel K jqssic is defined by the two parameters ocqge and oyertes
respectively used by the Gaussian RBF kernels on edges and vertices. The kernel
Kinaz,classic does not require additional parameters while Kcpange,classic is based
on a v-SVM and requires thus the parameter v. It additionally requires the
parameter U%‘:;f;i used by the RBF kernel in equation 6l The kernel Kcg:
requires the two parameters oegge and oyertex Used by K igssic together with the
maximal number of edition (D). Finally, the kernel Ky, requires as Kcnange
the two additional parameters v and o7, . (equation[f). These parameters have
been fixed to the following values in the experiments described below: D = 2,
Oedge = Overtex = 0.1, v = 0.9, o7 . = 0.3 and Ugﬁsjﬁ = 1.0. The parameters
Ocdge AN Oyerter are common to all kernels. The remaining parameters have
been been set in order to maximize the performances of each kernel on the
experiments below.

Our first experiment compares the distance induced by each kernel k& and
defined as d?(x,z') = k(z,x)+k(z', ') —2k(x, 2"). The mean number of matches
for each class is defined as follows: For each shape of the selected class we sort
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(a) hands,tools,dudes (b) sorted distances to the hand

Fig. 3. Five representative shapes of the classes hands, tools and dudes of the LEMS
database (a), and (b) the 10 closest shapes from an hand using the distances induced
by the kernels Kmaz,classic (1)7 Kchange,classic (2) and Knew (3)

all the shapes of the database according to their distances to the selected shape
using an ascending order. The number of good matches of the input shape is then
defined as the number of shapes ranked before the first shape which belongs to
a different class than the selected one. For example, the 10 nearest neighbors of
a hand sorted in an ascending order are represented in Fig. Blb), the number
of good matches of each shape is indicated on the right of the figure. Note
that the greater number of good match being obtained for the kernel K,ey.
The mean number of good matches of a class is defined as the mean value of
the number of good matches for each shape of the class. The different values
represented in Tab. [[l(a) represent the mean values of these number of good
matches for the classes: hands, tools and dudes (Fig. Bla)). As indicated by
Tab.[I(a), the kernel K44, classic provides stable results but is sensitive to slight
perturbations of the shapes as the ones of the class dudes and cannot handle the
severe modifications of the hands. The kernel Kcpange,classic leads to roughly
similar results on the different classes. Though not presented here, the kernel
K matching classic (equation [3) gives worst results than the others kernels. This
result may be explained by the drawbacks of this kernel (Section[Z2]). The kernel
Kew always provides the best results with a good robustness to perturbation
on dudes and hands.

Our second experiment evaluates performances of each kernel within a classi-
fication framework. To this end, we have trained a SVM on 5 shapes of each of
the three classes: dudes, hands, tools on one side and one model of each of the
6 remaining classes on the other side. The SVM margin parameter was selected
in order to maximize the number of true positive while having no false positive.
Tab. (b)) shows the number of well classified shapes for each class. The kernel
Kpew gives the best performances especially for the hands where the two missing

Table 1. Kernels evaluation based on distance (a) and classification (b) criteria

Hands Tools Dudes Hands Tools Dudes
Kaz,classic 4.81 6.18 6.36 Kmaz,classic 7 11 10
Kchange,classic 5.27 545 6.36 Kchange,classic 7 10 10
Knew 7.09 9.82 6.36 Kpew 9 11 11
(a) Mean number of good (b) Number of recognized shapes in
matches. one class.
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shapes are the more perturbed ones. The two others kernels present good results
and are competitive when shapes are not strongly deformed. This experiment
confirms the robustness of our kernel against perturbed shapes.

5 Conclusion

The bag of path approach is based on a decomposition of the complex graph
structure into a set of linear objects (paths). Such an approach benefits of recent
advances in both string and vectors kernels. Our graph kernel based on a hier-
archy of paths is more stable to small perturbations of the shapes than kernels
based solely on a bag of paths. Our notion of path’s hierarchy is related to the
graph edit distance through the successive rewritings of a path. Our kernel is
thus related to the ones introduced by Neuhaus and Bunke.
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